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AMEK, J. Finitary sketches II

An (�-)geometric sketch is a small category with a choice of �nite limits and arbitrary

colimits (of size smaller than �); a category is said to be (�-)geometrically sketchable

provided that it is equivalent to the category of all models of an (�-)geometric sketch.

We prove that for any �-geometric sketch S, where � is smaller or equal to the �rst

measurable cardinal, there is a �nitary sketch which is equivalent to S in the sense that

their categories of set-valued models are equivalent. Thus, if measurable cardinals do

not exist, any geometric sketch is equivalent to a �nitary one. The same is true for �nite

set-valued models. While the equiva�e of geometric and �nitary sketches is equivalent

to the non-existence of measurable cardinals, for �nite sets this problem is open.

This is joint work with P. T. Johnstone, J. Makowsky and J. Rosick�y.

BARR, M. Acyclic Models

Acyclic models is a powerful technique in algebraic topology and homological algebra in

which facts about homology theories are veri�ed by �rst verifying them on \models" (on

which the homology theory is trivial) and then showing that there are enough models to

present arbitrary objects. One version of the theorem allows one to conclude that two

chain complex functors are naturally homotopic and another that two such functors are

object-wise homologous. Neither is entirely satisfactory. The purpose of this account is

to provide a uniform account of these two, �xing what is unsatisfactory and also �nding

intermediate forms of the theorem.

BETTI, R. Factorizations in bicategories

Many factorization structures which are known in Cat and in other bicategories are

of a \regular" type, in the sense that they can be obtained by universal (weighted)

constructions. For an arrow in a bicategory, the kernel is de�ned by suitable weighted

limits while a colimit construction relative to the same weights gives the corresponding

notion of quotient. The main result consists in the fact that the process of taking kernels

is right bi-adjoint to that of taking quotients. The counit of this bi-adjunction provides
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a canonical factorization of any arrow. We give suitable conditions, both on weights

and on bicategories, in order that this canonical construction provide a factorization

structure.

This is joint work with D. Schumacher.

BISSON, T. Covering Spaces as Operations in Cobordism Theory

For any �nite covering space over a closed manifold we de�ne an operation in the category

of manifolds and study the behavior of these operations up to cobordism. In particular

we get a theory of Dyer-Lashof operations in the bordism of any E-in�nity space. A

complete description of the algebra of these operations is given via the algebraic theory

of D-rings, which is formulated by using Lubin's theory of isogenies of formal group

laws. We also describe the (Nishida) relations between the Dyer-Lashof and Landweber-

Novikov operations, and show how to represent the Dyer-Lashof operations in terms of

their actions on the characteristic numbers of manifolds.

The entire theory can be viewed as a geometric and categorical lifting of mod 2 homology

with its Steenrod algebra and Dyer-Lashof algebra.

This is joint work with A. Joyal.

BLUTE, R. Linear Lauchli Semantics

We introduce a linear analogue of Lauchli's semantics for intuitionistic logic. In fact, our

result is a strengthening of Lauchli's work to the level of proofs, rather than provability.

This is obtained by considering continuous actions of the additive group of integers on

a category of topological vector spaces. The semantics, based on functorial polymor-

phism, consists of dinatural transformations which are equivariant with respect to all

such actions. Such dinatural transformations are called uniform. To any sequent in

Multiplicative Linear Logic (MLL), we associate a vector space of \diadditive" uniform

transformations. We then show that this space is generated by denotations of cut-free

proofs of the sequent in the theory MLL+MIX. Thus we obtain a full completeness the-

orem in the sense of Abramsky and Jagadeesan, although our result di�ers from theirs

in the use of dinatural transformations.

As corollaries, we show that these dinatural transformations compose, and obtain a con-

servativity result: diadditive dinatural transformations which are uniform with respect

to actions of the additive group of integers are also uniform with respect to the actions of

arbitrary cocommutative Hopf algebras. Finally, we discuss several possible extensions

of this work to noncommutative logic.

This is joint work with P. Scott.
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BOURN, D. Characterization of the nerve of n-Groupoids

In a previous work, I showed that the category of n-groupoids is monadic over the

category of normalized (n � 1)-groupoids, i.e. (n � 1)-groupoids equipped with the

choice of a point in each connected component, of a 1-morphism between every pair of

points, of a 2-cell between every pair of 1-morphism and so on, in a way which provides

a natural polyhedral presentation of n-groupoids.

This monadicity theorem allows us to de�ne naturally a functor K

n

from the category

n-Grd B of n-groupoids in IB to the category (n+1)-Simpl B of the simplicial objects

of length (n + 1) in IB, which is the nerve functor for n-groupoids.

Actually it is even possible to characterize the nerve of n-groupoids as (n+1)-simplicial

objects plus further operations, which provides a complete simplicial presentation of

n-groupoids. In this description, the normalized (n� 1)-groupoids play the role of the

split (n� 1)-simplicial objects.

BUNGE, M. Fundamental group of a topos : paths versus coverings

A connected locally connected topological space (such as the long circle) may have a

trivial paths fundamental group yet a non-trivial Chevalley group of automorphisms

of a universal cover (Barr & Diaconescu 1981). This \anomaly" often disappears if

the topological space is replaced by its topos of sheaves. It is our aim to analyse this

situation under conditions as general as possible on the topos in question.

The paths fundamental group of a bounded topos was given in somewhat di�erent forms

in (Moerdijk & Wraith 1986) and in (Moerdijk 1988), using descent and classifying

toposes. The coverings fundamental group of a topos originated in (Grothendieck 1981)

and was subsequently generalized in several directions. The unpointed case dealt with in

(Bunge 1992) uses the (classifying topos of a) localic groupoid approach to the subject

and is thus suitable for the comparison with the paths de�nition, initiated in (Bunge

1992a).

After exploring further the two paths and the coverings de�nitions mentioned above, we

prove that, in the case of a connected, locally connected, and locally paths simply con-

nected bounded topos, all three agree. The example of the long circle is thus recovered

and other examples given.

This is joint work with I. Moerdijk.

CLEMENTINO, M. M. Separation versus connectedness

Approaching separation and connectedness via closedness and denseness, relative to a

closure operator, of diagonals, I introduce and study a Galois correspondence that links

the two concepts.
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COCKETT, R. Coherence for MIX

Categorical models for (the multiplicative fragment of) linear logic which satisfy the

mix rule should also satisfy a simple coherence theorem which allows morphisms to be

represented as proof nets. Unfortunately, this theorem does not provide a description

of the basic coherence diagrams which must be satis�ed.

While it is certainly the case that the units of the two tensors must be isomorphic, it

is signi�cant that this by itself is not su�cient to secure the above coherence theorem.

There is a further and more subtle condition which can best be described using the weak

distributions between the tensors.

The talk will describe this extra condition and how one can obtain the desired coherence

theoremwhich allows nets to represent the morphisms. The results rely on the coherence

theorems available for weakly distributive categories.

CUBRIC, D. Semantics for the Universal Quanti�er

We study the \right adjoint" fragment of intuitionistic multisorted predicate logic, that

is the connectives (T, &, !, 8) with Lawvere/Lambek/Prawitz equality of proofs. The

categorical models are forall �brations - a generalization of hyperdoctrines. In the

indexed category language they can be de�ned as follows: the base has �nite products,

�bers are cartesian closed categories, pullback functors preserve the structure and the

pullback functors along projections have stable right adjoints. We show that many of

the well known properties of cartesian closed categories hold here as well. We organize

them in the form of three representation theorems. The �rst one represents every forall

�bration as a classifying �bration for a typed calculus and as a consequence every

forall �bration is equivalent to one which is strict, normal, and the pullback functors

preserve the structure \on the nose". Next, we have a Yoneda-like representation of

forall �brations obtained using a variant of Street-Walters Yoneda structure on the 2-

category of �brations. As a corollary, we obtain some conservativeness results for our

fragment. Our third representation theorem is a Friedman-like completeness for the free

forall �brations with respect to families of Sets. A corollary of this result can be stated

as follows: a diagram commutes in every forall �bration if and only if it commutes when

interpreted in sets. Also, we present some of the syntactic properties of our calculus e.g.

a solution of the word problem.

DAMPHOUSSE, P. Distorted logic for full subcategories of �nite sets

The power set construction X 7! PX is basic to set theory and logic. The inverse image

functor (written C), and the functors 9 and 8 de�ned by its left- and right- adjoints on

each object are endofunctors of sets which have the value PX on each set X. Are there

others? The question is closely related to the existence of endofunctors F of Set not

4



isomorphic to the identity endofunctor but nevertheless �xing objects (i.e. FX = X for

each set X). Given any such \�xing object endofunctor" (�xob) F of Set, the composites

9F , CF and 8F still satisfy 9F a CF a 8F and 9FX = CFX = 8FX = PX.

Moreover, given a full subcategory of Set (stable or not for the power set construction),

what are its \�xobs"? We give a complete anwer to this question for full subcategories

of �nite sets and examine the meaning of the corresponding quanti�ers 9F , CF and 8F .

DUSKIN, J. Some Applications of 2-Category Techniques in the Theory of Braided

Tensor Categories

Two years ago, in a Montreal talk before an audience composed mostly of category

theorists, Pierre Cartier suggested that the theory of 2-categories might prove useful in

the study of quantum groups and related topics. This work is the result of one such

investigation.

A strict tensor (=monoidal) category may be equivalently viewed as monoid object in

Cat or a category object in Mon. As a cat-monoid, its nerve is a simplicial monoid

whose underlying double complex is that of a 2-category with a single object (= 0-cell)

with 1-cells provided by the objects of the tensor category and composition of 1-cells

provided by the tensor product. The arrows of the tensor category and their composition

give the 2-cells and their composition, and the functoriality of the tensor product gives

the �-composition of 2-cells and the \interchange law". Strict tensor functors between

tensor categories become strict 2-functors between 2-categories with a single object, and

it is from this entirely equivalent point of view that we wish to pursue the subject of

this talk.

First, about Joyal-Street \braidings": In any 2-category one can form the double cat-

egory of \lax-(commutative) squares" which consists of squares of composable 1-cells

together with a 2-cell connecting the compositions of the 1-cells on each side of the

diagonal. There is an obvious \horizontal composition" of such lax-squares as well as a

vertical one and they are easily seen to satisfy the interchange law of a double category.

Moreover, there is an obvious way to introduce 2-cells between lax-squares which makes

the lax-squares into a category object in 2-Cat which plays the role of representing \lax

functors between 2-categories". Now, among these lax-squares are those which de�ne

the \epi-center" of the 2-category, the lax squares whose two vertical 1-cells are identical

and whose horizontal 1-cells are as well. This condition forces all of the corners of square

to be the same 0-cell and to have its \interior" to be 2-cell of the form A
B ) B 
A

when the 2-category is that associated to a strict tensor category. We de�ne a (normal-

ized) braiding on a 2-category with a single object C as a bi-functorial (i.e., functorial

in each variable) section c of the epi-center of C c

A;B

: A
B ) B
A is easily seen to

satisfy exactly the conditions of the Joyal-Street de�nition, including naturality, when

the associativity isomorphisms are all identities, except that c

A;B

is not required to be
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invertible but we require c

1;B

= id(B) and c

A;1

= id(A), \normalization".

The chief advantage of this 2-category point of view of strict tensor categories is that it

gives an easy \geometric" way to handle braidings using the Sydney School's highly e�-

cient way of dealing with equations and proofs in 2-categories using \pasting diagrams".

Now any 2-categoryC has its own \oriented geometric nerve" which can be de�ned as the

simplicial set which has the 0-cells of C for 0-simplices and the 1-cells for 1-simplices.

2-simplices x are de�ned as triangles of 1-cells together with a 2-cell x : d

1

(x) )

d

2

(x)
d

0

(x) for interior. 3-simplices consist of the \commutative tetrahedra" each made

of four compatible 2-simplices of the foregoing sort for which the unique composition

of the odd faces is equal to that of the even faces, a condition easily expressed as an

equality of the corresponding pasting diagrams. Degeneracies are equally well supplied,

and the full nerve is just the coskeleton of the just de�ned truncated complex. From

a simplicial point of view this nerve just corresponds to the classifying space of the

simplicial category de�ned by the original 2-category which is its �ber. In the case here

at hand of a tensor category this geometric nerve is a reduced (i.e., only one 0-simplex)

simplicial set and its �ber is the simplicial monoid de�ned by the strict tensor category.

The nerve is thus seen to form the �rst step in a simplicial spectrum as we will see

below. (One equally well has the oppositely oriented version of this nerve where the

2-simplices interior is of the form x : d

0

(x) 
 d

2

(x) ) d

1

(x). Both are needed in the

applications.)

Now suppose that the tensor category has a braiding c, then the nerve of C has the

structure of a simplicial monoid which is trivial in dimension 0, has the composition of

1-cells (tensor product) as multiplication in dimension 1, but uses the braiding to de�ne

the product of two arbitrary 2-simplices x and y using their interiors by pasting the

square c(x

2

; y

0

) between the triangles x and y to form a new 2-simplex whose faces are

exactly the products of the corresponding 1-cell faces (so that the face maps become

homomorphisms). This product is associative and unitary (using s

0

(1) as unit) and

the product of commutative tetrahedra is commutative. Thus a braiding de�nes the

structure of a simplicial monoid on the classifying space of W (C) with C as its loop

complex. This allows us to iterate the construction for one more step and obtain a new

simplicial set W

2

(C) which has W (C) as its �ber. W

2

(C) is supplied the structure of

a simplicial monoid if and only if the braiding is symmetric (c

2

= id), in which case

the iteration can be continued inde�nitely. (That symmetric monoidal categories are

in�nite loop spaces was �rst observed by Peter May, so what we have here is the low

dimensional fragment of the symmetric case.)

Now given any structure of a simplicial monoid on the nerve of a tensor category viewed

in the fashion which has C as its kernel, the product of the degenerate 2-simplices

s

1

(x)s

0

(y) may be seen to de�ne a 2-cell c(x; y) : x 
 y ) y 
 x which may be seen to

de�ne a braiding on the original tensor category C and we have the Theorem: There
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is a bijective correspondence between braidings on a strict tensor category and simpli-

cial monoid structures on its nerve. They de�ne spectra if and only if the braiding is

symmetric.

Note: Most of the objects of interest in braided tensor categories such as algebras,

co-algebras, bialgebras, braided-algebras, commutative algebras, modules etc. have a

pretty geometric picture when put in this 2-category frame, for example, an associative

co-algebra is just a commutative tetrahedron in the above sense which has all of its

1-cell faces equal.

FIORE, M. Aspects of Axiomatic Domain Theory

The purpose of axiomatic domain theory is to understand domain-theoretic models of

computation. The aim is both at explaining domain theory as it has been developed

and at enriching it with new theorems and models.

I will show how a detailed axiomatic analysis of the notions of approximation and passage

to the limit leads to models of domain theory (with uniform �xed-point operators and

supporting the solution of domain equations) which are not Cpo-enriched in a relevant

sense.

And I will present enrichment and representation theorems showing that there is a model

of domain theory with respect to which all models enrich and such that all models can

be fully and faithfully represented in a power of it.

FUNK, J. Geometric Spreads

The notion of a spread, due to R. Fox (1957), has a natural formulation for geometric

morphisms (in terms of de�nable subobjects in the sense of Barr and Par�e (1980) ). With

this formulation of spread we extend to arbitrary (bounded) toposes the identi�cation,

established by Funk (1993), of the distributions (Lawvere, 1983) on a localic topos with

the category of complete spreads with locally connected domains over the given topos.

Related to this result is the pure/spread factorization for TOP/S, for a base topos S

(analogous to that of Collins and Dyckho� (1977) ). A consequence of the factorization

is that a locally connected spread is a local homeomorphism. Geometric spreads are, as

in topology, �berwise zero-dimensional, where zero-dimensionality is de�ned in terms of

relatively complemented opens (Kock and Reyes, 1994).

This is joint work with M. Bunge.

GATES, R. A construction of the initial distributive category with P (X)

�

=

X

Given a polynomial P and an object X of a distributive category C, we may form the

object P (X) of C. Suppose also we are given a distinguished isomorphism P (X)

�

=

X
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in C. Then X may be thought of as a data type object in C { the arrow P (X) ! X

giving constructors for the data type, and the arrow X ! P (X) giving destructors.

For example, one might consider P (X)

�

=

X + 1, in which case the object is a model of

the natural numbers. Alternatively, one might consider P (X)

�

=

X

2

+ 1, in which case

the object is a model of binary trees.

A natural question to ask is: Given P , what is the initial such distributive category?

The arrows in this initial category will be the straight line programs one can write

using the operations of the data type, and usual distributive operations. What are the

isomorphisms in this category?

This question was proposed by Lawvere, with the suggestion that two objects were

isomorphic exactly when they were equal as elements of the free rig satisfying the given

equation. Blass investigated the case of binary trees, using the notion of \particularly

elementary" maps rather than the initial category. The author considered in a previous

paper the case of natural numbers, constructing the initial such category and identifying

the isomorphisms.

This question is answered by direct construction { the initial such category is given

explicitly. The construction takes place in three stages - we �rst construct the initial

category with products and the components of the constructor P (X) ! X, then sums

are freely added, and �nally a category of fractions construction is used to invert the

required arrow. Note that the category of fractions is produced from a calculus of right

fractions, and thus the resultant category looks hopeful for explicit computations.

The category of Sets always has an initial model of a given data-type, and hence the

initial category so produced may be equipped with a functor into Sets. Under reasonable

conditions on the polynomial, this functor is faithful, and this allows the computations

of the isomorphism classes in the initial category to be carried out.

GRANDIS, M. Limits in double categories

We de�ne here the notion of horizontal limit for a double functor F : I! A with values

in a double category. And we give a construction theorem for such limits.

Theorem: The double category A has all (small) horizontal limits i� it has (small)

horizontal products, horizontal equalizers and horizontal tabulators (of vertical arrows).

For a vertical arrow u : A ! B, the horizontal tabulator is the horizontal limit of

the double diagram consisting of u. In other words, it consists of an object Tab u,

universally equipped with two horizontal maps p : Tab u ! A, q : Tab u ! B and a

cell p connecting them to u (its horizontal ends are p, q; its vertical ends are the vertical

identity of Tab u and u).

In particular, if A is a 2-category, the cotensor 2 \A is the same as the tabulator of
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the vertical identity of A. Thus, one recovers Street's construction theorem of weighted

limits through ordinary limits and such cotensors.

As a preparatory lemma, we show that the double category A has horizontal limits of

\horizontal functors" HI ! A i� it has horizontal products and horizontal equalizers.

The construction of such limits is the standard one. HereHI is the obvious \horizontal"

double category over the category I, all of whose vertical arrows and cells are identities.

Then, the theorem is proved, roughly speaking, by constructing a new 1-dimensional

graph

^

I, by replacing every vertical arrow u of I with a new object hui, simulating its

horizontal tabulator, and every vertical composition w = vu in I, with a new object

hu; vi, simulating the \double tabulator" Tab (u; v) (the obvious pullback of the tab-

ulators of u and v). The double functor F : I ! A produces a \horizontal functor"

G : H

^

I ! A, and its horizontal limit (by horizontal products and equalizers, because

of the previous lemma) is the horizontal limit of F .

This is joint work with R. Par�e.

HU, H. On pure morphisms in accessible categories

As a generalization of pure embedding in accessible categories, \pure morphism" is one

of the central concepts in the theory of accessible categories (see, J. Ad�amek and J.

Rosick�y, Locally Presentable and Accessible Categories, Cambridge Univ. Press, 1994).

This talk will summarize the recent progress on the problem of whether each �-pure

morphism in a �-accessible category is a regular monomorphism.

JANELIDZE, G. Higher Dimensional Central Extensions: A Categorical Approach to

Homology Theory of Groups

As shown in [2], the so-called double central extensions of groups can be described as

the 2-dimensional coverings with respect to the standard adjunction between groups and

abelian groups. Now we extend this result to higher dimensions. Using the generalized

Hopf formula [1], we show that all homology groups of groups (with coe�cients in Z)

can be de�ned in terms of higher dimensional Galois groupoids.

Since this de�nition uses only purely categorical Galois theory, similar results might be

expected for the homotopy groups in Topology and Algebraic geometry.

References

1. R. Brown and G. Ellis: Hopf formulae for the higher homology of a group, Bull.

London Math. Soc. 20 (1988) 124-128.

2. G. Janelidze: What is a double central extension? (the question was asked by Ronald

Brown), Cahiers de Topologie et G�eom�etrie Di��erentielle Cat�egoriques XXXII-3 (1991)

191-201.
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JOYAL, A. Bicompletions of Categories

KATIS, P. Circuits and the Grothendieck Construction

It has long been known that the algebraic structure of categories equipped with products

provides a calculus for constructing straight-line circuits. In order to study feedback of

circuits, and to take into account the fact that circuits have internal state (which is

crucial to understanding abstraction and re�nement), it is claimed that the theory of

bicategories is needed.

The constructionCirc (de�ned in [5]) is discussed. This provides a fundamental example

of a bicategory of circuits (which is also calledCirc), and it comes equipped with a tensor

product and a feedback operation. In fact, this bicategory is an example of a (weak)

equipment (see [2]). How the theory of the latter may be used as a tool for handling

some constructions important to Computer Science is indicated.

The Grothendieck construction is shown to exhibit circuits as a class of spans of cate-

gories (which are characterized), relating the theory to [6]. As a result of this there is a

natural way to de�ne functors behaviour; equilibrium : Circ! Rel, which are proven

to be structure preserving. This makes explicit the connection between this work and

that of [3] and [1].

Though [4] and the concept of compact closed bicategory should clearly be part of an

abstract treatment of feedback, there are subtleties regarding feeding-back circuits which

indicate that more structures are involved. This will be discussed, as well as how the

concepts of input and output may be clari�ed by an investigation of such structures.

References:

[1] Brown C. and Je�rey A., Allegories of circuits, Proc. Logical Foundations of Com-

puter Science, St. Petersburg, 1994.

[2] Carboni A., Kelly G. M. and Wood R. J., A 2-categorical approach to change of base

and geometric morphisms I, Cahiers de topologie et g�eom�etrie di��erentielle cat�egoriques

32, 1991, 47-95.

[3] Jones G. and Sheeran M., Circuit design in Ruby, Formal methods for VLSI design,

North-Holland, 1990, pp. 13-70.

[4] Joyal A., Street R. H. and Verity D., Traced Monoidal Categories, Macquarie Math-

ematics Report No. 94-156, August 1994.

[5] Katis P., Sabadini N. and Walters R. F. C., The bicategory of circuits, Technical

Report 94-22, University of Sydney, June 1994.

[6] Lawvere F. W., State Categories and Response Functors, Preprint, May 1986.
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KELLY, G. M. Enrichment for monads on the category of categories

It has long been known that many structures borne by categories { elementary toposes

with logical morphisms provide an example { are algebras for a monad on the category

Cat

0

of (small) categories and functors; results of this kind are due to Burroni, Dubuc-

Kelly, and others. Before, however, one can apply the results of [Blackwell, Power, and

Kelly, Two-dimensional monad theory, JPAA 59 (1989), 1-41], one needs not a mere

monad P on the category Cat

0

but a 2-monad T on a suitable 2-category { which may

be Cat, but is more commonly only the 2-category Cat

g

of categories, functors, and

natural isomorphisms.

We �rst show that a perfectly respectable monad P may fail to admit any such enrich-

ment T but that { we thought this surprising { the enrichment T is unique if it exists;

and we discuss what it says about the nature of the algebraic operations involved, when

an enrichment does exist over Cat

g

or over Cat.

A deeper examination of enrichment, using techniques that largely apply with any sym-

metric monoidal closed category in place of Cat, leads us to see the category of �nitary

2-monads T on Cat

g

(or on Cat) as a full subcategory of the category of �nitary monads

P on Cat

0

, this subcategory being both re
ective and core
ective.

We end by discussing how we may often infer, from a presentation of P in terms of

operations and equations, that it does indeed lie in one of these subcategories of 2-

monads.

This is joint work with J. Power.

KLEISLI, H. How induced representations should be constructed

Let G be a completely regular group. Dorofeev and Kleisli introduced a group algebra

M(G) as an algebra-object in a �{autonomous category due to Michael Barr, and there-

fore denoted by Barr. That group algebra allows to set up a natural bijection between k{

continuous unitary representations � of G in a Hilbert space H and M(G){Hilbert mod-

ule structures on OH, i.e. continuous algebra-homomorphisms R :M(G) ! [OH;OH]

in Barr. We denote by M(G){Hmod the category of M(G){Hilbert modules and con-

tinuous M(G){homomorphism.

Let S be a closed subgroup of G. Then there is a restriction functor Res : M(G) �

Hmod!M(S)�Hmod. The left-adjoint and the right-adjoint ofRes exist and coincide,

and shall be denoted by Ind. If � is a continuous unitary representation of S and X

the associated M(S){Hilbert module, then the unitary k{continuous representation of

G obtained from theM(G){Hilbert module Ind X satis�es the universal properties the

representation � of G induced by � is supposed to satisfy.

We are going to show how Ind X can be constructed, in spite of the fact that the category
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of Hilbert spaces and contracting linear maps is far from being complete or cocomplete.

Then we compare it with the representation space for the classical construction of an

induced unitary representation in the case where G is a locally compact second countable

group.

KOCK, A. Natural Bundles over Smooth

�

Etendues

We show how natural bundles, in the sense of di�erential geometry, extend to the cat-

egory of smooth �etendues. We specialize to cotangent- and frame- bundles, to obtain

results on di�erential forms.

This is partly joint work with I. Moerdijk.

KOSLOWSKI, J. From bicategories of relations to bicategories of profunctors

Our goal is to analyze the relationships between

- set (or any elementary topos) and the corresponding bicategory rel of relations

- the bicategories ord of (pre-)ordered objects and idl of order-ideals

- the bicategories inf of infosys and below-preserving functions and kar, the Karoubian

envelope of rel (cf. Rosebrugh and Wood).

We then wish to apply these results to other bicategories of relations induced by regular

�brations in the sense of Pavlovic, or hyperdoctrines in the sense of Lawvere.

This requires some bicategorical preliminaries. Given a bicategory R, the notion of a

monad on an object A is well-known. We introduce the weaker notion of interpolad on

A by dropping the unit and requiring the multiplication to be a retraction. For both

interpolads and monads we introduce a new type of morphisms, called modules. These

can be composed provided that the hom-categories of R have pushouts. In this case one

obtains bicategories R-int and R-mon, respectively.

If, moreover, the bicategory R is bi-closed with respect to 1-cell composition ;, this

property is inherited byR-int and R-mon. The proof of this uses the \bow-tie lemma",

a technical result concerning bi-closed bicategories.

For the power-set �bration on set, one obtains rel as bicategory of relations. Monad-

s in this setting are just re
exive transitive relations (i.e., pre-orders or graphs), and

interpolads turn out to be idempotent relations (i.e., transitive relations with the in-

terpolation property, hence the name \interpolad"). In either case, modules are just

structure-compatible relations, and one recovers the bicategories idl and kar.

The power-set �bration is equivalent to the full sub-�bration of the codomain functor

V:set/set ! set, spanned by all monos. V-relations are simply spans in set, the

monads for which are small categories. In this situation our modules are just profunctors.
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The weaker interpolads may be viewed as \categories without objects", a notion already

suggested by the concept of semifunctor as put forward by Hayashi, cf. also Hoofman.

Here our modules could be interpreted as \semi-profunctors".

Of course, one is interested in the maps of the bicategories obtained in this fashion. Our

investigation was partly motivated by the fact that the maps of the bicategory idl form

another bicategory (not just a category!) that is equivalent to ord

co

(with reversed 2-

cells, i.e., the opposite of the pointwise order). This suggests the possibility of extending

Pavlovic's analysis of categories of maps to �brations over bicategories. In particular,

this requires a re-interpretation of the Beck-Chevalley condition.

References:

Hayashi, S.: Adjunction of Semifunctors: Categorical Structures in Non-Extensional

Lambda Calculus, Theor. Comput. Sci 41 (1985), 95 - 104.

Hoofman, R.: Non-Stable Models of Linear Logic, Preprint (1993).

Lawvere, F.W.: Adjointness in foundations, Dialectica 23 (1969), 281 - 296.

Pavlovic, D.: Maps I: Relative to a factorization system, preprint (1993).

Pavlovic, D.: Maps II: Chasing proofs in the Lambek-Lawvere logic, preprint (1994).

Rosebrugh, R. and Wood, R. J.: Constructive complete distributivity IV, preprint

(1992).

LAWSON, M. Constructing Inverse Semigroups from Category Actions

Inverse semigroups are amongst the most studied of semigroup classes. Modelled origi-

nally on the pseudogroups of transformations important in di�erential geometry, inverse

semigroups are algebraically those semigroups in which each element has a unique gen-

eralised inverse.

In this talk, we show that all inverse semigroups can be constructed from categories

acting on sets satisfying some simple conditions. Our construction can be viewed as

a generalisation of the usual procedure for constructing categories of partial (injective)

functions.

In addition to providing a possible way of applying category theory to the study of

inverse semigroups, our construction yields examples of inverse semigroups from some

natural examples of category actions. Two examples will su�ce.

Examples

1. The free monoid on n generators acting on itself gives rise to the polycyclic monoid

on n generators.

2. Given an operator domain 
 there is a category whose objects are �nite sets and
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whose morphisms are term substitutions. This category acts on the set of 
-terms [3].

The inverse semigroup constructed from this action we call the clause semigroup.

Both the polycyclic inverse semigroups and the clause semigroups play an important

role in Girard's `Geometry of interaction'. In fact, our work arose from the similarities

we noticed between a construction to be found in [2] and a construction in [1].

References:

[1] J.Y. Girard, Geometry of interaction III: accommodating the additives, Preprint,

Laboratoire de Math�ematiques Discr�etes, Marseille.

[2] D. B. McAlister, One-to-one partial right translations of a right cancellative semi-

group, Journal of Algebra 43 (1976), 231{251.

[3] D. E. Rydeheard and J. G. Stell, Foundations of equational deduction: A categor-

ical treatment of equational proofs and uni�cation algorithms, in Category theory and

computer science, Lecture Notes in Computer Science 283 (1987), 114{139.

LAWVERE, F. W. TBA

LIPPINCOTT, T. An Introduction to Diagrammatic Languages

Diagrammatic languages are a category-theoretic alternative to the traditional concep-

tion of a formal language as a set of strings. I will give the central de�nitions for dia-

grammatic languages and present some results demonstrating bene�ts these languages

o�er over traditional formal languages.

Mac LANE, S. Emmy Noether and Heinz Hopf Made Category Theory Possible

This talk will report on the prehistory of category theory, with attention to developments

before 1945 which involved both abstract algebra and algebraic topology. Without such

ideas, category theory could not have been discovered.

MacCAULL, W. Kripke semantics for substructural logics with weakening and no

contraction

We present Kripke semantics (also known as relational semantics) for substructural

logics with weakening, and no contraction. This work is a continuation of the work of

Allwein and Dunn [1] on Kripke semantics for Linear logic (which gives, as a special

case, the Routley and Meyer relational semantics for Relevance logic). The Allwein and

Dunn semantics rests on Urquhart's Representation Theory for non-distributive lattices.

The logics under consideration have algebraic semantics consisting of monoids with ex-

tra structure. Canonical relational models are found by generalizing the process of
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constructing Kripke models from Heyting algebras. The basic idea is to use maximally

disjoint �lter-ideal pairs (called maximal pairs) to separate points. The set of max-

imal pairs has two quasiorders: one determined by the �lters, and the other by the

ideals. Three ternary relations are de�ned on the maximal pairs which embody the

properties of the algebraic operations & and !. A collection of subsets of the set of

maximal pairs, the l-stable sets, forms a model called the canonical model. Properties

of the ternary relations in the canonical model are expressed abstractly which yields the

abstract de�nition of the Kripke (relational) semantics.

Our contribution to this area is the axioms for Kripke semantics for a substructural

logic with weakening, exchange and no contraction [2]. Soundness and completeness are

discussed. We close by discussing progress for logics with weakening, and no contraction

or exchange.

References:

[1] Allwein, G. and J. M.Dunn, Kripke models for linear logic, Journal of Symbolic

Logic, 58, 514-545, 1993.

[2] MacCaull, W., Relational semantics for a substructural logic with weakening and

exchange, submitted.

MacLEOD, R. Substitution Systems

Conservation laws seem to be going out of vogue (at least in Cosmological Physics) but at

the level of algebraic theories one law can (should?) be required to hold: Variables may

neither be created nor destroyed. A straight forward generalization of \monad" produces

\dyad" whose specialization to certain (bi)categories provides a restricted notion of

algebraic theory which satis�es the above conservation law.

Examples of such algebraic theories (and their algebras) living in various categories are

given. These include simplicial complexes, monoids (of course), but (signi�cantly) not

groups.

We will also discuss an adjoint version of these substitution systems and their relation-

ship to the construction of algebras and tensor products.

MAKKAI, M. First order logic with dependent sorts, with applications to category

theory

J. Cartmell [2] introduced a syntax of variable types, which I call dependent sorts, for the

purposes of presenting generalized algebraic theories. Cartmell's syntax was \abstracted

from Martin-Lof type theory". I add propositional connectives and quanti�cation to a

simpli�ed version of Cartmell's syntax, to obtain what I call First-Order Logic with

Dependent Sorts (FOLDS). The simpli�cation consists in the exclusion of operation
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symbols, and a severe restriction on the use of equality. Quanti�cation is subject to the

natural restriction that a quanti�er \for all x " or \there is x" cannot be applied if in

the resulting formula there is a free variable whose sort depends on x.

An important special case of FOLDS was introduced by G. Blanc [1] for the purpose of

characterizing �rst-order formulas in the language of categories that are invariant under

equivalence of categories. P. Freyd's earlier characterization [3], although not explicitly

coached in an instance of FOLDS, is essentially the same as Blanc's. A. Preller [7] gives

an explicit comparison of Blanc's and Freyd's contexts. The main aim of the present

work is to extend Blanc's and Freyd's characterization from statements about categories

to statements about more complex categorical structures.

A similarity type for structures for FOLDS is given by a one-way category of sort-forming

symbols and relation symbols. One-way categories were isolated by F. W. Lawvere [4],

and were subsequently shown by him to be relevant for the generalized sketch-syntax of

[5].

The basic metatheory of FOLDS is a simple extension of that of ordinary multisorted

�rst-order logic. There are simply formulated complete formal systems for both classical

and intuitionistic FOLDS, with Kripke-style completeness for the intuitionistic case.

The systems use entailments-in-contexts as their basic units; contexts are systems of

typings of variables as usual in Martin-Lof-style systems. We have Gentzen-style systems

admitting cut-elimination. Natural forms of Craig Interpolation and Beth De�nability

are true in both classical and intuitionistic FOLDS. Much of the basic metatheory is

done through the formalism of appropriate �brations (hyper-doctrines).

The main new concept is a notion of equivalence of structures for FOLDS. Equivalent

structures satisfy the same sentences of FOLDS. The main general result is that con-

versely, �rst order properties invariant under equivalence are expressible in FOLDS. A

stronger version of the result takes the form of an interpolation theorem.

Two categories are equivalent in the usual sense i� they are equivalent as structures for

FOLDS. This connection between the categorical concept of equivalence and FOLDS-

equivalence persists for more complex categorical structures such as (1) a diagram of

categories, functors and natural transformations, or (2) a bicategory, or (3) a diagram

of bicategories, etc., if we pass to \ana"-versions of the concepts of functor, bicategory,

etc.; the latter were introduced in [6]. Every functor, bicategory, etc., has its so-called

saturation, a simply de�ned saturated anafunctor, saturated anabicategory, etc., respec-

tively. A property written in FOLDS of the saturation is a particular, \good", kind of

�rst-order property of the original.

Applications of the foregoing give syntactical characterizations of properties invariant

under equivalence in the contexts mentioned. E.g., a �rst-order property of a variable

bicategory is invariant under biequivalence i� it is expressible in FOLDS as a property
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of the saturated anabicategory canonically associated with the given bicategory.
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MARMOLEJO, F. Weak Limits and Algebras

A weak colimit in a category B is functorial if there is a functorial way of choosing

the morphisms which factor a cocone through the given one. In the simplest case, a

functorial weak initial object is a pair (Z;F ) where Z is an object ofB and F : B! Z=B

is a functor such that 1

A

= UF , where U : Z=B! B is the forgetful functor. It is well

known that the existence of functorial weak colimits together with split idempotents

implies that the category has colimits.

Given another category A, functors H : A! B, R : B! A and a natural isomorphism

1

A

! RH, we show that the existence of functorial weak (co)limits in B implies their

existence in A. We obtain limits for A if A has split idempotents. Notice that, in this

situation, if B has split idempotents, then A has split idempotents too.

We explore some applications to categories of algebras for a 2-monad T over CAT. In

particular the unit law has the form described in the previous paragraph. In case the

category TA has `nice' properties it is necessary for A to be `nice' to have an algebra

structure.
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NIEFIELD, S. Constructing Quantales From Monoidal Categories

The following result will be applied (in the case where S is the category of sup lattices)

to obtain a uni�ed approach to certain examples of quantales (and in particular, locales)

and their modules.

Let S be a monoidal category (with coequalizers which are preserved by the tensor

product) and consider the categories MONCAT/S of monoidal categories over S and

Mon(S) of monoids in S. Then ev : MONCAT/S ! Mon(S)

op

is left adjoint to mod :

Mon(S)

op

!MONCAT/S, where ev is evaluation at the unit object I, i.e. ev(p : V! S)

= p(I) and mod(Q) = Q-Mod, the category of Q-Q-bimodules (with suitable de�nitions

for morphisms).

PEDICCHIO, M. C. Internal Category Theory and Commutators

The aim of my talk is to describe the relations between internal category theory and

commutator theory. I recall that commutators constitute a basic tool in Universal

Algebra and have been widely studied in recent years (see \Commutator Theory for

congruence modular varieties" by R. Freese and R. McKenzie).

If we consider a Mal'cev category, i.e. a category with permutable lattices of equiva-

lences, internal groupoids (internal pregroupoids) exactly correspond to re
exive graphs

(spans) equipped with a suitable trivial commutator; this kind of result can be used to

give a characterization theorem for Mal'cev categories and moreover to construct the

free groupoid (pregroupoid) on a re
exive graph (span).

The case of arithmetical categories i.e. categories with distributive and permutable lat-

tices of equivalences, is also investigated; the only possible groupoids in this context are

re
exive relations (=equivalence ones). Heyting algebras and duals of topoi are basic

examples of this situation.

Finally I will consider the most general case of \modular" categories and discuss some

open problems on the subject.

PLEWE, T. Localic triquotient maps are e�ective descent maps

Triquotient maps are `the least common (natural) generalization' of open and proper

surjections.

The main result to be presented here is that triquotient maps are e�ective descent

maps, thus generalizing the corresponding results for proper surjections (Vermeulen),

and open surjections (Joyal and Tierney). Because the proof is constructively valid

one gets a corresponding result for geometric morphisms between Grothendieck toposes

(over an arbitrary base topos) whose localic part is triquotient.

Further results concern stability of triquotiency under various operations, e.g. arbitrary
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products, �ltered (inverse) limits. Among the applications are a new constructive proof

of Tychono�'s theorem, and a new(?) result on stability of open surjections under

�ltered limits.

ROSENTHAL, K. Quantaloids, Enriched Categories and Automata Theory

This talk is intended to be a survey outlining how the theory of quantaloids and cat-

egories enriched in them, provides an e�ective means of analyzing both automata and

tree automata. The emphasis is on the uni�cation of concepts and the simpli�cation

provided by categorical methods. Two applications are discussed; the �rst shows how

the syntactic monoid construction for automata is captured by the notion of \syntactic

nucleus" on a quantaloid, which can then be used to �nd the appropriate generalization

to tree automata. The second looks at the relationship between context-free languages

and tree automata by combining Walters' work on using multigraphs and categorical

methods to study context-free grammars and languages with the notion of relational

presheaf on a quantaloid.

The applications described in this talk appear in:

K. Rosenthal, Quantaloidal nuclei, the syntactic congruence and tree automata, J. Pure

Appl. Alg. 77, 1992, 189{205.

K. Rosenthal, A categorical look at tree automata and context-free languages, Math.

Structures in Comp. Sci. vol 4, 1994, 287{293.

ROSICK

�

Y, J. Finitary Sketches I

A �nitary sketch is a small category with a choice of �nite limits and �nite colimits; a

category is said to be �nitarily sketchable provided that it is equivalent to the category

of all models of a �nitary sketch, i.e., all set-valued functors preserving the speci�ed

limits and colimits. We prove that �nitarily sketchable categories are precisely those

which can be axiomatized by basic theories of the �rst-order logic which are �nitary

except that they admit countable disjunctions. It is not known whether this result can

be extended to models in an arbitrary topos, but it holds for topoi with enough points

or enough �nite points (i.e., geometric morphisms into the category of �nite sets).

This is joint work with J. Ad�amek, P. Johnstone, and J. Makowsky.

SQUIRE, R. 
 co-generates simplicial sets

It is known that 
 co-generates the topos of 1-truncated simplicial sets. We show that

the statement remains true for the topos of simplicial sets, and, for any n, for the topos

of n-truncated simplicial sets.
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STEINER, R. Presentations of omega-categories by directed complexes

An omega-category (sometimes called an in�nity-category) is a set with an in�nite

sequence of composition operations subject to axioms generalising those of a 2-category.

A directed complex is a complex of arbitrary dimension with a structure generalising the

structure of a directed graph. In a loop-free directed graph, the paths form a particularly

simple category; generalising this, if a directed complex is loop-free in a natural sense

then there is a class of subcomplexes forming a particularly simple omega-category.

When an omega-category is represented in this way, the composition operations are all

represented by union; this makes multiple composites easy to handle. Methods due to

Crans show that an arbitrary omega-category can be represented by loop-free directed

complexes in a similar way, provided that one uses equivalence classes.

STREET, R. Low-dimensional topology and higher-order categories I

The Hurewicz arrow notation f : A ! B for functions appeared in topology around

1940. It is now standard throughout mathematics and seems indispensable to category

theory. The diagrams that result give categorical algebra a geometric 
avour. Yet, it

is the Poincar�e dual notation which makes a deeper connection between categories and

low-dimensional topology. Here, f becomes a node while A and B become edges into

and out of that node. In the same way that braid groups provide the algebra for braids,

higher categories provide the algebra for certain precise classes of manifolds embedded

in Euclidean space (braids are a special case).

This is joint work with D. Verity.

THOLEN, W. The categorical notions of separation, compactness and connectedness

Based on notions of closedness and denseness, which may be (but don't have to be)

provided by a closure operator, one may establish the notions mentioned in the title for

arbitrary categories. In this talk we concentrate on proving product theorems, and on

giving applications for them.

TIERNEY, M. On the theory of path groupoids I

In this paper we use topos theoretic methods to study various aspects of the homotopy

theory of simplicial groupoids. In particular, as Kan constructed a loop space that was

a group, so we construct and investigate path spaces that are groupoids. These are

important, among other reasons, because functorial, colimit preserving path groupoids

have right adjoints that lead to classifying spaces.

Thus, we introduce the notions of path space, path groupoid, and adequate graph. Next

we de�ne and study the fundamental class of locally transitive groupoids. Our main
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theorem is that the free groupoid on an adequate re
exive graph is a path groupoid.

This is joint work with A. Joyal.

TRIMBLE, T. Parity Structures on Associahedra and Higher-Dimensional Categories

Parity complexes, introduced by Ross Street, are combinatorial structures used to

present higher-dimensional categories. One important use of these structures has been

to describe precisely the higher-dimensional cocycle conditions used in non-abelian co-

homology. Similar cocycle conditions are used to de�ne the notion of bicategory, tricat-

egory, and presumably their analogues in higher dimensions (called weak n-categories),

which have yet to be given precise de�nitions.

Examination of the cases so far developed reveals a suggestive relationship between such

higher-dimensional categorical structures and the associahedra of Jim Stashe�. In this

talk we describe a program being developed whose aim is to de�ne such structures in

terms of parity complex structures on associahedra. The production of these new parity

structures is based on observations of Dominic Verity on his recent surface diagram

structures for simplexes. We outline these observations and apply them to the problem

of writing down axioms for weak n-categories, including equations for units.

This is joint work with D. Verity.

VERITY, D. Surface Diagrams and Associahedra

Recent work of Street and Verity has established surface diagrams embedded in three

space as the appropriate calculus for general composites in Tricategories (weak-3-cate-

gories). In higher dimensions it is conjectured that the appropriate calculus for weak-

n-categories involves embeddings of (n-1)-dimensional graphs in n-space. Of course,

this conjecture makes little sense until weak-n-categories have been given a workable

de�nition.

In the �rst part of this talk I will examine a couple of examples in the Tricategory case

which demonstrate both the practical and aesthetic qualities of this calculus. Later I

will turn to examining the Associahedra, which Stashe� introduced in his study of loop

spaces, using higher surface diagrams. This application is part of recent work, due to

Trimble and Verity, which uses surface diagrams as an central step in the process of

de�ning weak-n-categories using operads and associahedra.

WALTERS, R. F. C. Bicategories and Concurrency
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WALTERS-WAYLAND, J. Commutativity of certain core
ections and re
ections in

the category of uniform frames

We consider the general question of when re
ections and core
ections commute in the

category of uniform frames. In particular, we look at the Samuel compacti�cation, the

completion functor and variations of the �ne re
ection. The notion of G

�

{density is

lifted to the frame setting and used to characterize this commutativity in certain cases.

WENDT, M. Towards an Algebraic Theory of Integration

The space of probability measures on a measurable space forms the object function of

a functor which has a left adjoint. Schiopu called the morphisms of the Kleisli category

for the monad determined by this adjunction \probabilistic borel maps." The question

arises: what is the Eilenberg-Moore category for the monad? We explore this question

by noting the similarities with the totally convex spaces of Pumpluen and Rhoerl. We

introduce a category of \integral algebras" (sets with a formal integral) and explore an

application to the Bochner integral for Banach space valued measures (this is a straight-

forward generalization of the classical Lebesgue integral with absolute value replaced

by norm). This material leads to the possibility of translating much of the knowledge

about totally convex spaces into the context of probability and measure theory.

WICK PELLETIER, J. On the quantisation of points

In the study of quantales arising naturally in the theory of C*-algebras, Gelfand quan-

tales have emerged as the basic setting. In this paper the problem of de�ning the

concept of point of the spectrum of a C*-algebra A , which is the motivating example of

a Gelfand quantale, is considered. One intuitively feels that points should correspond

to irreducible representations of A . The classical notion of irreducible representation of

A is characterized in quantale terms by means of a notion of irreducible representation

of the Gelfand quantale Max A on a Hilbert quantale. This characterization leads to an

appropriate concept of point for Max A .

This is joint work with C. J. Mulvey

WOOD, R. J. A 2-categorical approach to geometric morphisms and change of base,

II

For suitable categories E, the importance of studying relE, parE, spnE, etcetera is well

known. Usually, these are regarded as bicategories with the �rst two examples being

locally ordered. For suitable functors T : E �! F , it is possible to codify the e�ect of

such change of base on these examples in bicategorical terms. For example, if E and F are

regular and T preserves strong epimorphisms then one has a colax functor relE �! relE

that is reasonably named relT . However, for reasons that we have described elsewhere,
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it is necessary to have a de�nition of relT that requires no preservation properties of T .

Write conE for a construction typical of the kind above. Presence of a homomorphism of

bicategories (�)

�

: E �! conE suggests, by analogy with rings, that conE be regarded

as an E-algebra and treating the resulting E-bimodule structure as basic turns out to be

convenient for the very general change of base problems that we have in mind. This

extends earlier published work that was applicable for locally ordered conE. The new

framework is dimensionally simpler but we retain the adjunction theorems that enabled

a concise description of cartesian bicategories. Thus, one of the many consequences of

our study is the extension of the latter concept beyond the locally ordered case.

This is joint work with A. Carboni, G. M. Kelly and D. Verity.

23


