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Overview

Ribenboim constructed rings of generalized power series for studies in
number theory.

While his construction gives a rich class of rings, it also seems ad hoc
and non-functorial.

We show that the conditions he imposes in fact can be used to
construct internal monoids in a category of Ehrhard’s finiteness spaces
and the process is functorial.

Furthermore any internal monoid of finiteness spaces induces a ring
by Ehrhard’s linearization process. So we get lots of new examples of
generalized power series.
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Ribenboim’s generalized power series

We’ll need the following technical condition:
Let (M,+,≤) be a partially ordered (commutative) monoid. M is strictly
ordered if

s < s ′ ⇒ s + t < s ′ + t ∀s, s ′, t ∈ M .

We will henceforth assume that all the monoids we work with are strictly
ordered.

Definition

An ordered monoid is artinian if all strictly descending chains are finite;
that is, if any list (m1 > m2 > · · · ) must be finite. It is narrow if all
discrete subsets are finite; that is, if all subsets of elements mutually
unrelated by ≤ must be finite.
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Ribenboim’s generalized power series II

Definition

Let V be a vector space, and recall that the support of a function
f : M → V is defined by supp(f ) = {m ∈ M|f (m) 6= 0}. Define the space
of Ribenboim power series from M with coefficients in V , G (M,V ) to be
the set of functions f : M → V whose support is artinian and narrow.

If A is also a commutative K-algebra, then G (M,A) is a commutative
K-algebra with

(f · g)(m) =
∑

(u,v)∈Xm(f ,g)

f (u) · g(v)

where

Xm(f , g) := {(u, v) ∈ M ×M|u + v = m and f (u) 6= 0, g(v) 6= 0}
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Ribenboim’s generalized power series III

This requires the following observation. It is where the strictness property
gets used:

Proposition

The set Xm(f , g) is finite for f , g ∈ G (M,V ).

There are lots of examples.

Let M = N. The result is the usual ring of power series with
coefficients in A.

Let M = Z. The result is the ring of Laurent series with coefficients
in A.
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Ribenboim’s generalized power series IV: More examples

Let M = Nn, with pointwise order. The result is the usual ring of
power series in n-variables with coefficients in A.

This example is due to Ribenboim and was his motivation:

Let M = N\{0} with the operation of multiplication, equipped with
the usual ordering. Then G (M,R) is the ring of arithmetic functions
(i.e. functions from the positive integers to the complex numbers),
and multiplication is Dirichlet’s convolution:

(f ? g)(n) =
∑
d |n

f (d)g(
n

d
)
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Ehrhard’s finiteness spaces I

Let X be a set and let U be a set of subsets of X , i.e., U ⊆ P(X ).
Define U⊥ by:

U⊥ = {u′ ⊆ X | the set u′ ∩ u is finite for all u ∈ U}

Lemma

We have U ⊆ U⊥⊥ and U⊥⊥⊥ = U⊥.

A finiteness space is a pair X = (X ,U) with X a set and U ⊆ P(X )
such that U⊥⊥ = U . We will sometimes denote X by |X| and U by
F(X).
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Ehrhard’s finiteness spaces II: Morphisms

A morphism of finiteness spaces R : X→ Y is a relation R : |X| → |Y|
such that the following two conditions hold:

(1) For all u ∈ F(X), we have uR ∈ F(Y), where
uR = {y ∈ |Y| | ∃x ∈ u, xRy}.

(2) For all v ′ ∈ F(Y)⊥, we have Rv ′ ∈ F(X)⊥.

It is straightforward to verify that this is a category. We denote it FinRel.

Lemma

In the definition of morphism of finiteness spaces, condition (2) can be
replaced with:

(2′) For all b ∈ |Y|, we have R{b} ∈ F(X)⊥.
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Ehrhard’s finiteness spaces III: It’s a model of linear logic

Theorem

FinRel is a ∗-autonomous category. The tensor

X⊗ Y = (|X⊗ Y|,F(X⊗ Y))

is given by setting |X⊗ Y| = |X| × |Y| and

F(X⊗ Y) = {u × v | u ∈ F(X), v ∈ F(Y)}⊥⊥

= {w | ∃u ∈ F(X),∃v ∈ F(Y),w ⊆ u × v}.

We note that it also has sufficient structure to model the rest of the
connectives of linear logic.
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Ehrhard’s finiteness spaces IV: Another choice of morphism

Ehrhard was motivated by linear logic to construct a ∗-autonomous
category and hence chose relations as morphisms. But the choice has
issues. Much like the usual category of relations, FinRel is lacking most
limits and colimits. Another choice is possible:

Definition

We define the category FinPf. Objects are finiteness spaces and a
morphism f : (X ,U)→ (Y ,V) is a partial function satisfying the same
conditions as above.

Proposition

The category FinPf is a symmetric monoidal closed, complete and
cocomplete category.
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Posets as finiteness spaces I

Ribenboim’s use of artinian and narrow subsets may seem unmotivated,
but it in fact is precisely what we need to embed posets into finiteness
spaces:

Theorem

Let (P,≤) be a poset. Let U be the set of artinian and narrow subsets.
Then (P,U) is a finiteness space.

Lemma

Under the above assumptions, U⊥ is the set of noetherian subsets of P.
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Posets as finiteness spaces II: Functoriality

Unfortunately, if we consider the above construction from the usual
category Pos of posets to any of the categories of finiteness spaces we
have considered, it isn’t functorial. Indeed, the inverse image under an
order-preserving map of a noetherian subset may be not noetherian.
However, the problem disappears if we consider strict maps.

Definition

If (P,≤) and (Q,≤) are two posets, a map f : P → Q is said to be strict
if p < p′ implies f (p) < f (p′). In particular, it is a morphism of posets.
We denote the category of posets and strict maps by StrPos.

Proposition

The above construction is a strict symmetric monoidal functor
E : StrPos→ FinPf.
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Posets as finiteness spaces III: Internal monoids

As such, it takes monoids to monoids:

Theorem

The functor E induces a functor Mon(E ) : Mon(StrPos)→ Mon(FinPf)
from the category of strict pomonoids to the category of partial finiteness
monoids.

Definition

A partial finiteness monoid is an internal monoid in FinPf.
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Linearizing finiteness spaces and generalizing the
Ribenboim construction

Let A be an abelian group and X = (X ,U) a finiteness space. Ehrhard
defined the abelian group A〈X〉 as the set

A〈X〉 = {f : X → A | supp(f ) ∈ U}

together with pointwise addition.

Lemma

In the case of a poset (P,≤) with its finiteness structure as determined as
above, we recover G (P,A).
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Linearizing II

Theorem

If (M, µ : M⊗M→M, η : I →M) is a partial finiteness monoid and R a
ring (not necessarily commutative, but with unit), then R〈M〉 canonically
has the structure of a ring.
The multiplication in R〈M〉 is given by

(f · g)(m) =
∑

(m1,m2)∈Xm(f ,g)

f (m1) · g(m2).

Note the obvious similarity to Ribenboim’s definition. But here it is the
second condition in the definition of morphism of finiteness spaces that
ensures the finiteness of the sum.
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Example I: Puiseaux series (Newton)

A Puiseux series with coefficients in the ring R is a series (with
indeterminate T ) which allow for negative and fractional exponents of the
form

+∞∑
i>a

riT
i/n

for some integer a ∈ Z, some positive integer n ∈ N \ {0} and where
ri ∈ R. With the usual sum and product law, they form the ring of
Puiseux series with coefficients in R.

Our postdoc Pierre-Alain Jacqmin showed that these rings fit into the
finiteness space framework. Details in our paper on the archive.
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Example II: Formal power series

Let A be a set (called in this case the alphabet). Then, let M be the free
monoid generated by A. The finiteness space (M,P(M)) has a monoid
structure in FinPf given by the classical monoid structure of M. The only
non-trivial part here is to check that the multiplication

· : (M,P(M))⊗ (M,P(M))→ (M,P(M))

is a morphism.

But since M is freely generated by A, for each m ∈ M, there are only
finitely many (m1,m2) ∈ M2 such that m1 ·m2 = m.

Then the ring R〈(M,P(M))〉 is called the ring of formal power series with
exponents in M and coefficients in R.
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Example III: Polynomials of degree at most n

Let n be a natural number and X = {0, . . . , n}. The finiteness space
(X ,P(X )) has a monoid structure ((X ,P(X )), µ, η) in FinPf:

η : ({∗},P({∗}))→ (X ,P(X ))

maps ∗ to 0 and

µ : (X ,P(X ))⊗ (X ,P(X )) = (X × X ,P(X × X ))→ (X ,P(X ))

is defined by

µ(a, b) =

{
a + b if a + b 6 n

undefined if a + b > n.

The corresponding ring R〈(X ,P(X ))〉 is R6n[T ], the ring of polynomials
of degree at most n and coefficients in R.
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Future work

Etale groupoids yield C ∗-algebras. The construction is very similar.

Can generalized power series be differentiated?

Do all rings that arise as above have a Rota-Baxter operator? One
place RB-operators arise is in renormalization in quantum field theory.
Rings of Laurent series have such an operator which is used in the
Connes-Kreimer approach to renormalization. Guo and Liu studied
when a projection operator on Ribenboim power series is in fact a
Rota-Baxter operator. Do these necessarily exist for finiteness
monoids and their rings?

Morita theory.
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Going forward

Lately, we’ve been looking at categorical aspects of these generalized
power series, which don’t seem to have been much explored after
Ribenboim’s original work.

Today, I’ll talk about Morita equivalence.

Definition

Two rings R and S are Morita equivalent if their categories of (left)
modules are equivalent. (We note that the categories of left modules are
equivalent if and only if the categories of right modules are equivalent.)
We denote Morita equivalence by R ≈ S .
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Morita Equivalence: Examples

Two commutative rings are Morita equivalent if and only if they are
isomorphic.

For any ring R, we have R ≈ Mn(R).

These were both well-known before Morita’s work. Morita rephrased
equivalence in terms of bimodules, which has allowed the ideas to be
generalized via bicategories.

21 / 32



Morita’s Theorem

Theorem

Suppose R and S are rings and R ≈ S . Let F : R −Mod→ S −Mod and
G : S −Mod→ R −Mod be functors inducing an equivalence. Then
letting P = F (R) and Q = G (S), then

P = SPR and Q = RPS are faithfully balanced bimodules.

SPR
∼= HomS(Q, S) ∼= HomR(Q,R)

RQS
∼= HomS(P,S) ∼= HomR(P,R)

F ∼= P ⊗R −
G ∼= Q ⊗S −
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Morita contexts I

Let C be a ring, let e ∈ C be an idempotent and let e ′ = 1− e be its
complementary idempotent. Then we obtain a decomposition of C as

C ∼= e ′Ce ′ ⊕ e ′Ce ⊕ eCe ′ ⊕ eCe

We arrange these into a 2× 2 matrix as:[
e ′Ce ′ e ′Ce
eCe ′ eCe

]
We rename the entries of this matrix as follows:[

B M
N A

]
We have M =BMA and that N =ANB . We have bimodule maps as follows:

f : M ⊗A N → B g : N ⊗B M → A
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Morita contexts II

From the associativity of the multiplication in C , we conclude, for all
ni ∈ N and mj ∈ M

n1f (m2 ⊗ n3) = g(n1 ⊗m2)n3 f (m1 ⊗ n2)m3 = m1g(n2 ⊗m3)

We present the following two equivalent definitions of Morita context.

Definition (Version 1)

A Morita context between rings A and B consists of a ring C equipped
with an idempotent e such that A ∼= eCe and B ∼= e ′Ce ′ where e ′ = 1− e.

24 / 32



Morita contexts III

Definition (Version 2)

A Morita context between rings A and B consists of bimodules M =BMA

and N =ANB and bimodule maps

n1f (m2 ⊗ n3) = g(n1 ⊗m2)n3 f (m1 ⊗ n2)m3 = m1g(n2 ⊗m3)

satisfying the previous associativity constraints.

Definition

The quotient rings:

C = C/(e) and C
′

= C/(e ′)

are the Morita defects of C .
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Morita contexts IV

Theorem

Let (C , e) be a Morita context between A and B. The following are
equivalent:

A and B are Morita equivalent via (C , e).

Both Morita defects are 0.

The maps f and g above are isomorphisms.

One can form the Morita context ring in any additive category. It is always
a ring. These are called formal matrix rings.

This approach to Morita equivalence generalizes to most monoidal
settings. B. Pecsi has given a definition of Morita context in terms of
arbitrary bicategories. There are lots of interesting examples.
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Abstract Morita theory

One can consider Morita theory in a number of settings.

For inverse semigroups, there’s been a great deal of work, by Talwar,
Funk, Lawson, Steinberg and others. Morita equivalence can be
framed in terms of equivalence bimodules or enlargements. There is
also a topos-theoretic interpretation of Morita theory. (Two inverse
semigroups are equivalent if certain categories of presheaves are
equivalent.) Funk, Lawson and Steinberg show all the approaches are
equivalent.

For C ∗-algebras, Morita equivalence can be expressed in terms of
imprimitivity bimodules (Rieffel).
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S-Posets

In particular, we can look at partially ordered monoids (pomonoids).

Definition

If S is a pomonoid, then a poset P is an S-poset if equipped with a
(right) action of S such that the resulting map · : P × S → P is
monotone in each variable.

If S ,T are pomonoids, then a poset P is an S − T -biposet if
equipped with a left action of S and a right action of T such that the
resulting map S × P × T → P is monotone in each variable and
(sp)t = s(pt) for all s ∈ S , p ∈ P, t ∈ T .

A morphism of S-posets is a monotone map which commutes with
the S-action.

We thus get a category denoted PosS .

Theorem

The category PosS is complete, cocomplete and cartesian closed.
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Tensor product of S-posets

Given two biposets SMT and TNR for pomonoids S ,T and R, one
constructs the tensor product SM ⊗T NR in the evident way. One
considers the cartesian product M × N. Then consider the congruence
generated by the set

{((mt, n), (m, tn))|m ∈ M, n ∈ N, t ∈ T}

One can see that m ⊗ n ≤ m′ ⊗ n′ if and only if there exist elements
mi ∈ M, ni ∈ N, ui , vi ∈ T such that we have the following scheme:

m ≤ m1u1

m1v1 ≤ m2u2 u1n ≤ v1n2
...

mkvk ≤ m′ uknk ≤ vkn
′

The result will be an S − R bimodule satisfying the usual properties.
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Morita theory for pomonoids

The following results are due to Laan. They are typical of the general
structure

Theorem

Let F : PosS → PosT be a Pos-equivalence. Then

There exists P =SPT with F ∼= −⊗S P.

There exists Q =TQS with F ∼= HomS(Q,−) and the inverse of F
given by G ∼= −⊗T Q.

T (Q ⊗S P)T ∼= T
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Morita theory for pomonoids II

A frequent question in all of these theories is what properties are preserved
under Morita equivalence?

Theorem

Suppose F : PosS → PosT is a Pos-equivalence. Let A = AS be an
S-poset. Then

A and F (A) have isomorphic lattices of subobjects.

A and F (A) have isomorphic lattices of congruences.

If A is flat, then so is F (A).

Analogous results hold for Morita equivalent rings, inverse semigroups,
C ∗-algebras, etc.
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Morita theory for pomonoids III: Boring Theorem

Theorem

Let R and S be Morita equivalent rings. Let P and P ′ be Morita
equivalent pomonoids. Then the rings G (P,R) and G (P ′, S) are Morita
equivalent.

For example, if R and S are related by the bimodule M =SMR , then
G (P,M) is a bimodule relating G (P,R) and G (P, S), etc.
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