Overview	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms	Cohomology	Non-linear tangent categories
0	00000	00000	000000000	00000	0000

Differential forms in non-linear Cartesian differential categories

Hayley Reid and Jonathan Bradet-Legris Mount Allison University (joint work with Dr. Geoff Cruttwell)

> FMCS 2018 Sackville, Canada, June 1, 2018

> > ▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Overview •	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms	Cohomology 00000	Non-linear tangent categories
Over	view				

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Cartesian differential categories (CDCs)
- Non-linear CDCs
 - Motivation for non-linear CDCs
 - Examples
 - Constructions on categories
- Differential Forms
 - New definition for non-linear CDCs
- Cohomology
 - Examples
- Non-linear tangent categories

Overview	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms	Cohomology	Non-linear tangent categories
O	•0000		000000000	00000	0000
Carte	esian differenti	ial category d	efinition		

Definition (Blute, Cockett, Seely, 2009)

A **Cartesian differential category** is a left additive category with chosen products which has, for each map $f : X \to Y$, a map

 $D(f): X \times X \longrightarrow Y$

such that:

[CD.1] D(f + g) = D(f) + D(g) and D(0) = 0; [CD.2] $\langle a + b, c \rangle D(f) = \langle a, c \rangle D(f) + \langle b, c \rangle D(f)$ and $\langle 0, a \rangle D(f) = 0$; [CD.3] $D(\pi_0) = \pi_0 \pi_0$, $D(\pi_1) = \pi_0 \pi_1$, and $D(1) = \pi_0$; [CD.4] $D(\langle f, g \rangle) = \langle D(f), D(g) \rangle$; [CD.5] $D(fg) = \langle D(f), \pi_1 f \rangle D(g)$ ("Chain rule"); [CD.6] $\langle \langle a, 0 \rangle, \langle 0, d \rangle \rangle D(D(f)) = \langle a, d \rangle D(f)$; [CD.7] $\langle \langle a, b \rangle, \langle c, d \rangle \rangle D(D(f)) = \langle \langle a, c \rangle, \langle b, d \rangle \rangle D(D(f))$.

Overview O	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms	Cohomology 00000	Non-linear tangent categories
Exar	nples of CDCs	;			

Example

- Smooth is a CDC, with ⟨v, x⟩D(f) = [J(f(x))] · v, where [J(f)] is the Jacobian of f.
- Poly is a CDC, with the same derivative
 - **Poly** has the \mathbb{R}^n s as objects and polynomial functions as arrows

• The category of abelian groups with group homomorphisms as arrows, with $\langle v, x \rangle D(f) = f(v)$.

Overview O	Cartesian differential categories	Examples of Non-linear CDCS 00000	Differential forms	Cohomology 00000	Non-linear tangent categories
The f	forward differe	ence operator			

- The category \mathbf{ab}_{fun} (objects: abelian groups, arrows: functions) with $\langle v, x \rangle D(f) = f(x+v) f(x)$ is not an example of a CDC.
 - It satisfies every axiom except for the first part of [CD.2].
 - What kind of structure do we get if we simply remove the first part of **[CD.2]**?

Overview	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms	Cohomology 00000	Non-linear tangent categories
Non-	linear Cartesia	n differential	category	definit	ion

Definition (Bradet-Legris, Cruttwell, Reid)

A non-linear Cartesian differential category is a left additive category with chosen products which has, for each map $f : X \to Y$, a map

 $D(f): X \times X \longrightarrow Y$

such that:

[NLCD.1] D(f + g) = D(f) + D(g) and D(0) = 0; [NLCD.2] $\langle 0, a \rangle D(f) = 0$; [NLCD.3] $D(\pi_0) = \pi_0 \pi_0$, $D(\pi_1) = \pi_0 \pi_1$, and $D(1) = \pi_0$; [NLCD.4] $D(\langle f, g \rangle) = \langle D(f), D(g) \rangle$; [NLCD.5] $D(fg) = \langle D(f), \pi_1 f \rangle D(g)$; [NLCD.6] $\langle \langle a, 0 \rangle, \langle 0, d \rangle \rangle D(D(f)) = \langle a, d \rangle D(f)$; [NLCD.7] $\langle \langle a, b \rangle, \langle c, d \rangle \rangle D(D(f)) = \langle \langle a, c \rangle, \langle b, d \rangle \rangle D(D(f))$.

0	00000	00000	000000000	00000	0000
Overview	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms	Cohomology	Non-linear tangent categories

A few examples of Non-linear CDCs

Example

- All CDCs are non-linear CDCs.
- The category \mathbf{ab}_{fun} , which has abelian groups as objects and functions as arrows, and the D arrow is $\langle v, x \rangle D(f) = f(x+v) f(x)$.
- Smooth, but changing D to be $\langle v, x \rangle D(f) = f(x + v) f(x)$.

Overview O	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms	Cohomology 00000	Non-linear tangent categories
Sim	ole slice catego	ories			

Definition (Blute, Cockett, Seely, 2009)

For a category with products X and a fixed $A \in X$, the following structure is called a **simple slice category**, and is denoted X[A].

- \bullet objects: those of $\mathbb X$
- arrows: an arrow f from X to Y is an arrow $f: X \times A \rightarrow Y$

• composites: the composite $X \xrightarrow{f} Y \xrightarrow{g} Z$ is

$$X \times A \xrightarrow{\langle \pi_0 f, \pi_1 \rangle} Y \times A \xrightarrow{g} Z$$

• identity:
$$1_X : X \times A \xrightarrow{\pi_0} X$$

Overview O	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms	Cohomology 00000	Non-linear tangent categories 0000
Simp	le slice catego	ries results			

Theorem (From Blute, Cockett, Seely, 2009)

Let \mathbb{C} be a Cartesian differential category. Then $\mathbb{C}[A]$ is a Cartesian differential category, with D arrow $D_A(f) = \langle \pi_0, 0, \pi_1, \pi_2 \rangle D(f)$, where D(f) is the D arrow for \mathbb{C} .

Theorem

Let \mathbb{C} be a non-linear Cartesian differential category. Then $\mathbb{C}[A]$ is a non-linear Cartesian differential category, with D arrow $D_A(f) = \langle \pi_0, 0, \pi_1, \pi_2 \rangle D(f)$, where D(f) is the D arrow for \mathbb{C} .

0	00000	00000	000000000	00000	0000
1.1					

Idempotent splitting categories

Definition

An **idempotent** in a category is an arrow $e: X \to X$ such that ee = e.

Definition

The idempotent splitting category of a category $\mathbb{C},$ denoted $\mathsf{Idem}(\mathbb{C})$ has

- objects: (X, e_X) where e_X is an idempotent on X.
- arrows: an arrow $f: (X, e_X) \rightarrow (Y, e_Y)$ is an arrow $f: X \rightarrow Y$ such that the following diagram commutes

• identity: $e_X : (X, e_X) \to (X, e_X)$ is the identity on (X, e_x) .

• composites: defined as in \mathbb{C} .

Overview O	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms	Cohomology 00000	Non-linear tangent categories
Idem	potent splittin	g categories	results		

Definition

In a Cartesian differential category, a map f is linear if $D(f) = \pi_0 f$.

Definition

The **linear idempotent splitting category** of a Cartesian differential category \mathbb{C} , denoted *idemLin*(\mathbb{C}), is the full subcategory of *idem*(\mathbb{C}) consisting of objects (*X*, *e*) such that e linear.

Theorem

Let \mathbb{C} be a Cartesian differential category. Then $idemLin(\mathbb{C})$ is a Cartesian differential category, with the same D arrow as \mathbb{C} .

ا ما م سم	Line of the Price of the second second second second							
0	00000	00000	000000000	00000	0000			
Overview	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms	Cohomology	Non-linear tangent categories			

Idempotent splitting category results

Definition

The non-linear idempotent splitting category of a category \mathbb{C} , denoted idemNLin(\mathbb{C}), is the full subcategory of idem(\mathbb{C}) consisting of objects (X,e) such that e is linear and additive.

Theorem

Let \mathbb{C} be a non-linear Cartesian differential category. The idemNLin(\mathbb{C}) is a non-linear Cartesian differential category, with the same D arrow as \mathbb{C} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Overview O	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms ●00000000	Cohomology 00000	Non-linear tangent categories
Diffe	rential forms				

- Differential forms and exterior differentiation for CDCs were defined by Cruttwell in 2013.
- This definition required the use of the linearity condition ([CD.2]) to prove the naturality of the exterior derivative.

• We needed a new definition for differential forms and exterior differentiation for the non-linear CDCs.

Overview O	Cartesian differential categories 00000	Examples of Non-linear CDCS	Differential forms O●0000000	Cohomology 00000	Non-linear tangent categories
Impo	ortant Definition	ons			

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Based on the definitions from [5]

- (i) Functor $Q_n : \mathbb{X} \to \mathbb{X}$
- (ii) Linear Objects
- (iii) Non-linear differential forms
 - quasi-multilinear (preserves the 0 map)
 - skew-symmetric
- (iv) Quasi exterior Derivative

-	Overview	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms	Cohomology	Non-linear tangent categories
	0	00000	00000	000000000	00000	0000
	Q Fu	nctor and Line	ear Objects			

Definition. Given a non-linear Cartesian differential category \mathbb{X} , for any n > 1, there is an endofunctor $Q_n : \mathbb{X} \to \mathbb{X}$.

• given an object M in \mathbb{X} : $Q_n(M) = Q(M)^n \times M$ where $Q(M)^n = \underbrace{M \times M \times \ldots \times M}_{n \text{ times}}$

• given a map
$$f: M \to M'$$
:
 $Q_n(f) = \langle \langle \pi_0, 0 \rangle D(f), \langle \pi_1, 0 \rangle D(f), \dots, \langle \pi_{n-1}, 0 \rangle D(f), \pi_n f \rangle$

Definition. In a **Non-Linear Cartesian Differential Category**, say that an object A is *linear* if $Q(A) = A \times A$.

Overview	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms	Cohomology	Non-linear tangent categories
0	00000	00000	000000000	00000	0000

Non-Linear Differential Forms

Definition. For any $n \le 1$ and $0 \le i \le n-1$, define the map $q_i : L(M) \times Q_n(M) \to Q(Q_n(M))$ by

 $q_i = \langle 0, 0, \dots, 0, \pi_0, 0, \dots, 0 | \pi_1, \dots, \pi_i, 0, \pi_{i+2}, \dots, \pi_{n+1} \rangle$

For a map $f : T_n M \rightarrow A$, say f is **quasi-multilinear** if for all $0 \le i \le n-1$:

Definition Say a map f is **skew-symmetric** if for any $0 \le i, j \le n-1$, the following is true :

$$\langle \pi_0, \ldots, \pi_i, \ldots, \pi_j, \ldots, \pi_n \rangle f + \langle \pi_0, \ldots, \pi_j, \ldots, \pi_i, \ldots, \pi_n \rangle f = 0$$

N I		D:00				
0	00000		00000	000000000	00000	0000
Overview	Cartesian differe	ential categories	Examples of Non-linear CDCS	Differential forms	Cohomology	Non-linear tangent categories

Non-Linear Differential Forms

Let X be a Non-Linear CDC. For an object $M \in X$, a linear object $A \in X$ and $n \ge 1$, define a **non-linear differential n-form on M with values in A** to be a map

$$\omega: Q_n(M) \to A$$

which is quasi-multilinear and skew-symmetric. Denote the set of n-forms on M with values in A by $\Psi_n^A(M)$. Define $\Psi_0^A(M)$ to be the hom-set $\mathbb{X}(M, A)$.

Definition. For $n \ge 1$ and $0 \le i \le n-1$ and M an object, define the the map r_i to be

$$M \times Q_n(M) \xrightarrow{r_i = \langle 0, \dots, 0, \pi_i | \pi_0, \dots, \hat{\pi_i}, \dots, \pi_n, 0 \rangle} Q(Q_n(M))$$

where $\hat{\pi}_i$ indicates the exclusion of that term.

Suppose A is a linear group, and $\omega \in \Psi_n^A(M)$. For $n \ge 1$, define the **quasi exterior derivative of** ω , denoted $\partial_n(\omega)$, to be the map given by

$$\partial_n(\omega) := \sum_{i=0}^n (-1)^i r_i D(\omega)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Overview O	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms	Cohomology 00000	Non-linear tangent categories
Key	Results				

- Let $f: M' \to M$, and $\omega: M \to A$ be a non-linear differential *n*-form, then $Q(f)\omega: M' \to A$ is also a non-linear differential *n*-form.
- The quasi exterior derivative applied to a non-linear differential *n*-form gives a non-linear differential (n + 1)-form.
- The quasi exterior derivative is a natural transformation.
- Applying the quasi exterior derivative twice to a non-linear differential *n*-form gives the 0 map : $\partial(\partial(\omega)) = 0$.

Overview O	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms 0000000●0	Cohomology 00000	Non-linear tangent categories
Key	Results (1) &	(2)			

Lemma. Let $f: M' \to M$, and $\omega \in \Psi_n^A(M)$. Then the composite

$$Q_n(M') \xrightarrow{Q_n(f)} Q_n(M) \xrightarrow{\omega} A$$

is in $\Psi_n^A(M')$. (This allows us to view $\Psi_n^A(-)$ as a functor from \mathbb{X}^{op} to <u>set</u>.)

Lemma. For any $\omega \in \Psi_n^A(M)$, its exterior derivative $\partial_n(\omega)$ is in $\Psi_{n+1}^A(M)$.

Lemma. For any $n \ge 0$ and differential group A, exterior differentiation

$$\partial_n: \Psi_n^A \longrightarrow \Psi_{n+1}^A$$

is a natural transformation.

Lemma. For any $n \ge 0$ and linear group A, the following composition is the 0 map :

$$\Psi_n^{\mathcal{A}}(-) \xrightarrow{\partial_n} \Psi_{n+1}^{\mathcal{A}}(-) \xrightarrow{\partial_{n+1}} \Psi_{n+2}^{\mathcal{A}}(-)$$

Overview O	Cartesian differential categories 00000	Examples of Non-linear CDCS	Differential forms	Cohomology ●0000	Non-linear tangent categories 0000
Coho	omology				

The abelian groups Ψ^A_n(M) and quasi exterior derivatives ∂_n for n ≤ 0 form a cochain complex:

$$\{0\} \xrightarrow{0} \Psi_0^A(M) \xrightarrow{\partial_0} \Psi_1^A(M) \xrightarrow{\partial_1} \dots \xrightarrow{\partial_{n-1}} \Psi_n^A(M) \xrightarrow{\partial_n} \dots$$

 Call the cohomology groups of a cochain of this form the quasi De Rahm cohomology of M.
 Let Hⁱ_{adr}(M, A) denote the ith quasi De Rahm cohomology group and

define $\partial_{-1} := 0$.

	· ·	· C' - E				
0	00000		00000	0000	00000 00000	0000
Overview	Cartesian differe	ential categories	Examples of Non-I	inear CDCS Differe	ntial forms Cohomol	logy Non-linear tangent categories

Finding Specific Examples of Cohomology Groups

Lemma. For any pair of groups G, H, the first quasi De Rahm cohomology group is $H^0_{adr}(G, H) = H$.

Proposition. The quasi De Rahm cohomology groups of non-linear differential n-forms in \mathbf{ab}_{fun} from \mathbb{Z}_2 to \mathbb{Z}_2 :

$$\{0\} \xrightarrow{0} \Psi_0^{\mathbb{Z}_2}(\mathbb{Z}_2) \xrightarrow{\partial_0} \Psi_1^{\mathbb{Z}_2}(\mathbb{Z}_2) \xrightarrow{\partial_1} \dots \xrightarrow{\partial_{n-1}} \Psi_n^{\mathbb{Z}_2}(\mathbb{Z}_2) \xrightarrow{\partial_n} \dots$$

are all \mathbb{Z}_2 : $H_{qdr}(\mathbb{Z}_2, \mathbb{Z}_2) = \mathbb{Z}_2, \mathbb{Z}_2 \dots \mathbb{Z}_2 \dots$

Integ	ers and polyn	omial Eunctio	ns		
0	00000	00000	000000000	0000	0000
Overview	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms	Cohomology	Non-linear tangent categories

Consider the category of abelian groups with \mathbb{Z}^{n} 's as objects and polynomial functions as arrows

$$\{0\} \stackrel{0}{\longrightarrow} \Psi_0^{\mathbb{Z}}(\mathbb{Z}) \stackrel{\partial_0}{\longrightarrow} \Psi_1^{\mathbb{Z}}(\mathbb{Z}) \stackrel{\partial_1}{\longrightarrow} \Psi_2^{\mathbb{Z}}(\mathbb{Z}) \stackrel{\partial_2}{\longrightarrow} \dots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

By the previous lemma : $H^0_{qdr}(\mathbb{Z},\mathbb{Z})=\mathbb{Z}$

Integ	ers and nolvn	omial Functic	ns		
0	00000	00000	000000000	00000	0000
Overview	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms	Cohomology	Non-linear tangent categories

Consider the category of abelian groups with \mathbb{Z}^{n} 's as objects and polynomial functions as arrows

$$\{0\} \stackrel{0}{\longrightarrow} \Psi_0^{\mathbb{Z}}(\mathbb{Z}) \stackrel{\partial_0}{\longrightarrow} \Psi_1^{\mathbb{Z}}(\mathbb{Z}) \stackrel{\partial_1}{\longrightarrow} \Psi_2^{\mathbb{Z}}(\mathbb{Z}) \stackrel{\partial_2}{\longrightarrow} \dots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

By the previous lemma : $H^0_{qdr}(\mathbb{Z},\mathbb{Z})=\mathbb{Z}$

Overview O	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms 000000000	Cohomology 0000●	Non-linear tangent categories 0000
H^1_{qdr}	(\mathbb{Z},\mathbb{Z})				

- Found a basis for the kernel of ∂_2 and image of ∂_1
- Kernel:

$$\{v, xv, v^2, x^2v + xv^2, v^3, x^3v + xv^3, x^2v^2, v^4, \ldots\}$$

• Image:

$$\{v, (2xv + 2v^2), (3x^2v + 3xv^2 + v^3), \dots, v^n\}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

	Overview O	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms	Cohomology 00000	Non-linear tangent categories •000
Non-Linear Tangent Categories						

Can define a "non-linear" version of tangent categories such that any non-linear CDCs can be an example, with the following changes:

- Remove the "+" natural transformation.
- Additive bundles are replaced with pointed bundles
- We require the following triple equalizer diagram to hold instead of an equalizer for ℓ involving +:

$$QM \xrightarrow{\ell} Q^2M \xrightarrow{Q(p)} QM$$

Overview	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms Coh	iomology Non-linear tangent categories
0	00000	00000	00000000 00	000 0000
~				

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Some structures in non-linear tangent categories

- Connections
 - removed conditions involving "+"
 - examples in **ab**_{fun}
- Sector forms
 - same definition as regular tangent categories
 - examples in smooth and ab_{fun}

Overview O	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms	Cohomology 00000	Non-linear tangent categories
Futu	re Work				

- More examples of non-linear CDCs
- More cohomology examples in **ab**fun.
- Find out what Quasi De Rahm cohomology is in **smooth** and if it is the same as the De Rahm cohomology.

- H_{qdr} in idempotent and simple slice of non-linear CDCs.
- More sector form calculations
- More connections examples
- Applications for non-linear differential structure

Overview	Cartesian differential categories	Examples of Non-linear CDCS	Differential forms	Cohomology	Non-linear tangent categories
0	00000	00000	000000000	00000	0000
Refe	rences				

References:

- Blute, R. F., Cockett, J. R. B., and Seely, R. A. G. Cartesian Differential Categories, Theory Appl. Cat. 22 (2009), no. 23, 662–672.
- [2] Cockett, J. R. B., and Cruttwell, G. S. H. Differential structure, tangent structure, and SDG, Appl Categor Struct, 22 (2014) 331–417.
- [3] J. R. B. Cockett and G. S. H. Cruttwell. Connections in Tangent Categories. Theory and Applications of Categories, Vol. 32, No. 26, pg. 835-888, 2017.
- [4] Cruttwell, G. S. H., and Lucyshyn-Wright, R. B. B. A Simplicial Foundation for Differential and Sector Forms in Tangent Categories 2017, preprint.
- [5] G. S. H. Cruttwell, Forms and Exterior Differentiation in Cartesian Differential Categories, Theory Appl. Cat. 28 (2013), no. 28, 981–1001.
- [6] Hatcher, A. Algebraic Topology. Cambridge; Cambridge University Press, 2002; ISBN 0-521-79540-0.
- [7] Mendes, A.; Remmel, J. Counting with Symmetric Functions; Developments in Mathematics; Springer International Publishing, 2015; ISBN 978-3-319-23617-9.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ