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o Cartesian differential categories (CDCs)
@ Non-linear CDCs
o Motivation for non-linear CDCs
o Examples
o Constructions on categories
o Differential Forms
o New definition for non-linear CDCs
@ Cohomology
o Examples
@ Non-linear tangent categories

Non-linear tangent categories
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Cartesian differential category definition

Definition (Blute, Cockett, Seely, 2009)

A Cartesian differential category is a left additive category with chosen
products which has, for each map 7 : X — Y, a map

D(f): X x X — Y

such that:

[CD.1] D(f + g) = D(f) + D(g) and D(0) = 0;

[CD.2] (a+ b,c)D(f) = (a,c)D(f) + (b, c)D(f) and (0, a)D(f) = 0;
[CD3] D(?To) = To7Q, D(?Tl) o7, and D(].) = TQ,

[CD.4] D({f,g)) = (D(f), D(g)):

[CD.5] D(fg) = (D(f),m1f)D(g) (“Chain rule”);
[CD.6] ((a,0),(0,d))D(D(f)) = (a, d) D(f);
[CD.7] ((a, b), (¢, d))D(D(f)) = ((a, c), (b, d)) D(D(F))-
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Examples of CDCs

e Smooth is a CDC, with (v, x)D(f) = [J(f(x))] - v, where [J(f)] is
the Jacobian of f.
@ Poly is a CDC, with the same derivative
o Poly has the R"s as objects and polynomial functions as arrows

@ The category of abelian groups with group homomorphisms as
arrows, with (v, x)D(f) = f(v).
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The forward difference operator

@ The category abg,, (objects: abelian groups, arrows: functions) with
(v,x)D(f) = f(x + v) — f(x) is not an example of a CDC.

o It satisfies every axiom except for the first part of [CD.2].

@ What kind of structure do we get if we simply remove the first part
of [CD.2]?



Overview Cartesian differential categories Examples of Non-linear CDCS Differential forms Cohomology

[e]

00080 00000 000000000 00000
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Non-linear Cartesian differential category definition

Definition (Bradet-Legris, Cruttwell, Reid)

A non-linear Cartesian differential category is a left additive category
with chosen products which has, for each map f : X — Y, a map

D(f): X x X — Y

such that:

[NLCD.1] D(f + g) = D(f) + D(g) and D(0) = 0;
[NLCD.2] (0,a)D(f) = 0;

[NLCD.3] D(mo) = momo, D(m) = mom1, and D(1) = mo;
[NLCD.4] D((f,g)) = (D(f), D(g));

[NLCD.5] D(fg) = (D(f),m1f)D(g);
[NLCD.6] ((a,0), (0, d))D(D(f)) = (a,d)D(f);
[NLCD.7] ((a, b), (¢, d))D(D(f)) = ({a, c), (b, d)) D(D(f)).
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A few examples of Non-linear CDCs

@ All CDCs are non-linear CDCs.

@ The category abg,,, which has abelian groups as objects and
functions as arrows, and the D arrow is
(v, x)D(f) = f(x + v) — f(x).

@ Smooth, but changing D to be (v, x)D(f) = f(x + v) — f(x).
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Simple slice categories

Definition (Blute, Cockett, Seely, 2009)

For a category with products X and a fixed A € X, the following
structure is called a simple slice category, and is denoted X[A].

@ objects: those of X

@ arrows: an arrow f from Xto Yisanarrow f : X x A— Y
@ composites: the composite X sy 5,7 s

XxA™™y a4_£, 7

o identity: Ix: X xA ——» X
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Simple slice categories results

Theorem (From Blute, Cockett, Seely, 2009)

Let C be a Cartesian differential category. Then C[A] is a Cartesian
differential category, with D arrow Da(f) = (mo,0, w1, m2) D(f), where
D(f) is the D arrow for C.

Let C be a non-linear Cartesian differential category. Then C[A] is a
non-linear Cartesian differential category, with D arrow
Da(f) = (o, 0,71, m2) D(f), where D(f) is the D arrow for C.
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ldempotent splitting categories

Definition

An idempotent in a category is an arrow e : X — X such that ee = e.

Definition

The idempotent splitting category of a category C, denoted |dem(C)
has

@ objects: (X, ex) where ex is an idempotent on X.

@ arrows: an arrow f : (X,ex) — (Y, ey) is an arrow f : X — Y such
that the following diagram commutes

X
exl f
X —— Y Y

f ey

o identity: ex : (X, ex) — (X, ex) is the identity on (X, e).
@ composites: defined as in C.
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|ldempotent splitting categories results

Definition

In a Cartesian differential category, a map f is linear if D(f) = mof.

Definition

The linear idempotent splitting category of a Cartesian differential
category C, denoted idemLin(C), is the full subcategory of idem(C)
consisting of objects (X, e) such that e linear.

Let C be a Cartesian differential category. Then idemLin(C) is a
Cartesian differential category, with the same D arrow as C.
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Idempotent splitting category results

Definition

The non-linear idempotent splitting category of a category C,
denoted idemNLin(C), is the full subcategory of idem(C) consisting of
objects (X,e) such that e is linear and additive.

Let C be a non-linear Cartesian differential category. The idemNLin(C) is
a non-linear Cartesian differential category, with the same D arrow as C.
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Differential forms

o Differential forms and exterior differentiation for CDCs were defined
by Cruttwell in 2013.

@ This definition required the use of the linearity condition ([CD.2]) to
prove the naturality of the exterior derivative.

@ We needed a new definition for differential forms and exterior
differentiation for the non-linear CDCs.
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Important Definitions

Based on the definitions from [5]
(i) Functor Q,: X = X

(ii) Linear Objects

(iii) Non-linear differential forms

— quasi-multilinear (preserves the 0 map)
— skew-symmetric

(iv) Quasi exterior Derivative

Non-linear tangent categories
0000
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@ Functor and Linear Objects

Definition. Given a non-linear Cartesian differential category X, for any
n > 1, there is an endofunctor @, : X — X.
e given an object M in X : Q,(M) = Q(M)" x M where
QM)"=MxMx...xM
n times
e givenamapf : M — M :
Qn(f) = ({(m0,0)D(f), (m1,0)D(f), ..., (mp—1,0)D(F), wxf)

Definition. In a Non-Linear Cartesian Differential Category, say that
an object A is linear if Q(A) = A x A.
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Non-Linear Differential Forms

Definition. For any n <1 and 0 </ < n— 1, define the map
gi : L(M) x Qs(M) — Q(Qn(M)) by

q; =0,0,...,0,70,0,...,0[ms, ..., 7,0, Tiy2,. .., Tnt1)

Fora map f: T,M — A, say f is quasi-multilinear if forall 0 </ <n—1:

M x Qq(M) ———— Q(Qn(M))
(T2 T, 0, T2 T 1) D(f)

Qn(M) —F A
Definition Say a map f is skew-symmetric if for any 0 < i,j < n—1, the following is true :

(705 s Wiy ooy Wy vy W) M0y oo Wy Ty oo ) f =10
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Non-Linear Differential Forms

Let X be a Non-Linear CDC. For an object M € X, a linear object A € X
and n > 1, define a non-linear differential n-form on M with values
in A to be a map

w:Qn(M)— A

which is quasi-multilinear and skew-symmetric. Denote the set of n-forms
on M with values in A by W2(M). Define W{'(M) to be the hom-set
X(M, A).
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Quasi Exterior Derivative

Definition. For n > 1 and 0 </ < n—1 and M an object, define the the
map r; to be

i=(0,...,0,7;| 70y .y FiyeeryTn,0
M x Qup(M) =i L Q(Qn(M))

where 7; indicates the exclusion of that term.

Suppose A is a linear group, and w € WA(M). For n > 1, define the
quasi exterior derivative of w, denoted J,(w), to be the map given by
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Key Results

o Let f: M — M, and w: M — A be a non-linear differential n-form,
then Q(f)w : M’ — A'is also a non-linear differential n-form.

e The quasi exterior derivative applied to a non-linear differential n-form
gives a non-linear differential (n + 1)-form.

e The quasi exterior derivative is a natural transformation.

e Applying the quasi exterior derivative twice to a non-linear differential
n-form gives the 0 map : 9(9(w)) = 0.
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Key Results (1) & (2)

Lemma. Let f : M’ — M, and w € WA(M). Then the composite

Qn(f) Qn(M)L)A

Qn(M') ==
is in WA(M").
(This allows us to view W4 (—) as a functor from X to set.)

Lemma. For any w € WA(M), its exterior derivative 9,(w) is in
Vi (M).
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Key Results (3) & (4)
Lemma. For any n > 0 and differential group A, exterior differentiation
On Wy — WA,
is a natural transformation.

A vi(F) v
V(M) ————— V(M)

On(w) On(Qn(flw)

V(M) ———— Vi, (M)
Vi (f)

Lemma. For any n > 0 and linear group A, the following composition is
the 0 map :

w/r?(_);)wﬂd( ) NH \Un+2( )
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Cohomology

e The abelian groups W2(M) and quasi exterior derivatives 9, for n <0
form a cochain complex:
o

81 8/77 1 (9,1

{0y % wg(m) wA(M) wA(M)

e Call the cohomology groups of a cochain of this form the quasi De
Rahm cohomology of M.
Let Hy,(M, A) denote the i quasi De Rahm cohomology group and
define 0_1 := 0.



Overvnew Cartesian differential categories Examples of Non-linear CDCS Differential forms Cohomology Non-linear tangent categories
00000 00000 000000000 0@000 0000

Finding Specific Examples of Cohomology Groups

Lemma. For any pair of groups G, H, the first quasi De Rahm
cohomology group is qur(G, H) =H.

Proposition. The quasi De Rahm cohomology groups of non-linear
differential n-forms in abg,, from Z, to Z,:

On—
10r —0 Wi (z) 2 wiEE) s L P v 2

are all Zz . qur(Zz,ZQ) = Zz,ZQ . Z2 .
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Integers and polynomial Functions

Consider the category of abelian groups with Z"'s as objects and
polynomial functions as arrows

0y —2 vZ(z) -2 vi(z) -2 vi(z) 2 ...

By the previous lemma : H°

qdr(Z7 Z) =7
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Integers and polynomial Functions
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H;dr(Z7 Z)

e Found a basis for the kernel of d> and image of 0

o Kernel:

{v,xv7 v2,x2v + xv27 v3,x3v + xv3,x2v2, v47 .. }

e |Image:
{v,(2xv +2v?), (3x?v + 3xv2 + v3),..., v"}
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Non-Linear Tangent Categories

Can define a “non-linear” version of tangent categories such that any
non-linear CDCs can be an example, with the following changes:

e Remove the “+” natural transformation.

e Additive bundles are replaced with pointed bundles

e We require the following triple equalizer diagram to hold instead of an
equalizer for £ involving +:

Q(p)
p— QM
ppz

QM —-F—— @M
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Some structures in non-linear tangent categories

@ Connections

e removed conditions involving “+"
o examples in abg,

@ Sector forms

o same definition as regular tangent categories
o examples in smooth and aby;,
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Future Work

e More examples of non-linear CDCs
e More cohomology examples in abg,,.

e Find out what Quasi De Rahm cohomology is in smooth and if it is
the same as the De Rahm cohomology.

e Hgqr in idempotent and simple slice of non-linear CDCs.
e More sector form calculations
e More connections examples

e Applications for non-linear differential structure
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