Weil spaces and closed tangent structure

June 2, 2018

イロン イボン イヨン トヨ

1/30

Overview

3

Closed and representable tangent categories

Tangent categories and Weil algebras á la Leung

Tangent categories have a tangent functor

$$\mathbb{X} \xrightarrow{T} \mathbb{X}$$

for which TM is thought of as the object of vectors tangent to M.

There are also pullbacks of T

$$\mathbb{X} \xrightarrow{T_n} \mathbb{X}$$

for which $T_n M$ is thought of *n*-vectors anchored at the same point of M.

Tangent categories and Weil algebra á la Leung

Of course the tangent functor can be iterated

$$\mathbb{X} \xrightarrow{T^n} \mathbb{X}$$

for which $T^n M$ is thought of as the *n*-dimensional singular microcubes anchored at a point of M.

The pullbacks may also be iterated

$$\mathbb{X} \xrightarrow{T_{n_1}} \mathbb{X} \cdots \mathbb{X} \xrightarrow{T_{n_k}} \mathbb{X}$$

for which $T_{n_k}(\cdots T_{n_1}M\cdots)$ is thought of as ...

Tangent categories and Weil algebras á la Leung Nodes \equiv tangent functor Edges \equiv pullback along *p*.

Tangent categories and Weil algebras á la Leung

¿ What about?

Here one can add in the $t_1 - t_2$ part, or the t_2-t_3 part, but not the $t_1 - t_3$ part.

Tangent categories and Weil algebras á la Leung

The graphs that allow defining valid tangent structure are in correspondence with *Weil*₁ *algebras*.

i What are Weil₁ algebras?

Let R be a ring (or cancellative rig, like \mathcal{N}). Form the Lawvere theory out of

$$W^n := R[x_1, \ldots, x_n]/(x_i x_j)_{1 \le i \le j \le n}$$

and augmented maps.

$$W^4$$
:

イロト イボト イヨト イヨト

 Weil_1 algebras, or \mathcal{W}_1 is the closure of the above to

$$R[x_1,\ldots,x_n]/I \otimes R[y_1,\ldots,y_m]/J := R[x_1,\ldots,y_m]/(I \cup J)$$

in augmented R algebras.

Transvere limits in \mathcal{W}_1

Proposition (Leung)

In \mathcal{W}_1 the following are limits:

- 1. W^n is the n fold product of $R[x]/(x^2)$;
- 2. If $\lim_{i} V_i$ is a limit, then for any A

$$A \otimes \lim_{i} V_i \simeq \lim_{i} A \otimes V_i;$$

 \mathcal{W}_1 is an FL theory.

3. The following square

is a pullback

Transverse limits: Limits constructed starting with 1 or 3, and inductively applying 2 are called transverse.

Tangent structure [Rosický, Cockett-Cruttwell,Leung] A tangent structure on X is exactly a strong (iso) monoidal functor

$$\mathcal{W}_1 \rightarrow [\mathbb{X}, \mathbb{X}]$$

that sends transverse limits to pointwise limits.

Observation

Tangent structures on \mathbb{X} are in 1–1 correspondence with models of \mathcal{W}_1 in $[\mathbb{X}, \mathbb{X}]$ regarded as a limit sketch.

Weil prolongation as an actegory

Uncurrying Leung's theorem, a tangent structure is exactly an actegory

$$\mathbb{X} \times \mathcal{W}_1 \xrightarrow{\alpha} \mathbb{X}$$

so natural isomorphisms

$$A \propto (U \otimes V) \simeq (A \propto U) \propto V \qquad A \propto R \simeq A$$

such that for every transverse limit $\lim_i V_i$ in \mathcal{W}_1

$$A \propto (\lim_{i} V_i) \simeq \lim_{i} (A \propto V_i)$$

For example

$$TM = M \propto R[x]/(x^2)$$
 $T_2M = M \propto R[x,y]/(x^2,xy,y^2)$

This means \mathcal{W}_1 is a tangent category: $\alpha \equiv \otimes$.

Functor categories involving a tangent category

When $\mathbb {Y}$ is a tangent category then $[\mathbb {X},\mathbb {Y}]$ is too.

$$F \propto U : \mathbb{X} \longrightarrow \mathbb{Y}$$

 $M \mapsto F(M) \propto U$

When $\mathbb X$ is a tangent category then $[\mathbb X,\mathbb Y]$ is not. ... but should be?

$$F \propto U : \mathbb{X} \longrightarrow \mathbb{Y}$$
$$M \mapsto F(M \propto U)$$

The **microlinear functors** do (definitionally) form a tangent category.

The category of Weil spaces [Bertram '14] is

 $[\mathcal{W}_1,\mathsf{Set}]$

The category of microlinear Weil spaces then forms a tangent category, $\fbox{M-}{\mathcal W_1}$.

Our goal is to understand and then exploit $M\text{-}\mathcal{W}_1.$

Sketches of $1/\infty$

 \mathcal{W}_1 is a finite limit sketch under transverse limits.

Proposition

For a finite limit sketch, Mod(T) is a locally finitely presentable category.

Observation $M-\mathcal{W}_1$ is locally finitely presentable hence complete and cocomplete.

Proposition (Kennison 1968)

 $\label{eq:m-W1} \begin{array}{l} \text{M-}\mathcal{W}_1 \text{ is a reflective subcategory of } \mathsf{Psh}(T) \text{ containing all } \\ \mathcal{W}_1(U,_). \end{array}$

This is a move that will help us to characterize $M\text{-}\mathcal{W}_1$ enriched categories.

$M-\mathcal{W}_1$ is self enriched

 $\begin{aligned} & \text{Observation} \\ & \mathcal{Y}(U \otimes V) \simeq \mathcal{Y}(U) \times \mathcal{Y}(V) \end{aligned}$

Proposition

For any Weil space, $M \propto U \simeq [\mathcal{Y}(U), M]$.

$$\begin{split} [\mathcal{Y}(U), M](X) &\simeq \mathsf{Nat}(\mathcal{Y}(U) \times \mathcal{Y}(X), M) \\ &\simeq \mathsf{Nat}(\mathcal{Y}(U \otimes X), M) \\ &\simeq M(U \otimes X) \equiv (M \varpropto U)(X) \end{split}$$

$M-\mathcal{W}_1$ is self enriched

Proposition

When M is microlinear, then for any Weil space X, [X, M] is microlinear. Hence $M-W_1$ is an exponential ideal.

$$[X, M] \propto \lim_{i} V_{i} \simeq [\lim_{i} V_{i}, [X, M]]$$

$$\simeq [X, M \propto \lim_{i} V_{i}] \simeq \lim_{i} ([X, M] \propto V_{i})$$

Corollary

The reflector $Psh(W_1) \xrightarrow{L} M-W_1$ preserves products, and the product functor $M \times _$ is cocontinuous.

Corollary

 $M-W_1$ is a monoidally reflective subcategory of $Psh(W_1)$.

Proposition

 $M-\mathcal{W}_1$ categories form a reflective subcategory of $Psh(\mathcal{W}_1)$ categories, and similarly for those categories that admit powers by representables.

Corollary

Let X be a Psh(W_1) enriched category, such that for each A, B, $X(A, B)(_)$ is in M- W_1 , then X is in fact a M- W_1 enriched category.

Enriched Characterization of Tangent Structure

When $\ensuremath{\mathbb{X}}$ is a tangent category, every homset gives rise to a functor

$$\mathbb{X}(A, B)(_) := \mathbb{X}(A, B \varpropto _) : \mathcal{W}_1 \longrightarrow \mathsf{Set}$$

This functor preserves transverse limits.

Proposition (Garner)

A tangent category is exactly a category enriched in M- W_1 that admits powers by representable functors.

$$A \pitchfork \mathcal{Y}(U) = A \varpropto U$$

$M\text{-}\mathcal{W}_1$ has self enriched limits

Proposition

 $M-W_1$ is complete and cocomplete as an $M-W_1$ category.

This follows from Kelly chapter 3. $M-W_1$ is enriched in $M-W_1$ and has limits, colimits, and copowers.

We use this to setup enriched limits and and colimits on enriched presheaf categories, and to characterize enriched natural transformations.

$\mbox{M-}\mathcal{W}_1$ is a model of SDG part 1

Proposition

The tangent functor is representable: that is $TM \simeq [D, M]$ for some D.

Proof.

Take $D = \mathcal{Y}(R[x]/(x^2))$. From a previous result, $M \propto U \simeq [\mathcal{Y}(U), M]$ for all U, and hence $TM \simeq [\mathcal{Y}(R[x]/x^2), M]$

$M\text{-}\mathcal{W}_1$ is a model of SDG part 2

Proposition

 $M-\mathcal{W}_1$ has a ring of line type, that satisfies the Kock-Lawvere axiom.

In a complete, representable tangent category, one may form the ring of homotheties mirroring a move of Kolář. In SMan homotheties of the tangnet bundle is up to isomorphism \mathbb{R} .

$M\text{-}\mathcal{W}_1$ is a model of SDG part 2

Proposition

 $M\text{-}\mathcal{W}_1$ has a ring of line type, that satisfies the Kock-Lawvere axiom.

Start with

Using equalizers obtain a subobject, which is a ring

Embedding theorem for tangent categories

Proposition (Garner)

Let $\mathbb X$ be a tangent category. The $\mathsf{M}\text{-}\mathcal{W}_1\text{-}category$

 $[\mathbb{X}^{\textit{op}},\mathsf{M}\text{-}\mathcal{W}_1]$

is a representable tangent category.

Corollary (Garner)

Every tangent category embeds into a representable tangent category.

Transverse limits in a tangent category

A transverse limit in a tangent category is a $\lim_i A_i$ such that

$$(\lim_i A_i) \propto V \simeq \lim_i (A_i \propto V)$$

Transverse limits include:

 Υ Products $A \times B \propto W \simeq (A \propto W) \times (B \propto W)$;

 Υ Pullback powers of *p*:

$$\begin{array}{ccc} A \propto W^2 \longrightarrow A \propto W \\ \downarrow & \downarrow^p \\ A \propto W \longrightarrow & A \end{array}$$

イロト 不得 トイヨト イヨト 二日

24 / 30

Transverse limits in a tangent category

When X is a tangent category and $\lim_i B_i$ is transverse, then for each $A \in X$ and $U \in W_1$:

$$\mathbb{X}(A, (\lim_{i} B_i) \propto U) \simeq \mathbb{X}(A, \lim_{i} (B_i \propto U)) \simeq \lim_{i} \mathbb{X}(A, B_i \propto U)$$

Hence

$$\mathbb{X}(A, \lim_{i} B_{i})(_{-}) \simeq \lim_{i} \mathbb{X}(A, B_{i})(_{-}) : \mathcal{W}_{1} \longrightarrow \mathsf{Set}$$

is an enriched limit.

Observation The enriched Yoneda embedding

 $B \mapsto \mathbb{X}(\underline{B})(\underline{D})$

sends transverse limits to limits.

A cartesian closed tangent category is coherently closed when the induced map ψ

$$\frac{A \times [A, B] \varpropto U \xrightarrow{\theta} (A \times [A, B]) \varpropto U \xrightarrow{\text{ev} \varpropto U} B \varpropto U}{[A, B] \varpropto U \xrightarrow{\psi = \lambda(\theta; \text{ev} \varpropto U)} [A, B \varpropto U]}$$

is invertible for each $U \in \mathcal{W}_1$. So that coherently closed

Closed tangent categories via $M\text{-}\mathcal{W}_1$

Proposition

When X is a coherently closed tangent category, then for each A, the M- W_1 -functor $A \times _$ has a M- W_1 -right adjoint $[A, _]$.

Corollary

The Yoneda embedding $A \mapsto \mathbb{X}(_, A)(_)$ preserves the internal hom. That is for each U,

 $\mathbb{X}(_, [A, B])(U) \simeq [\mathbb{X}(_, A)(U), \mathbb{X}(_, B)(U)]$

Endomorphisms of the tangent functor

In a complete coherently closed tangent category, the endomorphisms of the tangent bundle may be computed as

$$\mathsf{End}(T) := \int_{c} \mathbb{X}(Tc, Tc) \equiv \int_{c} [Tc, Tc]$$

We also have the subobject of tangent transformations:

$$\mathsf{Tan}(T) \rightarrowtail \mathsf{End}(T)$$

This can be built in stages by equalizers taking those transformations which are commutative additive bundle homomorphisms that commute with the lift.

In a representable tangent category, the tangent transformations can be simplified. Moreover, they always give the ring of line type.

Endomorphisms of the tangent functor

In a complete coherently closed tangent category, the endomorphisms of the tangent bundle may be computed as

$$\operatorname{End}(T) := \int_{c} \mathbb{X}(Tc, Tc) \equiv \int_{c} [Tc, Tc]$$

We also have the subobject of tangent transformations:

 $\mathsf{Tan}(\mathit{T}) \rightarrowtail \mathsf{End}(\mathit{T})$

E.g.

$$\mathsf{Hom}(T) \longmapsto [T, T] \xrightarrow{[T,p]} [T,1]$$

etc

Endomorphisms of the tangent functor

Lemma

Let $\mathbb X$ be a tangent category. The Yoneda embedding preserves the tangent functor.

As the Yoneda embedding preserves transverse limits and internal homs

Proposition

Let $\mathbb X$ be a complete, coherently closed tangent category where all limits are transverse. Then

$$\mathcal{Y}(\mathsf{Tan}(\mathit{T}))\simeq\mathsf{Tan}(\mathit{T})\simeq\mathcal{R}$$

Corollary

In a coherently closed, complete tangent category where all limits are transverse, there is a rig of line type.

Characterization representable tangent categories

Proposition

To have a complete representable tangent category is to have a coherently closed complete tangent category where all limits are transverse.