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Background: Sector Forms

- Sector forms were introduced by J.E. White
- Rather than consider the Whitney sum of the tangent bundle
Tn(M), consider the iterated tangent bundle T n(M)

- Alternating case
I Synthetic Differential Geometry: Minguez, Kock,

Lavendhomme, Nishimura
I Abstract manifold categories: Bertam

- Cruttwell and Lucyshyn-Wright studied sector forms in a
tangent category, emphasizing its simplicial structure.



Motivation: Cartan Calculus

- The Cartan calculus for differential forms is fundamental in
Hamiltonian mechanics

- Alternating sector forms and the Cartan Calculus have been
studied in SDG by Minguez, Lavendhomme, and Nishimura

- Tangent categories have much less logic than a model of SDG,
so developing the theory requires new techniques and leads to
some new realizations.

- Want to develop the Cartan calculus in a manner that
emphasizes the simplicial structure developed by Cruttwell and
Lucyshyn-Wright



Tangent Categories

A tangent category with negatives is a category with an additive
bundle functor

p : T ⇒ id , 0 : id ⇒ T ,+ : T p ×p T ⇒ T , (−) : T ⇒ T

Along with a canonical flip c : T 2 ⇒ T 2 and vertical lift T → T 2.

A differential object is an abelian group where

T (A) ∼= A⊕ A in Ab(X)

so that A T (A) A
0

λ

p

κ
- κ is a vertical connection.



Lie Bracket
The vertical lift satisfies the following universal property in a
tangent category with negatives

X

T (M) T 2(M) p T (M)

f
∃!{f }

`
T (p)

pp0

The Lie bracket of vector fields is defined:

[x , y ] := {xT (y)− yT (x)c}



Definition (White)
An E -valued sector form on M is an n-fold linear map from M into
a differential object E .

ω : T n(M)→ E

so that for all 1 ≤ i ≤ n + 1:

T i−1(`)ciT (ω) = ωλ

where ci := T i (c)ci−1, c1 = id

Denote the set of E -valued n-sector forms on M as Ψn(M,E ).

Where does the notion of n-fold linearity condition come from?
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Linear Morphisms
Definition (Linear Morphism of Differential Bundles)

Recall that a differential bundle is an additive bundle
E

B

has an

associated lift λ : E → T (E ). A linear morphism of differential
bundles preserves the respective lifts:

T (E ) T (E ′)

E E ′

B B ′

T (γ)

γ

λ

q

λ′

q′

f



N-fold linearity

An n-fold differential bundle is a differential bundle in the category
of n − 1 differential bundles, e.g. a 2-fold differential bundle is a
diagram:

E12

E1 E2

E

q1
12 q2

12

q1 q2

Where each map is a differential bundle, and each parallel pair of
maps is a morphism of differential bundles.



A morphism of n-fold differential bundles determines a cubical
complex - a morphism is linear when each face is a morphism of
differential bundles. E.g. for 2-fold bundles:

E12 D12

E2 D2

E1 D1

E ED

q2
12

q1
12

f12

d2
12

d1
12

f1

q2

d2
f1

q1

d1

f



For each n ∈ N,M ∈ X0, there is an n-fold differential bundle
T n(M).

Given a differential bundle
E

B

q there is an associated n-fold bundle

whose head is E with n copies of q and the rest of the edges are
1B , e.g. for 2

E B

B B

q

q



A morphism ω : T n(M)→ E is n-fold linear when ω is an n-fold
linear morphism to the n-fold differential bundle associated to E .
E.g. for n = 2 this would be

T 2M E

TM B

TM B

M B

ω

p

Tp

p

p



n-fold bundles give a natural characterization of a horizontal
connection

T2(M) T 2(M)

T (M) T (M)

T (M) T (M)

M M

h

π0

π1 T (p)

p
p

p

p p



This leads to a natural characterization of higher order horizontal
connections.
Consider the cube associated to T 3(M)

T 3(M) T 2(M)

T 2(M) T (M)

T 2(M) T (M)

T (M) M

p

T (p)

T 2(p)

p

T (p)

T (p)

p

p

T (p)

p

p

p



Delete the apex, and replace it with the pullback D:

D T 2(M)

T 2(M) T (M)

T 2(M) T (M)

T (M) M

π0

π1

π2

p

T (p)

T (p)

p

p

T (p)

p

p

p

Note there is a canonical map 〈p,T (p),T 2(p)〉 : T 3(M)→ D
A horizontal connection is a section h of 〈p,T (p),T 2(p)〉 that
induces an 3-fold linear morphism of differential bundles.



These maps can be troublesome to work with.

D T 2(M)

T 2(M) T (M)

T 2(M) T (M)

T (M) M

T 3(M) T 2(M)

T 2(M) T (M)

T 2(M) T (M)

T (M) M

It’s most convenient to treat this as an extension property for a
Kan complex.



Definition
An augmented symmetric cosimplicial object is a functor

X : FinCard→ X

where FinCard is the full subcategory of Set whose objects are finite
cardinals.
A cosimplicial object is presented by:

εni : n + 1 → n 1 ≤ i ≤ n
δni : n → n + 1 1 ≤ i ≤ n + 1
σni : n → n 1 ≤ i ≤ n − 1

Satisfying:

εiεj = εj+1εi i ≤ j
δjδi = δiδj+1 i ≤ h

δiεj =


εj−1δi i < j

δiεj = 1 i = j , j + 1
δiεj = εjδi−1 i > j + 1



Theorem (Cruttwell and Lucyshyn-Wright)
The E -valued sector forms on M form an augmented symmetric
cosimplicial abelian group.

The structure maps are given by:
- The codegeneracy: εni (ω) := T i−1(`)ω

- The symmetry: σni (ω) := T i−1(c)ω

- The generating coface map: δn1(ω) = T (ω)p̂

The coface maps are generated by:

δni (ω) := σi ◦ · · · ◦ σ1 ◦ δn1(ω)

for i > 1.



Definition (unshuffles)
An (m, n)-shuffle map is an n + m permutation σ so that:

- 0 ≤ i < j < m : σ(i) ≤ σ(j)

- m ≤ i < j < (m + n) : σ(i) ≤ σ(j)

an (n,m)-unshuffle is a permutation so that σ−1 is an (n,m)
shuffle. Denote the n,m unshuffles U(n,m)

Definition (Unshuffle operator)
The unshuffle operator on n + m sector forms is define

usn,m(ω) :=
∑

γ∈U(n,m)

sgn(γ) · σγ(ω)

where we treat σγ is the operator defined by the permutation γ.



The exterior derivative:

∂(ω) :=
n+1∑
i=1

(−1)i−1δni (ω)

is precisely ∂(ω) = us1,n(δn1(ω))

Theorem (Cruttwell and Lucyshyn-Wright)
(Ψ•(M,E ), ∂) is a cochain complex, the alternating forms form a
subcomplex.

Remark
Lavendhomme and Minguez use the antisymmetrization operator.

A(ω) =
1
n!

∑
γ∈Sn

sgn(γ)σγ(ω)



Tensor Product of Forms
Suppose we have a differential object R with a multiplication

· : R × R → R

so that
T (·)κ = 〈κ, p〉 ·+〈p, κ〉·

The tensor product of forms was introduced by Minguez.

ω ⊗ γ := 〈Tm(pm)ω, pnγ〉·

Then we have that:

δn+m
1 (ω ⊗ γ) = 〈Tm+1(pm)δn1(ω),T (pn)δm1 (γ)〉



Definition (Wedge Product for forms)
ω ∈ Ψn(M,R), γ ∈ Ψm(M,R) is

ω ∧ γ := usn,m(ω ⊗ γ) ∈ Ψm+n(M,R)

Theorem
Let ω ∈ Ψn(M,R), γ ∈ Ψm(M,R)

1. ∂(ω ∧ γ) = ∂(ω) ∧ γ + (−1)nω ∧ ∂(γ)

2. ω ∧ γ = (−1)γ ∧ ω
3. ω, γ alternating, then ω ∧ γ is alternating.

Theorem
For a linear ring R , the complex of sector forms Ψ•(M,R) is a
differential graded algebra, and the alternating sector forms form a
subalgebra.



Remark
Minguez and Lavendhomme use the antisymmetrization operator.

ω ∧ γ :=
1

(n + m)!

∑
ν∈Sn+m

sgn(ν) · σν(ω ⊗ γ)

this has some disadvantages:
- Requires N invertible
- Sends a pair of sector forms to an alternating sector form.



The Interior Product

Definition
Given a vector field x ∈ χ(M), ω ∈ Ψn(M,E ) define the interior
product:

ix(ω) := T n(x)ω



Definition
Given a vector field x ∈ χ(M), ω ∈ Ψn(M,E ) define the Lie
derivative

Lx(ω) := ix(δnn+1(ω))

Proposition
The Lie derivative induces a cochain endomorphism

. . . Ψk(M,E ) Ψk+1(M,E ) . . .

. . . Ψk(M,E ) Ψk+1(M,E ) . . .

∂ ∂

Lx

∂

Lx

∂ ∂ ∂



The Cartan Calculus is a collection of relationships on the
commutator of the operators i , L, ∂.

Theorem (Cartan Calculus)

1. If ω is an alternating form: [ix , iy ] = 0.
2. [Lx , Ly ] = L[x ,y ]

3. [Lx , iy ] = i[x ,y ]

4. Cartan’s Homotopy Formula: Lx = (−1)n · [∂, ix ]



Proof.
The homotopy formula is immediate:

ix(∂(ω))− ∂(ix(ω)) = ix(u1,n(δn1(ω)))− u1,n−1(ix(δn1(ω)))

= (−1)nixδ
n
n+1(ω) = (−1)nLx(ω)

To prove the other two formulas we need the following:

Lemma
For any f : X → T 2(M) so that {f } is well defined:

T k({f }) = {T k+1(f )ck+1T (c(k+1))}c−1
k+1

where c0 = 1, ci := T i−1(c)ci−1



[Lx , Ly ]:

Proof.
Expand the the left term to T k({xT (y)− yT (x)c})δnn+1(ω)
Using the above lemma, find:

{T k(xT (y)− yT (x)c)c(k)T (c(k))}T (ω)κ

Pull the T (ω)κ inside the brackets:

{T k(xT (y)− yT (x)c)c(k)T (c(k))T (T (ω)κ)}

Now the codomain has a vertical connection κ, so we have:

T k(xT (y)− yT (x)c)c(k)T (c(k))T (T (ω)κ)κ

Some manipulation will yield Lx(Ly (ω))− Ly (Lx(ω))



Conclusion

- Sector forms emphasize cosimplicial structure, rather than the
cochain complex.

- The unshuffle operator gives a canonical construction of
cochain structures from simplicial.

- We get a differential graded algebra of sector forms, and a
differential graded algebra of singular forms.

- We get all the maps of the Cartan Calculus, satisfying
analogous identities.

- This lets you formalize basic Hamiltonian mechanics in a
tangent category, using a “symplectic sector form”



Further Work
- Using n-fold linearity, it is simple to generalize this so that the
codomain is a differential bundle with a vertical connection.
There are various Nijenjuis calculi for differential forms on
vector bundles that can be developed using differential bundle
valued sector forms.

- Cartan’s calculus is about the interaction with χ(M) and
Ψ•(M,R). What about higher sector fields?

- The collection of n-sectors χn(M) is a semi-simplicial set -
higher order connections in the sense of Bertram may be
naturally interpreted as a extension property, yielding a Kan
complex.

- Classical Field Theory is may be studied using n-plectic
manifolds, so this should be possible using n-plectic sector
forms and the Cartan calculus.
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