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0. SDG for Physicists

Forget categories. We need only add
an axiom to the real numbers.
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Axiom: If ε > 0 then ε3 = 0.
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Represent a non-abelian Lie group
G = {g, h, . . .} by “infinitesimal ma-
trix transformations” I + εA.

We have

(I + εA)−1 = I − εA + ε2A2

How will a group commutator ghg−1h−1

map?
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(I+εA)(I+εB)(I−εA+ε2A2)(I−εB+ε2B2)

= I + ε2 [A,B]

so the bracket measures “failure to
commute”.
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1. From Lagrange to Differ-

ential Categories

Some early history of calculus

• John Wallis, 1655 (Newton was 12,
Leibniz was 9). By analyzing ∫π

o sinnx dx,
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•Newton 1687 Philosophi Naturalis

Principia Mathematica

•Taylor 1712. Sort of proved Tay-
lor’s theorem.

So neither Newton nor Leibniz in-
vented calculus from scratch.
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• Lagrange 1797 was Euler’s student
and had Fourier as a student. At
Age 61, Théorie des Fonctions

Analytiques.

– A rigorous 600 page calculus text.

– The “Lagrange remainder” for
Taylor polynomials.

– (With Euler) the Lagrangian in
mechanics.

– “Lagrange points” in the sun-
Jupiter system predicted a con-
centration of asteroids which was
found in 1906.

– Lagrange’s identity from vector
calculus:

(a×b) (c×d) = (a·c)(b·d)−(b·c)(a·d)
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A formal power series RR [[ t ]] is a model
of a one-variable function.

These form a commutative RR-algebra.
(∑ akt

k) (∑ bmtm) = ∑ cntn, with

cn =
n∑

k=0
akbn−k

This algebra has a lot of structure
(see Niven’s paper).

Toward the end of the talk we will
consider an operator-theoretic formu-
lation of RR [[ t ]] which invites categor-
ical axiomatization.
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Facts about RR [[ t ]] .

• ∑ antn is invertible⇔ a0 6= 0. La-
grange gave a recursive formula.

•Can differentiate and integrate term-
by-term.

• Big problem: cannot always define
f (g(t)) if g(0) = 0.
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Using RR [[ t ]] to Solve Problems

x′(t) = x(t)

x(0) = 1

write

x =
∞∑

n=0
antn, x′(t) =

∞∑

n=1
nantn−1

and equate coefficients to get

x =
∞∑

n=0

tn

n!
See Exercises 1, 2 for other examples.

Even if no solution in elementary func-
tions exists, can still do this!
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One of the great problems from New-
ton to the twentieth century was the
three-body problem.

Our Colleague John Gray has a son
Jeremy whose student June Barrow-
Green has written a wonderful book
Poincaré and the Three Body Prob-

lem.

It started with Newton’s attempts
to predict moon position. He failed
badly.
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In 1860 and 1867, Delaunay found a
Hamiltonian for the Sun-Earth-moon
system and approximated it with a
series. The results were encouraging.

Modern calculations (see Meeus’ book)
show it is more than a three body
problem (Venus and Jupiter have big
effects) and many hundred perturba-
tions enter the algorithm.
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In 1912, K. F. Sundman found an
infinite series solution for a general
three body problem.

Precious little qualitative information
resulted (but, see Barrow-Green pages
187–192).

Sundman made extensive use of Com-
plex variable theory.
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A 1993 Precursor to Differen-

tial Categories

In his book Real and Functional Anal-

ysis, Serge Lang explained how cal-
culus fits into functional analysis.

He used Banach spaces, both with
smooth maps and continuous linear
maps, the latter category being closed.

It seems to me a reasonable expecta-
tion of the differential categorists to
precisely relate this example to their
work.



16

Fundamental properties of Lang’s

category:

The derivative of f : E → F has
form f ′ : E → [E,F ].

A product rule holds for any prod-
uct E ⊗ E → F . This includes
the usual one-variable product rule
as well as the rules for differentiating
a dot product or a cross product.

The usual chain rule holds for the
derivative of the composition of two
morphisms.
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If f ′ = 0 on the convex hull [x, y]
of x, y, f is constant on [x, y] (the
proof uses Hahn-Banach).

Taylor’s theorem:

f (x + a) = f (x) + f ′(x)a +
f ′′(x)(a⊗ a)

2
+

. . . +
f (n−1)(x)(a⊗ . . .⊗ a)

(n− 1)!
+ . . .
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Partial derivatives use ×, not ⊗.

What seems to be called for is, at
least, a closed category enriched over
real or complex vector spaces together
with

• a cartesian structure

• a “coalgebra modality”

X → X ⊗X
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Should we ignore scalars?

“It’s not a question of the max-
imum generality but the right

generality.”

Saunders Mac Lane

From Kelley and Namioka page 108

“This chapter, which begins our in-
tensive use of scalar multiplication in
the theory of linear topological spaces,
marks the definite separation of this
theory from that of topological groups.”
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Is the Line the Same as the

Plane?

In the early twentieth century, topol-
ogists strived to show that RRm, RRn

are different if m 6= n.

This holds as real vector spaces.

But not as abelian groups.



21

2. Lagrange and Cotangents

In a paper in the Monthly on differ-
ential geometry in mechanics, Mac
Lane emphasized the cotangent bun-
dle and its use as a model for the
phase space.

Let M be a manifold with tangent
bundle π : TM →M .

The fibre π−1r is {r}×Mr with Mr

a vector space.
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A (global) p-form is an alternating
p-linear (Mr)

p → RR which varies
over M in a C∞ way.

Alternating means if two arguments
are equal the result is 0.

The theory of the next slide depends
on the Lagrangian, explaining the sec-
tion title.
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Conjecture: We can do the following
in any tangent category if fibres are
vector spaces.

T ?M is M?
r on each fibre, the cotan-

gent bundle. We have

T ?M
α=πT?M←−−−−−−− TT ?M

β=TρM−−−−−−−−→ TM

Then θx = (αx) (βx) is a 1-form on
T ?M .
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dθ is a closed 2-form of maximal rank,
i.e. is a symplectic form.

See Mac Lane’s paper or Bishop and
Goldberg, Chapter 6 for how to use
T ?M with this structure to do Hamil-
tonian mechanics.
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3. A crisis with continuity

The Schrödinger wave equation re-
places Newton’s F = ma with a par-
tial differential equation (see Griffith’s
book). The story begins with D’Alembert
in 1746 when Lagrange was 10:

D’Alembert’s wave equation:

∂2u

∂x2 =
1

a2

∂2u

∂t2
, u(0, t) = 0 = u(b, t)

He showed that u(x, 0) can be any
odd twice differentiable function. See
Exercises 3, 4.
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Fourier (1822, also Euler, Bernoulli):

u(x, 0) =
∞∑

n=1
βn sinnax

One discovers this by approaching D’Alembert’s
equation by “separation of variables”,
i.e. by assuming that

u(x, t) = X(x) T (t)

to get

u(x, t) =
∞∑

n=1
sin nx (αn sin nat+βn cos nat)

For the Schrödinger equation, the terms
with separated variables are eigen-
states.
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So we have the crisis that any twice
differentiable function has infinitely
many derivatives. Here’s another cri-
sis:

f (x) =
4

π
(sin x+

1

3
sin 3x+

1

5
sin 5x + · · ·)

This converges pointwise to the Heav-
iside function

H(x) =





−1 : −π < x < 0
0 : x ∈ {0, π}
1 : 0 < x ≤ π

Thus the pointwise limit of a sequence
of real-analytic functions need not be
continuous.
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So it’s not just a need to tighten up
how we use series. Continuity itself
behaves badly.

This is one reason mathematicians
were led to measure theory.

A topological space X is a measur-
able space whose measurable sets are
the Borel sets, the σ-algebra gen-
erated by the open sets.

Continuous functions are measurable.
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Theorem Unlike for continuous func-
tions, if fn is a sequence of bounded
real-valued measurable functions, its
supremum and infimum are again mea-
surable.

Theorem (Lusin 1912) If f : [a, b]→
RR is measurable, µ is Lebesgue mea-
sure, and ε > 0, there exists contin-
uous g such

µ({x : fx 6= gx}) < ε
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But new strangeness appears!

A space with the topology of a sec-
ond countable complete metric space
is a Polish space. A standard

Borel space has the Borel sets of
a Polish space.

We know the interval and the square
are not homeomorphic. However,

Theorem (J. von Neumann, 1932)
[0, 1] and [0, 1]× [0, 1] are isomorphic
measure spaces. Indeed, any stan-
dard Borel space X with µ(X) =
1 and µ({x}) = 0 is isomorphic to
Lebesgue measure on [0, 1].
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4. Derivatives via integrals

Enter functional analysis: Banach spaces.

The Lp spaces

For 1 ≤ p < ∞ and measure space
(X,M, µ), Lp(µ) is the Banach space
of almost-everywhere classes of mea-
surable f : X → CC such that

∫

X
|f |p dµ <∞

with norm

‖ f ‖p = (
∫

X
|f |p dµ)

1
p

It is a nontrivial theorem that this
normed space is complete, and hence
is a Banach space.
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For any f ∈ Lp(−π, π] define its
Fourier coefficients by

̂
f (j) =

1

2π

∫ π
−π f (t) e−ijtdt

The Fourier series of f is
∑ ̂

f (j) eijt (j ∈ ZZ)

Note: By Euler’s identity

eijt = cos jt + i sin jt

so this is the same form as seen in
the wave equation solutions.
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Pathology for L1

In 1923, Kolmogorov gave an exam-
ple of an L1-function whose Fourier
series diverges almost everywhere.
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Better Results if p > 1.

Theorem The Fourier series of f ∈
Lp(−π, π] ‖ · ‖p -converges to f .

Theorem If f has a continuous first
derivative, its Fourier series converges
uniformly to f pointwise.

Theorem (Carleson 1966, Hunt 1968,
very difficult!) The Fourier series con-
verges pointwise to f almost every-
where.
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So unlike as in Taylor’s theorem, we
approximate f by evaluating integrals.

A function is “smooth” if its Fourier
coefficients decay rapidly to 0 (Kranz
Complex Analysis, Proposition 1.1.8).

Impediments to smoothness:

• Some f (k) has large L1-norm

•Not enough derivatives exist

• Is sin 1000x smooth? Let’s take a
look.
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5. Complex Analysis

For Ω ⊂ CC open, f : Ω → CC is
holomorphic at zo ∈ Ω if the fol-
lowing limit exists:

f ′(zo) = limz→zo

f (z)− f (zo)

z − zo

If f (x + iy) = u(x, y) + i v(x, y),
f is holomorphic if and only if the
Cauchy-Riemann equations (dis-
covered by D’Alembert in 1752) hold:

∂v

∂x
=

∂v

∂y
,

∂u

∂y
= −

∂v

∂x

See Exercises 6,7,8,9,10.
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Taylor’s theorem for Holomor-

phic f : U → CC

We can either integrate or differenti-
ate:

f (z) =
∑

k≥0
ak(z − zo)

k

ak =
1

k!

dkf

dzk
(zo)

=
1

2πi

∮

γ

f (w)

(w − zo)k+1dw

•The radius of convergence is al-
ways > 0.

•All derivatives always exist.
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For f : RRn → CC in L1(RRn), it’s
Fourier transform is the function
of the same form given by

̂
f (ξ) =

∫

RRn f (t)e(it)ξdt

•A similar integral computes the in-
verse transform.

• So long as the integral is finite,
̂
f

is uniformly continuous.
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The transform of a derivative is very
simple:

(
̂

∂f

∂xj
)(ξ) = −iξj

̂
f (ξ)

The computation time of this way of
differentiating is decreased by using
the fast Fourier transform
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The uncertainty principle holds:
f and

̂
f cannot both have compact

support.

Indeed, no nonzero f can have both
itself and its Fourier transform sup-
ported on a set of finite measure.
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6. Polynomials 1: approxima-

tions

Between “linear” and “differentiable”
we have polynomials.

How would one put these in a differ-
ential category?
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Theorem (Weierstrass 1885) A con-
tinuous function on [a, b] is the uni-
form limit of a sequence of polyno-
mials.

For f : [0, 1] → RR continuous, its
nth Bernstein polynomial is

Bf,n(x) =
n∑

n=0




n

k


 f (

k

n
) xk (1−x)n−k

Theorem (Bernstein 1912) On [0,1],
Bf,n converges uniformly to f .

Let’s see a demonstration:
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For a differentiable function, a very
compelling polynomial approximation
method is Hermite interpolation.

Given x-values x0 < · · · < xn on
which f is defined, the desired poly-
nomial p is the one of least degree for
which p(xi) = f (xi), p′(xi) = f ′(xi)
for all i.

While developed by Hermite in 1864,
there was earlier work by Chebyshev
in 1859 and Laplace in 1810.

Let’s see an example.
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7. Polynomials 2: Operators

We have a category with RR-vector
space hom-sets equipped with a spe-
cial RR-algebra object “polynomials”
with a differentiation endomorphism

P D−−−−→ P

It’s iterates have a “binomial prop-
erty” with respect to pointwise mul-
tiplication, namely

Dn(pq) =
n∑

j=0




n

j


 (Djp)(Dn−jq)
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Working in P

For a ∈ k, the shift operator Ea :
P → P is defined by

Ea(p(x)) = p(x + a)

Note: if p ∈ RR [[ t ]] , the composition
p(x+a) may not be defined if a 6= 0.

An operator T : P → P is shift-

invariant if Ea ◦ T = T ◦ Ea for
all a, that is,

(Tp)(x + a) = T (p(x + a))

Shift-invariant operators form an RR-
algebra where multiplication is com-
position.
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Theorem (Rota, Kahaner and Odlyzko)
If T is shift-invariant then there exist
unique an with

T =
∑

n≥0

an

n!
Dn

• an = (Txn)(0)

•There is an RR-algebra isomorphism
between shift-invariant operators
and formal power series:

∑ an

n!
Dn 7→

∑ an

n!
tn

•Hence shift-invariant operators com-
mute.

• T is invertible if and only if T1 6=
0.
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Examples of shift-invariant op-

erators

•Ea = ∑ an

n! Dn with inverse E-a.

•The Bernoulli operator

Tp =
∫ x+1
x p(t)dt

T =
∑ 1

(n + 1)!
Dn is invertible.
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•The Euler mean operator

Tp =
1

2
(p(x) + p(x + 1))

T =
1

2
(I+E1) = I +

∑
(

1

2n!
Dn : n ≥ 1)

T−1 ←→ 2
et−1

•The difference operator

∆ = E1 − I

Tp = p(x + 1)− p(x)

T =
∑

(
1

n!
Dn : n ≥ 1)

T ←→ et − 1 is not invertible.
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Differentiating T

Let x̂ : P → P be the linear opera-
tor p(x) 7→ x p(x).

See Exercise 11.

For linear T : P → P define its
Pincherle derivative as

T ′ = T x̂− x̂T
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Theorem

• If T is shift-invariant, so is T ′.

• If shift-invariant T corresponds to
the series f (t), T ′ corresponds to
the term-by-term derivative f ′(t).
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8. Variation of parameters

In an undergraduate ODE course we
explain how to solve

Ty = y′′− 2y′+ 3y = t3− t2 + 1

• Find an eigenvector basis z1, z2 of
Ty = 0.

• Find one solution yp by “variation
of parameters”.

•The general solution is

a z1(t) + b z2(t) + yp(t)

.
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Well let’s see.

• T = D2−2D+3I is shift-invariant.

•The problem is Ty = t3 − t2 + 1.

• T1 = 0− 0 + 3 6= 0 so T is invert-
ible.

So a (polynomial!) solution is

T−1(t3− t2 + 1)
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As Lagrange well knew, if

(
∑

antn) (
∑

bntn) = 1

then

b0 =
1

a0

bn = −
1

a0

n∑

i=1
aibn−i

Inverting T this way gives

T−1 =
1

3
I+

2

9
D+

1

27
D2−

4

81
D3+· · ·

so the desired polynomial solution yp(t)
is

T−1(t3−t2+1) = −
1

27
−

2

9
t+

1

3
t2+

1

3
t3
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At this juncture, Robin’s graduate
students can take over.

At least those who are still awake.

To all who are still awake, congratu-
lations for surviving another Manes
tutorial!


