Seeing double

 $(\mathsf{https://www.mscs.dal.ca/}{\sim}\mathsf{pare/FMCS2.pdf})$

Robert Paré

FMCS Tutorial Mount Allison

June 1, 2018

Before we start

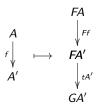
Double functors

$$Slice(A) \longrightarrow Slice(B)$$

are in bijection with natural transformations

$$\mathbf{A} \underbrace{\qquad \qquad \downarrow_{t}}_{G} \mathbf{B}$$

The associated double functor is given (on the objects) by



Words of wisdom

If you want something done right you have to do it yourself.
And, you have to do it right.

Micah McCurdy

The plan

- The theory of restriction categories is a nice, simply axiomatized theory of partial morphisms
- It is well motivated with many examples and has lots of nice results
- But it is somewhat tangential to mainstream category theory
- The plan is to bring it back into the fold by taking a double category perspective
- Every restriction category has a canonically associated double category
- What can double categories tell us about restriction categories?
- What can restriction categories tell us about double categories?
- References
 - R. Cockett, S. Lack, Restriction Categories I: Categories of Partial Maps, Theoretical Computer Science 270 (2002) 223-259
 - R. Cockett, Introduction to Restriction Categories, Estonia Slides (2010)
 - D. DeWolf, Restriction Category Perspectives of Partial Computation and Geometry, Thesis, Dalhousie University, 2017

Restriction categories

Definition

A restriction category is a category equipped with a restriction operator

$$A \xrightarrow{f} B \rightsquigarrow A \xrightarrow{\bar{f}} A$$

satisfying

R1.
$$f\bar{f} = f$$

R2.
$$\underline{\bar{f}}\underline{\bar{g}} = \bar{g}\bar{f}$$

R3.
$$\overline{g\overline{f}} = \overline{g}\underline{\overline{f}}$$

R4.
$$\bar{g}f = f\overline{gf}$$

Example

Let \boldsymbol{A} be a category and \boldsymbol{M} a subcategory such that

- (1) $m \in \mathbf{M} \Rightarrow m$ monic
- (2) M contains all isomorphisms
- (3) \mathbf{M} stable under pullback: for every $m \in \mathbf{M}$ and $f \in \mathbf{A}$ as below, the pullback of m along f exists and is in \mathbf{M}

$$\begin{array}{ccc}
P & \xrightarrow{\bar{f}} & B \\
\downarrow^{m'} & \downarrow^{m} \\
C & \xrightarrow{f} & A
\end{array}$$

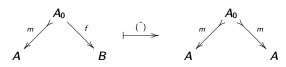
$$m \in M \Rightarrow m' \in M$$

 $Par_{M}A$ has the same objects as A but the morphisms are isomorphism classes of spans

with $m \in M$

Composition is by pullback

The restriction operator is $\overline{(m, f)} = (m, m)$



The double category

Let A be a restriction category

Definition

$$f: A \longrightarrow B$$
 is total if $\bar{f} = 1_A$

Proposition

The total morphisms form a subcategory of A

The double category $\mathbb{D}c(\mathbf{A})$ associated to a restriction category \mathbf{A} has

- The same objects as A
- Total maps as horizontal morphisms
- All maps as vertical morphisms
- There is a unique cell

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow^{v} & \Rightarrow & \downarrow^{m} \\
C & \xrightarrow{g} & D
\end{array}$$

if and only if $gv = wf \bar{v}$

Theorem

 $\mathbb{D}c(\mathbf{A})$ is a double category

Remark

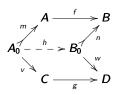
C & L define an order relation between $f,g:A \longrightarrow B$, $f \le g \Leftrightarrow f=g\bar{f}$ Makes **A** into a 2-category. They say "seems to be less useful than one might expect"

There is a cell

if and only if $gv \le wf$. So our $\mathbb{D}c(\mathbf{A})$ is not far from that 2-category. Perhaps it will turn out to be more useful than they might expect!

Example

In $\mathbb{D}c\mathsf{Par}_{\mathsf{M}}(\mathsf{A})$ there is a cell if and only if there exists a (necessarily unique) morphism h



Companions

Proposition

In $\mathbb{D}c(\mathbf{A})$ every horizontal arrow has a companion, $f_* = f$

Proof.

$$A \xrightarrow{f} B$$

$$f \downarrow \Rightarrow \downarrow 1 \qquad 1 \cdot f = 1 \cdot f \cdot \overline{f}$$

$$B \xrightarrow{1} B$$

$$A \xrightarrow{1} A$$

$$1 \downarrow \Rightarrow \downarrow f \qquad f \cdot 1 = f \cdot 1 \cdot \overline{1}$$

$$A \xrightarrow{f} B$$

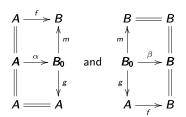
Conjoints

Proposition

In $\mathbb{D}cPar_{\mathbf{M}}(\mathbf{A})$, f has a conjoint if and only if $f \in M$

Proof.

Assume f has conjoint (m,g), then there are α,β



So $m\alpha g=fg=\beta=m$ which implies $\alpha g=1$ Thus α is an isomorphism and $f=m\alpha\in \mathbf{M}$

- If we suspect that $\mathbb A$ is of the form $\mathbb D_c\mathsf{Par}_{\mathsf M}(\mathsf A)$ we can recover $\mathsf M$ as those horizontal arrows having a conjoint
- Is the requirement of stability under pullback of conjoints a good double category notion?
- In $\mathbb{D}c(\mathbf{A})$, a horizontal arrow $f:A\longrightarrow B$ always has a companion f_* , and if it also has a conjoint f^* then $f_*\dashv f^*$ so

is a comonad, i.e. an idempotent $\leq id_A$

Proposition

In
$$\mathbb{D}c(\mathbf{A})$$
, $f_* \bullet f^* = \bar{f^*}$

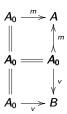
Tabulators

Proposition

 $\mathbb{D}cPar_{M}(\mathbf{A})$ has tabulators and they are effective

Proof.

Given $(m, v): A \longrightarrow B$, the tabulator is



Conjecture: In a general $\mathbb{D}c(\mathbf{A})$, $v:A\longrightarrow B$ has a tabulator if and only if \bar{v} splits

Classification of vertical arrows

• The original definition of elementary topos was in terms of a partial map classifier

$$\frac{B \longrightarrow A}{B \longrightarrow \tilde{A}}$$

• In a topos, relations are classifiable

$$\frac{B \longrightarrow A}{B \longrightarrow \Omega^A}$$

For profunctors

$$\frac{B \longrightarrow A}{B \longrightarrow (Set^A)^{op}}$$

provided A is small

How do we formalize this in a general double category?

Classification (Beta version)

The desired bijection

$$\frac{B \xrightarrow{V} A}{B \xrightarrow{\widehat{V}} \widetilde{A}}$$

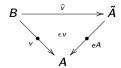
gives $eA: \tilde{A} \longrightarrow A$ and $hA: A \longrightarrow \tilde{A}$

• We express our definition in terms of eA

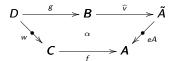
Definition

Let $\mathbb A$ be a double category and A an object of $\mathbb A$. We say that A is *classifying* if we are given an object $\tilde A$ and a vertical morphism $eA: \tilde A \longrightarrow A$ with the following universal properties:

(1) For every vertical arrow $v: B \longrightarrow A$ there exist a horizontal arrow $\hat{v}: B \longrightarrow \tilde{A}$ and a cell



such that for every cell α



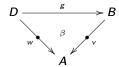
there exists a unique cell $\bar{\alpha}$ such that

$$D \xrightarrow{g} B \xrightarrow{\widehat{v}} \widetilde{A} \qquad D \xrightarrow{g} B \xrightarrow{\widehat{v}} \widetilde{A}$$

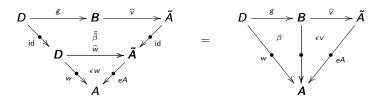
$$C \xrightarrow{e_A} A \qquad C \xrightarrow{e_A} A$$

$$C \xrightarrow{e_A} A$$

(2) For every cell



there exists a unique cell $\bar{\bar{\beta}}$ such that



Complete classification

- How do we understand this?
- Take a more global approach Assume $\mathbb A$ is companionable, i.e. every horizontal arrow f has a companion f_* Then we get a (pseudo) double functor

$$()_{*}: \mathbb{Q} \mathcal{H} \text{or} \mathbb{A} \longrightarrow \mathbb{A}$$

$$A \xrightarrow{f} B \qquad A \xrightarrow{f} B$$

$$\downarrow \alpha \qquad \downarrow k \qquad \longmapsto \qquad h_{*} \downarrow \qquad \alpha_{*} \qquad \downarrow k$$

$$C \xrightarrow{g} D \qquad C \xrightarrow{g} D$$

Exercise

Definition

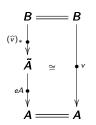
Say that $\mathbb A$ is *classifying* if ()* has a *down adjoint* (), i.e. a right adjoint in the vertical direction

Bijections

The adjunction can be formalized in terms of bijections

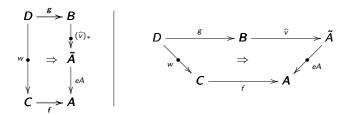
$$\begin{array}{c|c}
B \\
\downarrow \\
A
\end{array}
\qquad B \xrightarrow{\widehat{V}} \widetilde{A}$$

More precisely, for $v: B \longrightarrow A$ there exists a $\hat{v}: B \longrightarrow \tilde{A}$ and an isomorphism



This can be expressed without mention of () $_*$ because we have a bijection

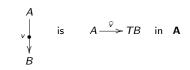
Bijections (cont.)



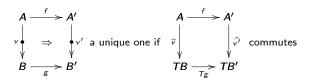
Yonedafication now yields the single-object definition

Kleisli

- Given a monad (T, η, μ) on **A** we get a double category $\mathbb{K}I(T)$
 - Objects are those of A
 - Horizontal arrows are morphisms of A
 - Vertical arrows are Kleisli morphisms i.e.

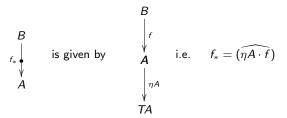


Cells



Kleisli (cont.)

• $\mathbb{K}l(T)$ is companionable For $f: B \longrightarrow A$,



• $\mathbb{K}l(T)$ is classifiable

$$\begin{bmatrix} B \\ \downarrow \\ \downarrow \\ \Delta \end{bmatrix} \qquad B \stackrel{\widehat{V}}{\longrightarrow} TA$$

- $eA: TA \longrightarrow A \text{ is } \widehat{\text{id}}_{TA}$ - $hA: A \longrightarrow TA \text{ is } \eta A$

• Double functors $\mathbb{K}l(T) \longrightarrow \mathbb{K}l(S)$ correspond to monad morphisms (F, ϕ)

$$A \xrightarrow{F} B$$

$$\phi: FT \longrightarrow SF$$

such that ...

- Horizontal transformations correspond to the 2-cells in Street's 1972 JPAA paper, Formal theory of monads
- Vertical transformations correspond to the 2-cells in Lack & Street's 2002 paper, Formal theory of monads II

Restriction functors

• A restriction functor $F: \mathbf{A} \longrightarrow \mathbf{B}$ is a functor that preserves the restriction operator, $F(\bar{f}) = \overline{F(f)}$

Proposition

A restriction functor F gives a double functor $\mathbb{D}c(F): \mathbb{D}c(A) \longrightarrow \mathbb{D}c(B)$

Question: Is every double functor $F: \mathbb{D}c(\mathbf{A}) \longrightarrow \mathbb{D}c(\mathbf{B})$ of this form? F is determined by a unique functor $\mathbf{A} \longrightarrow \mathbf{B}$ which preserves the order and totality. Does this mean it preserves restriction? Probably not. Does $\mathbb{D}c$ at least reflect isos?

Theorem

A double functor $\mathbb{D}cPar_{M}\mathbf{A} \longrightarrow \mathbb{D}cPar_{N}\mathbf{B}$ comes from a unique functor $F: \mathbf{A} \longrightarrow \mathbf{B}$ which restricts to $\mathbf{M} \longrightarrow \mathbf{N}$ and preserves pullbacks of $m \in M$ by arbitrary $f \in \mathbf{A}$. Thus it does come from a restriction functor

Transformations

Recall that a horizontal transformation $t: F \longrightarrow G$ between double functors $\mathbb{A} \longrightarrow \mathbb{B}$ consists of assignments:

- (1) For every A in A a horizontal morphism $tA: FA \longrightarrow GA$
- For every vertical morphism $v: A \longrightarrow \bar{A}$ a cell

$$\begin{array}{c|c} FA \stackrel{tA}{\longrightarrow} GA \\ \downarrow & \downarrow \\ Fv & \downarrow & tv \\ \hline G\bar{A} \stackrel{}{\longrightarrow} G\bar{A} \end{array}$$

satisfying

- Horizontal naturality (for horizontal arrows and cells)
- Vertical functoriality (for identities and composition)

Let $F, G: A \longrightarrow B$ be restriction functors. Then a horizontal transformation

$$t: \mathbb{D}c(F) \longrightarrow \mathbb{D}c(G)$$

(1) assigns to each A in A a total morphism

$$tA: FA \longrightarrow GA$$

(2) such that for every $f: A \longrightarrow \bar{A}$ in **A** we have

$$FA \xrightarrow{tA} GA$$

$$\downarrow \qquad \qquad \downarrow Gf$$

$$F\bar{A} \xrightarrow{t\bar{A}} G\bar{A}$$

(3) and t is natural for horizontal arrows (i.e. for f total, we have equality in (2))

This is what C & L call a lax restriction transformation

Proposition

Let $M \subseteq A$ and $N \subseteq B$ be stable systems of monics and $F, G : A \longrightarrow B$ functors that preserve the given monics and their pullbacks

Then horizontal transformations $\mathbb{D}c(F) \longrightarrow \mathbb{D}c(G)$ correspond to arbitrary natural transformations $F \longrightarrow G$

Restriction transformations correspond to cartesian ones

There is a notion of commuter cell in double categories, and requiring the cells in (2) to be commuter cells makes them equalities

Vertical transformations

A vertical transformation $\phi: \mathbb{D}c(F) \longrightarrow \mathbb{D}c(G)$

(1) assigns to each object A of A an arbitrary morphism of B

$$tA: FA \longrightarrow GA$$

- (2) will be automatic
- (3) is natural with respect to all morphisms
- (4) is vacuous

Question: Is this any good?

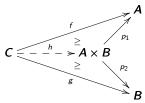
There are other notions of vertical transformation, e.g. the modules of

- "Yoneda Theory for Double Categories", Theory and Applications of Categories, Vol. 25, No. 17, 2011, pp. 436-489
 which generalize to double categories the modules of
- Cockett, J.R.B., Koslowski, J., Seely, R.A.G., Wood, R.J., Modules, Theory Appl. Categ. 11 (2003), No. 17, pp. 375-396

Project: Investigate the significance of lax (oplax) double functors and modules for restriction categories

Cartesian restriction categories

A restriction category **A** is *cartesian* if for every pair of objects A, B there is an object $A \times B$ and morphisms $p_1 : A \times B \longrightarrow A, p_2 : A \times B \longrightarrow B$ with the following universal property



For every f, g there exists a unique h such that

$$p_1h = f\bar{g}$$

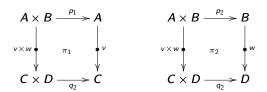
$$p_2h=g\bar{f}$$

There is also a terminal object condition

Double products

Recall that A has binary products if

- (1) for every A, B there is an object $A \times B$ and horizontal arrows $p_1 : A \times B \longrightarrow A$, $p_2 : A \times B \longrightarrow B$ which have the usual universal property with respect to horizontal arrows
- (2) for every pair of vertical arrows $v: A \longrightarrow C$ and $w: B \longrightarrow D$ there is a vertical arrow $v \times w: A \times B \longrightarrow C \times D$ and cells



with the usual universal property with respect to cells

Proposition

A is a cartesian restriction category if and only if $\mathbb{D}c(\mathbf{A})$ has finite double products

Proof*

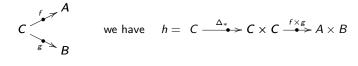
(1) Suppose A is a cartesian restriction category. The universal property of product is the usual one when restricted to total maps Given vertical arrows v : A → C, w : B → D we get a unique v × w

$$\begin{array}{cccc}
A \stackrel{\rho_1}{\longleftarrow} A \times B \stackrel{\rho_2}{\longrightarrow} B \\
\downarrow^{v} \downarrow & \geq & \downarrow^{v \times w} \leq & \downarrow^{w} \\
C \stackrel{C}{\longleftarrow} C \times D \stackrel{C}{\longrightarrow} D
\end{array}$$

and

so $\mathbb{D}c(\mathbf{A})$ has binary double products

(2) Suppose $\mathbb{D}c(\mathbf{A})$ has finite double products Given



and cells

$$C \xrightarrow{1_{C}} C$$

$$\Delta_{*} \downarrow \qquad \leq \qquad \downarrow \text{id}$$

$$C \times C \xrightarrow{q} C$$

$$f \times g \downarrow \qquad \leq \qquad \downarrow f$$

$$A \times B \xrightarrow{p_{1}} A$$

so
$$p_1 h = f\overline{(f \times g \bullet \Delta_*)} = f\overline{g}$$

*Warning: Some details may not have been checked

Homework

