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Probability monads

Idea [Giry, 1982]:

Spaces of random elements as formal convex combinations.

• Base category C

• Functor X 7→ PX

• Unit δ : X → PX

• Composition
E : PPX → PX
[Lawvere, 1962]
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• Algebras
e : PA→ A are
“convex spaces”

• Formal averages are
mapped to actual
averages
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Probability monads

Radon monad [Świrszcz, 1974]:

• Given a compact Hausdorff space X , PX is the set of Radon
probability measures, equipped with the weak*-topology.

• Given a continuous map f : X → Y , Pf : PX → PY is given by
push-forward:

(Pf )(p) : A 7→ p(f −1(A)).

• The map δ : X → PX assigns to x the Dirac delta measure δx .

• The map E : PPX → PX gives the average:

(Eµ) : A 7→
∫
PX

p(A) dµ(p).
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Probability monads

Kantorovich monad [van Breugel, 2005, Fritz and Perrone, 2017]:

• Given a complete metric space X , PX is the set of Radon
probability measures of finite first moment, equipped with the
Wasserstein distance, or Kantorovich-Rubinstein distance, or earth
mover’s distance:

dPX (p, q) = sup
f :X→R

∣∣∣∣∫
X
f (x) d(p − q)(x)

∣∣∣∣
• Functorial and monad structure are analogous, where the

morphisms are the short maps.

• If X is compact, PX is compact [Villani, 2009].
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Probability monads

Monad Category Algebras

Radon KHaus
Compact convex subsets

of locally convex
top. vector spaces a

Kantorovich CMet
Closed convex subsets

of Banach spaces b

a[Świrszcz, 1974]
b[Fritz and Perrone, 2017]
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The stochastic order

Idea [Strassen, 1965] [Jones and Plotkin, 1989]:

Constructing an order on PX entending the order on X .

• “Extending the
order by convexity”

• “Moving the mass
upwards”

• “Larger measure to
upper sets”
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The stochastic order

Theorem [Strassen, 1965]:

Let X be a Polish space equipped with a closed preorder. Let p, q be
Radon probability measures on X . Then the following are equivalent:

1. For every closed upper set U, p(U) ≤ q(U);

2. There exists a coupling r ∈ P(X × X ) of p and q entirely
supported on {x ≤ y}.

Definition:
We say that p ≤ q in the usual stochastic order.
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Ordered Wasserstein spaces

Definition:
Let X be a complete metric space with a closed preorder. We call
Wasserstein space the space PX of Radon probability measures of
finite first moment, equipped with the Wasserstein distance, or
Kantorovich-Rubinstein distance, or earth mover’s distance:

dPX (p, q) = sup
f :X→R

∣∣∣∣∫
X
f (x) d(p − q)(x)

∣∣∣∣
and the usual stochastic order.

Theorem:
If X is compact and partially ordered, PX is partially ordered.
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Ordered Wasserstein spaces

X

colim
n∈N

Xn = PX
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Algebras

• Maps e : PA→ A (integration), where A is a convex space.

• The map e has to be monotone as well:

a ≤ b

⇓
λa + (1− λ)c

≤
λb + (1− λ)c
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Algebras

Monad Category Algebras

Radon KOHaus

Compact convex subsets
of locally convex

top. vector spaces
w. closed pos. cone a

Kantorovich
KOMet

(CPOMet)

Compact convex subsets
of Banach spaces

w. closed pos. cone
(closed subsets, wedge)

a[Keimel, 2008]
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Higher structure

Pointwise order: f ≤ g : X → Y iff for every x ∈ X , f (x) ≤ g(x).

X Y

f

g

Proposition:

Let f ≤ g : X → Y . Then Pf ≤ Pg : PX → PY .

Corollary:

CPOMet and KOMet are strict 2-categories, and P a strict 2-monad.
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Higher structure

Aa b

B
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f(b)

PA PB
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Higher structure

Theorem:
Let A be a P-algebra. Consider R with its usual order. Let f : A→ R
be short and monotone. Then:

• f is affine if and only if it is a strict P-morphism;

• f is concave if and only if it is a lax P-morphism;

• f is convex if and only if it is an oplax P-morphism;

The same is true for continuous functions (using the Radon monad).

This allows to define concave and convex function between general
ordered vector spaces, giving a categorical characterization.
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Higher structure

Remark:
For f , g : R→ R convex, g ◦ f may not be convex.
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Remark:
For f , g : R→ R convex, g ◦ f may not be convex.

However if g is also monotone, then g ◦ f is concave.

PR= PR≤ PR= PR≤

R= R≤ R= R≤

e

Pf

e e

Pg

e

f g

This is just composition in a category (of oplax morphisms).
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The exchange law

Idea:
Stronger compatibility condition between metric and order.
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In LMSs:

y ≤ z ⇒ d(x , z) ≤ d(x , y)
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The exchange law

Idea:
Stronger compatibility condition between metric and order.

z

yx

Given y ≤ z and x ,

∃w ≥ x such that
d(w , z) ≤ d(x , y).
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The exchange law

Proposition:

Let X be an ordered metric space satisfying the exchange law. Then
the Lawvere metric induced by the metric and the order is given by:

d ′(p, q) = sup
f

∫
f dp −

∫
f dq

where f varies between short monotone functions X → R+.

Corollary (cfr. [Hiai et al., 2018])

p ≤ q if and only if for every short monotone map f : X → R+,∫
f dp ≤

∫
f dq.
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Świrszcz, T. (1974).

Monadic functors and convexity.
Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom.
Phys., 22.

van Breugel, F. (2005).

The Metric Monad for Probabilistic
Nondeterminism.
Available at http://www.cse.yorku.ca.

Villani, C. (2009).

Optimal transport: old and new, volume 338 of
Grundlehren der mathematischen Wissenschaften.
Springer.

20 of 20

https://arxiv.org/abs/1712.05363
https://ncatlab.org/nlab/files/lawvereprobability1962.pdf
https://ncatlab.org/nlab/files/lawvereprobability1962.pdf
http://www.cse.yorku.ca/~franck/research/drafts/monad.pdf


Contents

Front Page

Probability monads

The stochastic order

Ordered Wasserstein spaces

Monad structure

Algebras

Higher structure

The exchange law

References

20 of 20


	Front Page
	Probability monads
	The stochastic order
	Ordered Wasserstein spaces
	Monad structure
	Algebras
	Higher structure
	The exchange law
	References

