Graded monads
and quantified computational effects

Tarmo Uustalu
Reykjavik University and Tallinn University of Technology

FMCS 2018, Sackville, NS, 31 May-2 June 2018

What is this?

e We organize effectful computations with monads, “idioms” (lax
monoidal endofunctors), arrows, relative monads etc.

o Often it is useful to track the “degree” of effectfulness, e.g., for
ensuring safety (honoring of given resource usage bounds) or
optimizations.

o Enter grading of monads, idioms etc.

@ This is revisiting the old idea of effect systems and in particular of
the marriage of monads and effects (with effect inference and all
that).

@ But this time we are guided by a mathematical foundation.

Married monads and effects:
Graded monadic metalanguage
rFt:A
M-rett: TiA

N=t: TeA I,x:AFu:TfB
M-letret x<«tinu: T (exf)B

TFt: TeB e<eé
lr-t: Te'B

FTEt:TBool THu:TFA THv:TFA
[Hif t then uthen v’ : T (ex(FV ')A

Fr~Fu:TeA THVv:TEA
I+ vanish: ToA M-uoru :T(e+e)A

Outline

@ Graded monads
o Kileisli and Eilenberg-Moore categories for graded monads
o Graded “monads of monoids” (MonadPlus instances)

@ Graded distributive laws of monads over monads

Graded monads

e Given a monoid (E,i,*). A graded monad on a category C is
o forany e: E, afunctor Te:C — C
e anat. transf. n:Ild — Ti
o forany e, f:E, anat transf. u®" : Te- Tf — T(exf)

such that
d-Te’ZTi - Te Te ld ZTe Ti
T
Te T (ixe) Te=——T(exi)
ef.
Te (TFf Tg)——(Te Tf)-Tg" £ T(exf) - Tg

Te-uf’gl/ J/He*f'g
e,frg

Te~T(f*g)u4>T(e*(f>kg)) T((exf)xg)

@ In short, a graded monad on C is a lax monoidal functor from
(E,i,*) as a discrete monoidal category to ([C, C],Id,).

Graded monads ctd

@ It is useful to generalize from a monoid to a pomonoid ((E, <), i, %),
i.e., a set E with a partial order < and a monoid structure (i,)
such that % is monotone wrt. <.

e NB! i need not be the least element (nor the greatest).

@ Then a graded monad has also

o for any e < €, a natural transformation T (e <e'): Te— Té
such that
T(e<e)=idre
T(e'<e)oT(e<e)=T(e<e <€)
e,f
Te Tf——>T(exf)

T(ege’)~T(f§f’)\L \LT(e*fﬁe’*f’)

e f!
Te T L o T (e xf)
@ Again, a graded monad is a lax monoidal functor, this time from a
thin monoidal category.

@ One can also grade with a general monoidal category.

Example: Graded maybe
E = {pure, fail, mf}

mf

AN

pure

Tpure X =
Tfaill X=
T mf X =

T (pure < mf)
T (fail < mf)

fail

X
1
X+1

X:
X:

i = pure

*

‘ pure

fail

mf

pure | pure

X" x 1
1o X 41

fail

mf

fail
mf

fail
fail
fail

mf
fail
mf

Example: Graded state

Given a set S of states.

E = {pure,ro, wo™, wo, rw}
rw
N
ro Wo

pure wo™T

i = pure

Tpure X= X
T ro X= §=X
Twot X= SxX

Two X= (S+1)xX=Z(SxX)+X

Trw X= S§=5xX

*x | pure ro wo wo Iw

pure | pure 10 WoT wo Iw
o ro ro Iw IW IW

wot | wo wo™ wot wot woT
wo | wo rw woT wo @IW
'w | r'w Iw W I'W IW

Example: Graded writer
Given an alphabet X.
Option 1:

(E,<,i,#) = (N, <,0,+)
TnX=X5"xX
Option 2:

(E,<,i,x) = (P, C [, +)
(or we could use any class of languages containing ©* and closed under]
and +, eg regular languages)

where

0= {0}
L+l ={w+w |welw el}

TLX=LxX

Kleisli category of a graded monad

e Given a pomonoid (E,i,*) and a graded monad T on C.

@ An object of the Kleisli category of T is given by

e an element e of E,
e an object X of C.

@ A map between (e, X), (¢/, Y) is given by
e an element f of E such that e x f < €’
eamapk: X—=>TfrFY

modulo the equivalence relation ~ given by the rule

f<f
(fexf<exf <e k)y~(fiexf <€, T(f<f)ok)

Eilenberg-Moore category of a graded monad

@ An object of the E-M category of T (an algebra) is given by
o for any e: E, an object Ae
o foranye<e,amapA(e<e):Ae— A¢€,
o forany e,f: E,amap a® : Te(Af) = A(ex f)
such that
A(e < e)=idae A(e' <e’)oA(e<e)=A(e<e <€)
e,f

e f m
Te(Af) > Alexf) Ae—% Ti(Ae) Te(TFf(Ag)) —% T(exf)(Ag)
| \)
T(eSe’)\E]A(fgf/)) A(e*f%e’*f’) \ J{ahe Teaf,gl i/ae*f',g

e f!

Te (AF) 5 AGe « F) Ae Te(A(fxg) i A(ex fxg)
@ A morphism (algebra map) between (A, a), (B, b) is given by

o forany e: E, amap h®: Ae — Be
such that

e e,f
Ae—">Be Te(Af) ——>A(exf)

A(ege’)\L , \LB(eSE') TEhf‘L \Lhe*"

/ he / e,f
Ae'——Be Te(Bf)*>b B(exf)

Resolutions of graded monads

@ A resolution of T is given by
o a category D,
e a strict monoidal functor A : (E,i,*) — ([D,D], Id,-),
e adjoint functors L, R between C and D
such that
o Te=R-Ae-L
o (appropriate conditions on 7, u)

@ The Kileisli category is the initial resolution, the E-M category is the
final resolution.

Graded monads of monoids (MonadPlus instances)

o Given a right near-semiring (E,i, *,0,+),
i.e., a set E with two monoid structures (i,), (o,+),
with * distributing over o and + from the right.
(Left distributivity and commutativity of 4 are not required.)
e A graded monad of monoids on a category (C, 1, x) with finite
products is an (E, i, *)-graded monad on C with
e anat. transf.e:1— To
o anat. transf. m® : Tex Tf = T(e+f)

such that

IxTeZ S ToxTe Texl—$TexTo

A”l l“‘ mT l’“

Te T(o+e) Te T (e +0)

Te><(Tf><Tg) (Te>< Tf)><Tg4>T(e+f)><Tg

Texmf’gi/ \Lme+ﬂg
f+

Tex T(f+g) "> T(e+(f +g)) T((e+1)+8g)

Graded monads of monoids ctd

eTg
l——1-Tg——=To-Tg

e

l1———=To=——=T(0oxg)

me:f.
Te TgxTf-Tg (TexTF) - Tg—"ET(e+f)-Tg

Hs,gXHf,g\L \Lue+f,g

T(exg)x T(Frgl s T(exg+frg) T((e+f)+g)

@ In short, a graded monad of monoids is a lax right near-semiring

functor from (E,i,*,0,+) as a discrete semiring category to
([C,Cl,1d, -, 1, x).

@ The finite product structure (1, x) on C (which is lifted to [C,C])
can be replaced with a general monoidal structure (/, ®).

e Similarly to the monad case, it makes sense to generalize to grading
with an ordered right near-semiring or with a general right
near-semiring category.

Example: Graded nondeterminism
(E,L*,O, +) = ((N7§)717*307 +)

TnX=Xs"

(E3 i? *703 +) = ((N7 2)7 17 *7 0’ +)

TnX=X>"

Composing graded monads: Matching pairs of actions

e Given two monoids (Eg, ig, *o) and (Ei, i1, *1).

@ A matching pair is a pair of functions \,: E; x Ey — Ep,
/: E1 x Eg — E; such that

er\ ip =1o
e1\ (eo *0 g) = (e1 \ &) %o ((e1 / e0) \ €))
i1\ & =e
(e1*1e1) \ eo=e1\ (e \ &)
er /io=er
e1 / (eo *o0 &) = (e1 / &) / €
i1/ e =i

(e1 %1 €1) / eo = (e1 / (€] \ e0)) 1 (€1 / o)

@ A matching pair equips Eg x E; with a monoid structure by

i = (io,i1) and (eg, e1) * (e, e1) = (eo %0 (€1 \ &), (e1 / €}) *1 €1),
a Zappa-Szép product structure on Ey x Ej.

@ Matching pairs and Zappa-Szép product structures are in a bijection.

Graded distributive laws

e Given two monoids (Eg, ig, *0), (E1, i1, *1) with a matched pair and
graded monads (T, 7o, 110) and (Ty, m1, u1).

o A graded distributive law consists of, for any e; : Ey, e : Ep, a nat.
transf. 0% : Ty e; - Toeg — To (6‘1 \ eo) - T (e1 / eo) such that

Tie Tie
T1 61'7iol lm)'ﬂ e
. eerio . . .
Tier - Toio——> To(er \io) - Ti(e1 /io) == Toio- Th &

and three more equations hold

o Let T(ey,e1) = Toeg- T1e1. A graded distributive law equips T
with a graded monad structure for the Zappa-Szép product by

m="o-M
ot ! ’
M(eoﬂel))(eoxel) — /1180161\60 . uil‘/eo’el o T() € - pereo . T]_ €1

a compatible graded monad structure.

@ Distributive laws and compatible graded monad structures are in a
bijection.

Example: Distributing graded maybe

Let (Ey,i1,*1) and (T, m1, 1) be the pomonoid and graded monad from
the graded maybe example.

For any pomonoid (Ey, ig, *0) that has joins and graded monad
(To,mo, tt0), the following is a matching pair for which we have a graded
distributive law:

pure \ &g = € e1/e = e
fail \/ € = io
mf\ e = e Vi

g : Tie - Toeg — To(e1 \ €) - Ti(er / eo)

" Toeg X == Toe X
fail,eg | 701 .
9X Pl — TO I 1

Ot Toeo X + 12" T e X + Toigl —— Ty (0 V io) (X +1)

Grading the stack writer monad

(E07 05 *0) = ((N7 Z)’ 0, +)
(E1,i1, %1) = (N, <),0,+)

ni\ ng = np—n
ny/ ng = ni—ng

i = (0,0)
(o, m) * (g, ny) = (no + (ng—n1), (m—ng) + n)

TonoX:NZ,,O x X
Tim X =5<m x X

0"0,"1

X DT (NZHO x X) - NZnoim x (zﬁm;no x X)
(w, (k,x)) — (k—|w]|, (drop k w, xs))

Takeaway

@ Graded monads etc are natural concepts both theoretically and in
terms of programming examples.

@ Marrying monads and effects works!

@ But as ever we see that it pays off to look at the categorical
generalities to get things right.

