Graded monads and quantified computational effects

Tarmo Uustalu Reykjavik University and Tallinn University of Technology

FMCS 2018, Sackville, NS, 31 May-2 June 2018

What is this?

- We organize effectful computations with monads, "idioms" (lax monoidal endofunctors), arrows, relative monads etc.
- Often it is useful to track the "degree" of effectfulness, e.g., for ensuring safety (honoring of given resource usage bounds) or optimizations.
- Enter grading of monads, idioms etc.
- This is revisiting the old idea of effect systems and in particular of the marriage of monads and effects (with effect inference and all that).
- But this time we are guided by a mathematical foundation.

Married monads and effects: Graded monadic metalanguage

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash \text{ret } t : T \text{ i } A}$$

$$\frac{\Gamma \vdash t : T e A \quad \Gamma, x : A \vdash u : T f B}{\Gamma \vdash \text{let ret } x \leftarrow t \text{ in } u : T (e * f) B}$$

$$\left(\frac{\Gamma \vdash t : T e B \quad e \leq e'}{\Gamma \vdash t : T e' B}\right)$$

$$\frac{\Gamma \vdash t : T \text{ Bool} \quad \Gamma \vdash u : T f A \quad \Gamma \vdash v : T f' A}{\Gamma \vdash \text{ if } t \text{ then } u \text{ then } u' : T (e * (f \lor f')) A}$$

$$\frac{\Gamma \vdash u : T e A \quad \Gamma \vdash v : T e' A}{\Gamma \vdash v \text{ anish} : T \circ A} \qquad \frac{\Gamma \vdash u : T e A \quad \Gamma \vdash v : T e' A}{\Gamma \vdash u \text{ or } u' : T (e + e') A}$$

Outline

- Graded monads
 - Kleisli and Eilenberg-Moore categories for graded monads
- Graded "monads of monoids" (MonadPlus instances)
- Graded distributive laws of monads over monads

Graded monads

- ullet Given a monoid (E,i,*). A graded monad on a category $\mathbb C$ is
 - ullet for any e:E, a functor $Te:\mathbb{C}
 ightarrow \mathbb{C}$
 - ullet a nat. transf. $\eta:\operatorname{Id} o T\operatorname{i}$
 - for any e,f:E, a nat. transf. $\mu^{e,f}:T$ $e\cdot T$ $f\to T$ (e*f) such that

• In short, a graded monad on \mathbb{C} is a lax monoidal functor from (E, i, *) as a discrete monoidal category to $([\mathbb{C}, \mathbb{C}], Id, \cdot)$.

Graded monads ctd

- It is useful to generalize from a monoid to a *pomonoid* $((E, \leq), i, *)$, i.e., a set E with a partial order \leq and a monoid structure (i, *) such that * is monotone wrt. \leq .
- NB! i need not be the least element (nor the greatest).
- Then a graded monad has also
 - for any $e \leq e'$, a natural transformation $T \, (e \leq e') : T \, e \to T \, e'$ such that

$$T (e \le e) = id_{Te}$$

$$T (e' \le e'') \circ T (e \le e') = T (e \le e' \le e'')$$

$$T e \cdot T f \xrightarrow{\mu^{e,f}} T (e * f)$$

$$T (e \le e') \cdot T (f \le f') \downarrow \qquad \qquad \downarrow T (e * f \le e' * f')$$

$$T e' \cdot T f' \xrightarrow{\mu^{e'}, f'} T (e' * f')$$

- Again, a graded monad is a lax monoidal functor, this time from a thin monoidal category.
- One can also grade with a general monoidal category.

Example: Graded maybe

$$\textit{E} = \{ \text{pure}, \text{fail}, \text{mf} \}$$

$$T ext{ pure } X = X$$
 $T ext{ fail } X = 1$
 $T ext{ mf } X = X + 1$
 $T ext{ (pure } \leq ext{ mf)} X = X \xrightarrow{ ext{ inl}} X + 1$
 $T ext{ (fail } \leq ext{ mf)} X = 1 \xrightarrow{ ext{ inr}} X + 1$

Example: Graded state

Given a set S of states.

$$E = \{\text{pure}, \text{ro}, \text{wo}^+, \text{wo}, \text{rw}\}$$

*	pure	ro	wo^+	WO	rw
pure	pure	ro	wo^+	wo	rw
ro	ro	$_{ m ro}$	rw	rw	rw
wo^+	wo ⁺	wo^+	wo^+	wo^+	wo^+
wo	wo	rw	wo^+	wo	rw
rw	rw	rw	rw	rw	rw

$$T ext{ pure } X = X$$
 $T ext{ ro } X = S \Rightarrow X$
 $T ext{ wo}^+ X = S \times X$
 $T ext{ wo } X = (S+1) \times X \cong (S \times X) + X$
 $T ext{ rw } X = S \Rightarrow S \times X$

Example: Graded writer

Given an alphabet Σ .

Option 1:

$$(E,\leq,\mathsf{i},*)=(\mathbb{N},\leq,0,+)$$

$$T n X = \Sigma^{\leq n} \times X$$

Option 2:

$$(E, \leq, i, *) = (\mathcal{P}\Sigma^*, \subseteq, [], ++)$$

(or we could use any class of languages containing Σ^* and closed under [] and ++, eg regular languages)

where

$$[] = \{[]\}$$

$$L ++L' = \{w ++w' \mid w \in L, w' \in L'\}$$

$$TLX = L \times X$$

Kleisli category of a graded monad

- Given a pomonoid $(\mathbb{E}, i, *)$ and a graded monad T on \mathbb{C} .
- An object of the Kleisli category of T is given by
 - an element e of E,
 - an object X of \mathbb{C} .
- A map between (e, X), (e', Y) is given by
 - an element f of E such that $e * f \le e'$
 - a map $k: X \rightarrow T f Y$

modulo the equivalence relation \sim given by the rule

$$\frac{f \leq f'}{\left(f, e * f \leq e * f' \leq e', k\right) \sim \left(f', e * f' \leq e', T\left(f \leq f'\right) \circ k\right)}$$

Eilenberg-Moore category of a graded monad

- An object of the E-M category of T (an algebra) is given by
 - for any e: E, an object Ae
 - for any $e \leq e'$, a map $A(e \leq e')$: $Ae \rightarrow Ae'$,
 - for any e, f : E, a map $a^{e,f} : T e(A f) \rightarrow A(e * f)$

such that

$$A(e \le e) = \mathrm{id}_{Ae} \qquad A(e' \le e'') \circ A(e \le e') = A(e \le e' \le e'')$$

$$T e(Af) \xrightarrow{a^{e,f}} A(e * f) \qquad Ae \xrightarrow{\eta_{Ae}} Ti(Ae) \qquad Te(Tf(Ag)) \xrightarrow{\mu_{Ag}^{e,f}} T(e * f)(Ag)$$

$$T(e \le e') \bigvee_{A} A(e \times f \subseteq e' \times f') \qquad \qquad \downarrow_{a^{i,e}} \qquad Te(Af') \xrightarrow{a^{e'}, f'} A(e' * f') \qquad \qquad Ae \qquad Te(A(f * g)) \xrightarrow{a^{e,f} \times g} A(e * f * g)$$

A morphism (algebra map) between (A, a), (B, b) is given by
 for any e: E, a map h^e: Ae → Be
 such that

$$A e \xrightarrow{h^{e}} B e \qquad T e (A f) \xrightarrow{a^{e,f}} A (e * f)$$

$$A (e \le e') \downarrow \qquad \qquad \downarrow B (e \le e') \qquad T e h^{f} \downarrow \qquad \qquad \downarrow h^{e*f}$$

$$A e' \xrightarrow{h^{e'}} B e' \qquad T e (B f) \xrightarrow{b^{e,f}} B (e * f)$$

Resolutions of graded monads

- A resolution of T is given by
 - ullet a category $\mathbb D$,
 - a strict monoidal functor $A: (\mathbb{E}, i, *) \to ([\mathbb{D}, \mathbb{D}], \mathsf{Id}, \cdot)$,
 - ullet adjoint functors L, R between ${\mathbb C}$ and ${\mathbb D}$

such that

- $Te = R \cdot Ae \cdot L$
- (appropriate conditions on η , μ)
- The Kleisli category is the initial resolution, the E-M category is the final resolution.

Graded monads of monoids (MonadPlus instances)

- Given a right near-semiring (E, i, *, o, +), i.e., a set E with two monoid structures (i, *), (o, +), with * distributing over o and + from the right. (Left distributivity and commutativity of + are not required.)
- A graded monad of monoids on a category $(\mathbb{C},1,\times)$ with finite products is an (E,i,*)-graded monad on \mathbb{C} with
 - ullet a nat. transf. ${\sf e}: 1
 ightarrow {\sf T}$ o
 - ullet a nat. transf. $\mathsf{m}^{e,f}: T\,e imes T\,f o T\,(e+f)$

such that

$$1 \times T e \xrightarrow{e \times T e} T \circ \times T e \qquad T e \times 1 \xrightarrow{T e \times e} T e \times T \circ$$

$$\downarrow_{m^{o,e}} \qquad \downarrow_{m^{e,o}} \qquad \downarrow_{m^{e,o}} \qquad \downarrow_{m^{e,o}}$$

$$T e = = T (o + e) \qquad T e = = T (e + o)$$

$$T e \times (T f \times T g) \xrightarrow{\alpha_{T e, T f, T} g} (T e \times T f) \times T g \xrightarrow{m^{e,f} \times T g} T (e + f) \times T g$$

$$\downarrow_{m^{e+f,g}} \qquad \downarrow_{m^{e+f,g}}$$

$$T e \times T (f + g) \xrightarrow{m^{e,f+g}} T (e + (f + g)) = = T ((e + f) + g)$$

Graded monads of monoids ctd

$$1 = 1 \cdot Tg \xrightarrow{e \cdot Tg} T \circ \cdot Tg$$

$$\downarrow^{\mu^{\circ,g}}$$

$$1 \xrightarrow{e} T \circ = T(\circ *g)$$

$$T e \cdot T g \times T f \cdot T g = (T e \times T f) \cdot T g \xrightarrow{\mathsf{m}^{e,f} \cdot T g} T (e + f) \cdot T g$$

$$\downarrow^{\mu^{e+f,g}} \downarrow$$

$$T (e * g) \times T (f * g) \xrightarrow{\mathsf{m}^{e+g,f*g}} T (e * g + f * g) = T ((e + f) * g)$$

- In short, a graded monad of monoids is a lax right near-semiring functor from (E, i, *, o, +) as a discrete semiring category to $([\mathbb{C}, \mathbb{C}], \mathsf{Id}, \cdot, 1, \times)$.
- The finite product structure $(1, \times)$ on \mathbb{C} (which is lifted to $[\mathbb{C}, \mathbb{C}]$) can be replaced with a general monoidal structure (I, \otimes) .
- Similarly to the monad case, it makes sense to generalize to grading with an ordered right near-semiring or with a general right near-semiring category.

Example: Graded nondeterminism

$$(\mathbb{E},\mathsf{i},*,\mathsf{o},+)=((\mathbb{N},\leq),1,*,0,+)$$

$$T n X = X^{\leq n}$$

$$(\mathbb{E},i,*,o,+)=((\mathbb{N},\geq),1,*,0,+)$$

$$T n X = X^{\geq n}$$

Composing graded monads: Matching pairs of actions

- Given two monoids $(E_0, i_0, *_0)$ and $(E_1, i_1, *_1)$.
- A matching pair is a pair of functions \downarrow : $E_1 \times E_0 \to E_0$, \not : $E_1 \times E_0 \to E_1$ such that

- A matching pair equips $E_0 \times E_1$ with a monoid structure by $i = (i_0, i_1)$ and $(e_0, e_1) * (e'_0, e'_1) = (e_0 *_0 (e_1 \setminus e'_0), (e_1 \not e'_0) *_1 e'_1)$, a Zappa-Szép product structure on $E_0 \times E_1$.
- Matching pairs and Zappa-Szép product structures are in a bijection.

Graded distributive laws

- Given two monoids $(E_0, i_0, *_0)$, $(E_1, i_1, *_1)$ with a matched pair and graded monads (T_0, η_0, μ_0) and (T_1, η_1, μ_1) .
- A graded distributive law consists of, for any $e_1: E_1$, $e_0: E_0$, a nat. transf. $\theta^{e_1,e_0}: T_1 \ e_1 \cdot T_0 \ e_0 \to T_0 \ (e_1 \setminus e_0) \cdot T_1 \ (e_1 \not e_0)$ such that

• Let $T(e_0, e_1) = T_0 e_0 \cdot T_1 e_1$. A graded distributive law equips T with a graded monad structure for the Zappa-Szép product by

$$\begin{split} \eta &= \eta_0 \cdot \eta_1 \\ \mu^{(e_0,e_1),(e_0',e_1')} &= \mu_0^{e_0,e_1 \setminus e_0'} \cdot \mu_1^{e_1 \setminus e_0',e_1'} \circ T_0 \, e_0 \cdot \theta^{e_1,e_0'} \cdot T_1 \, e_1 \end{split}$$

- a compatible graded monad structure.
- Distributive laws and compatible graded monad structures are in a bijection.

Example: Distributing graded maybe

Let $(\mathbb{E}_1, i_1, *_1)$ and (T_1, η_1, μ_1) be the pomonoid and graded monad from the graded maybe example.

For any pomonoid $(\mathbb{E}_0, i_0, *_0)$ that has joins and graded monad (T_0, η_0, μ_0) , the following is a matching pair for which we have a graded distributive law:

$$\begin{array}{rclcrcl} \operatorname{pure} \, \mathop{\backslash} \, e_0 & = & e_0 & & e_1 \not \mathrel{/} e_0 & = & e_1 \\ \operatorname{fail} \, \mathop{\backslash} \, e_0 & = & i_0 & & & \\ \operatorname{mf} \, \mathop{\backslash} \, e_0 & = & e_0 \vee i_0 & & & & & \end{array}$$

$$egin{aligned} & heta^{\mathrm{e_1}, \mathrm{e_0}} : \ T_1 \ e_1 \cdot T_0 \ e_0
ightarrow T_0 \ (e_1 \setminus e_0) \cdot T_1 \ (e_1 \not = e_0) \ & \ \theta_X^{\mathrm{pure}, \mathrm{e_0}} : \ T_0 \ e_0 \ X = T_0 \ e_0 \ X \ & \ \theta_X^{\mathrm{fail}, \mathrm{e_0}} : \ 1 \xrightarrow{\eta_{01}} T_0 \ i_0 \ 1 \ & \ \theta_X^{\mathrm{mf}, \mathrm{e_0}} : \ T_0 \ e_0 \ X + \overline{I_0} \ e_0 \ X + T_0 \ i_0 \ 1 \longrightarrow T_0 \ (e_0 \lor i_0) \ (X+1) \end{aligned}$$

Grading the stack writer monad

$$\begin{array}{l} (\mathbb{E}_{0},i_{0},*_{0}) = ((\mathbb{N},\geq),0,+) \\ (\mathbb{E}_{1},i_{1},*_{1}) = ((\mathbb{N},\leq),0,+) \\ n_{1} \setminus n_{0} = n_{0} - n_{1} \\ n_{1} \not\setminus n_{0} = n_{1} - n_{0} \\ i = (0,0) \\ (n_{0},n_{1}) * (n'_{0},n'_{1}) = (n_{0} + (n'_{0} - n_{1}),(n_{1} - n'_{0}) + n_{1}) \\ T_{0} n_{0} X = \mathbb{N}_{\geq n_{0}} \times X \\ T_{1} n_{1} X = \Sigma^{\leq n_{1}} \times X \\ \theta_{X}^{n_{0},n_{1}} : \Sigma^{\leq n_{1}} \times (\mathbb{N}_{\geq n_{0}} \times X) \rightarrow \mathbb{N}_{\geq n_{0} - n_{1}} \times (\Sigma^{\leq n_{1} - n_{0}} \times X) \\ (w,(k,x)) \mapsto (k - |w|,(\operatorname{drop} k w,xs)) \end{array}$$

Takeaway

- Graded monads etc are natural concepts both theoretically and in terms of programming examples.
- Marrying monads and effects works!
- But as ever we see that it pays off to look at the categorical generalities to get things right.