
Math. Struct. in Comp. Science (2012), vol. 22, pp. 25–42. c© Cambridge University Press 2011

doi:10.1017/S0960129511000442 First published online 19 September 2011

Lenses, fibrations and universal translations†

MICHAEL JOHNSON‡, ROBERT ROSEBRUGH§ and R. J. WOOD¶

‡School of Mathematics and Computing, Macquarie University,

Sydney, New South Wales, Australia

Email: Michael.Johnson@mq.edu.au
§Department of Mathematics and Computer Science, Mount Allison University,

Sackville, New Brunswick, Canada

Email: rrosebrugh@mta.ca
¶Department of Mathematics and Statistics, Dalhousie University,

Halifax, Nova Scotia, Canada

Email: rjwood@mathstat.dal.ca

Received 23 August 2010; revised 16 May 2011

This paper extends the ‘lens’ concept for view updating in Computer Science beyond the

categories of sets and ordered sets. It is first shown that a constant complement view

updating strategy also corresponds to a lens for a categorical database model. A variation

on the lens concept called a c-lens is introduced, and shown to correspond to the categorical

notion of Grothendieck opfibration. This variant guarantees a universal solution to the view

update problem for functorial update processes.

1. Introduction

In a modern database system, the instantaneous semantics (a database state) is usually

taken to be a set of ‘tables’, also known as relations. This is based on the idea that a data

object is specified by a record, which is a list of field values. Then a table is a set of records

and a database state is a set of tables. For example, an address book entry (record) will

have appropriate numerical and string fields. In the syntax for a database, the address

book table signature lists the fields and their types. A contacts list database schema might

then include an address book table signature. A table for the address book signature is

a set (not a list!) of such records. The tables may be required to satisfy integrity rules

such as external references. For example, an address record could be required to refer to

a record, for example, a person, in another table.

The specification of table signatures and integrity rules is the purpose of a database

definition language (DDL). A database schema is naturally defined as a correct instance

of some DDL. There is a variety of database definition languages in use, but by far the

most common is SQL.

For a database schema (for example a set of DDL statements in SQL), the database

states are the valid ways of populating the database schema, usually the tables. We will

† This research was partially supported by grants from the Australian Research Council and NSERC Canada.



M. Johnson, R. Rosebrugh and R. J. Wood 26

have much more to say about the structure of a database schema and database states

below.

A basic requirement of database states is that they may be updated. Updates may be

additions or deletions of records, or modification of some fields. An update u is often

described as a process that may be applied to any database state and determines a new

database state. Thus an update process is an endomorphism on states.

A view definition consists of a database schema derived from another database schema

that determines an assignment of database states S to view states V . So there is

at least a view definition mapping from S to V . In SQL, views are very limited: a

view definition only describes a single derived table, but this restriction can be safely

ignored.

Combining these two concepts, a view update u is an endomorphism of view states.

Hence, the view update problem is as follows:

— given a view definition g : S ��V and an update u : V ��V of the view states, when

is there a compatible update (known as a translation) tu : S �� S of the database

states?

For tu to be a compatible update (a translation) means that gtu = ug, that is, the following

diagram commutes (as noted in Bancilhon and Spyratos (1981)):

V V
u

��

S

V

g
��

S S
tu ������ S

V

g
��

Of course, this is a lifting problem: for a view update u, we ask when can ug be lifted

along g to some tu. If S and V are sets and g is surjective (surjectivity of g is commonly

required), then any section of g would provide a solution. However, it is also natural to

require the translation of the identity view update to be the identity, and to impose other

conditions discussed below so this obvious suggestion is inadequate. The view updates

u under consideration are not necessarily arbitrary, but usually those view updates for

which the view update problem is required to have a solution should be composable and

include the identity. That is, they are required to be a monoid.

The view update problem has a long history in the database literature, which dates

back to the 1980’s at least. Perhaps the most influential consideration of the problem was

given in Bancilhon and Spyratos (1981), where the main result amounts to a requirement

that there be a product decomposition of the database states with the view states as

one factor, together with a second factor called the ‘complement’ view. In this case the

view update problem has a simple solution with the translation being constant on the

second factor. The resulting view update solution is called the ‘constant complement’

strategy.

Several years ago, B. Pierce and collaborators (see Bohannon et al. (2006) and Foster

et al. (2007)) introduced a concept they called a ‘lens’ for a mapping g : S �� V . A lens

has a ‘Put’ mapping p : V × S �� S that satisfies additional equations. A lens provides

solutions to view update problems for a view definition mapping g. The equations are



Lenses, fibrations and universal translations 27

strong enough to require that g be a projection, and they showed that a lens for a

view definition mapping corresponds to a translator in the sense of Bancilhon and

Spyratos (1981).

As far as we know, the lens equations were first considered in the early 1980’s by F. Oles

in a study of abstract models of storage (Oles 1982; 1986). Oles (as reported in O’Hearn

and Tennent (1995)) also characterised models of the equations in sets as projections. In

the 1990’s, Hofmann and Pierce (1995) also considered the lens equations in a study of

typing for programming languages.

At about the same time as the relationship of lenses to constant complement update

strategies was noticed, Hegner (2004) described ‘update strategies’ for a ‘closed family

of updates’. For Hegner, the database states should be treated as an ordered set rather

than a discrete abstract set. This makes very good sense: if a database state is a set of

tables (relations), then there is an obvious partial order among them given by inclusions.

Hegner’s definition of an update strategy includes being a lens in the sense appropriate

to the category of partially ordered sets. As we review below, a lens structure actually

determines an update strategy.

The authors of the current paper recently showed in Johnson et al. (2010) that the

lens equations are equivalent to those satisfied by an algebra for a well-known monad

on a slice category of a category with products. This clarifies the constant complement

approach, and formally unifies the approaches of Bancilhon and Spyratos with that of

Hegner.

Rather than just treat the database states as given abstractly, as in Bancilhon and

Spyratos (1981) or Hegner (2004), we suggested in Johnson et al. (2002) that the syntax

(or database schema) be specified by a certain type of mixed sketch, and that the semantics

(or database states) be the category of models of the sketch. Several other authors have

adopted variants of this idea, notably in Diskin and Cadish (1995) and Piessens and

Steegmans (1995). Using sketches for syntax provides a natural way to define a view,

namely as a morphism of sketches. The view definition mapping is then the induced

(substitution) functor between the model categories. With this formalism, an update of

a single view state (an insertion or a deletion) is a morphism in the category of view

states. In that case, a criterion for updatability is the existence of an (op)cartesian arrow

in the database state category. Note that when states can be compared in some way (so

that the database states have more structure than an abstract set), there is also a natural

requirement for a comparison morphism between a (view) state and its value under an

update process.

When a view definition (substitution) functor is a lens in cat, the category of categories,

it is a projection, and hence also a fibration and an opfibration. Thus all (delete or insert)

view updates for the view have a best possible database update. Though projections

are certainly among the updatable view definition mappings, the main results of the

current paper show that our fibrational criteria are sufficient to guarantee the existence

of ‘universal translations’. This result arises as follows. In the categorical data model, it is

reasonable to modify the lens concept so that the domain of the Put is a suitable comma

category, and then rewrite the lens equations there. We call the resulting concept a c-lens.

We show that a c-lens is nothing other than an opfibration. This characterisation allows



M. Johnson, R. Rosebrugh and R. J. Wood 28

us to apply facts about opfibrations to provide a universal translation for a functorial

update process.

2. Sketches, views and translations

We assume familiarity with sketches and their models as described, for example, in Barr

and Wells (1995). We begin by defining EA sketches and their views, and ‘propagatability’

for view updates, and then the fibrational criterion for propagatability.

EA sketches are mixed sketches with limitations on cones and cocones. The important

point is that the permitted cones and cocones are sufficient to implement the fundamental

database operations, but they are restricted enough to permit the construction of the

query language. To establish our notation, we begin with the definition of a sketch, and

then specialise it to EA sketches.

Definition 2.1. A sketch E = (G,D,L,C) consists of a directed graph G, a set D of pairs

of paths in G with common source and target (called the commutative diagrams) and sets

of cones L and cocones C in G. The category generated by the graph G with commutative

diagrams D is denoted by C(E). An EA sketch E only has finite cones and finite discrete

cocones and has a specified cone with empty base whose vertex is called 1. Edges with

domain 1 are called elements. The vertex of a discrete cocone all of whose injections are

elements is called an attribute. A node of G that is neither an attribute nor 1 is called an

entity.

Example 2.1. As an example data domain, we consider an EA sketch for part of a movies

database.

The nodes of the graph G will include people, for example, Actors, Directors and Crew,

and the movies themselves. Other nodes of the graph will tabulate relationships between

people and movies, for example directors direct movies, actors play in a movie, and so on.

Among the constraints will be requirements that the general Person node be a sum of

Actors, Directors and Crew (as a consequence, an actor cannot be a director or crew).

Finite limit constraints will include expressions of joins: for example, Comedy directors

are found as the join (pullback) of the instances of the Directs node with Comedies.

Subset constraints can also be expressed, for example, a comedy is a movie.

The EA sketch might look something like Figure 1, which was produced using the

EASIK implementation for sketches (Rosebrugh et al. 2009): some attributes are shown

UML style; constraints are shown with dashed links; and monic constraints are shown

with diamond-tailed arrows.

In principle, a model for a sketch may take values in any category. As we are interested

in databases, we consider only models in finite sets setf .

Definition 2.2. A model M of a sketch E is a functor M : C(E) �� setf such that the

image of a cone in L (cocone in C) is a limit cone (colimit cocone) in setf . If M and M ′

are models of E, a morphism ϕ : M �� M ′ is a natural transformation from M to M ′.

The category Mod(E) has as objects the models of E and as arrows the morphisms of



Lenses, fibrations and universal translations 29

Fig. 1. Part of a movie database sketch.

models. For an EA sketch, a model is called a database state and we abuse notation by

writing D : E �� setf .

To define views for an EA sketch, we use the query language. For an EA sketch E,

there is a category called the theory of E denoted by QE. This QE is constructed by

starting from C(E) and then formally adding all finite limits and finite sums, subject to

the (co)cones in L and C (for details, consult Barr and Wells (1985, Section 8.2)). Thus

QE contains an object for any expression in the data for E constructible using finite limits

and finite sums, which justifies our calling it the query language.

Every category has an underlying sketch, and the category of models Mod(QE) of the

underlying sketch of QE is equivalent to the category Mod(E). Briefly, a QE model restricts

to an E model, and, conversely, an E model determines values on its queries, and thus a

QE model.

Definition 2.3. A view of an EA sketch E is an EA sketch V together with a sketch

morphism V : V �� QE.

This definition allows the view (morphism) to have values that are query results in E.

We mention without providing detail that the process Q of constructing the theory

of a sketch defines a monad on a suitable category of sketches. As just defined, a

view is a morphism of the Kleisli category for Q. Thus, as also noted in Johnson and

Rosebrugh (2007), views can be composed.



M. Johnson, R. Rosebrugh and R. J. Wood 30

Using the equivalence of Mod(E) and Mod(QE), a database state D : E �� setf may

also be considered as a model QE �� setf , also denoted by D. Composing the latter model

with a view V : V �� QE defines a V database state or view state DV : V �� QE �� setf ,

the V -view of D. This operation of composing with V is written V ∗, so V ∗D = DV , and

it defines a functor V ∗ : Mod(E) �� Mod(V).

Example 2.2. A view on the movies EA sketch (database schema) could be defined for

the information about people. Here a view state arises from every state of the underlying

database schema by extracting only the information about people in that state. Note that

there is an EA sketch with (in this case) a subgraph of the original graph. The view

updating problem arises when we consider that a user of the persons view may wish to

insert or delete information in the view state. We are led to ask:

— Is there an update to the state from which the view state was derived that correctly

implements the change?

— Is there a best possible update to that state?

In much of the literature on views and updates, a database state or a view state is

merely an element of an abstract set (Bancilhon and Spyratos 1981; Gottlob et al. 1988)

or of a partially ordered set (Hegner 2004) rather than an object of a category. As a

result, the view definition mapping was taken to be a (surjective) function or a monotone

mapping. In the abstract set context, there is no basis for considering how one state

updates to another. Rather, an update is defined only in terms of a process on the set of

states, that is, as an endomapping of the states. Thus, it is common to consider a view

update as a process on all of the view states. We have argued that it is important to be

able to consider an update of a single state. This is easy to define for a model of an EA

sketch.

Definition 2.4. An insert update (respectively, delete update) for a database state D is a

monomorphism D �� �� D′ (respectively, D′ �� �� D) in Mod(E).

The following is a criterion for being able to lift an (insert) update on a single view

state to the underlying database.

Definition 2.5. Let V : V �� QE be a view of E. Suppose D is a database state for E and

i : V ∗D �� �� W is an insert update of V ∗D. The insertion i is propagatable if there exists

an insert update m : D �� �� D′ in Mod(E) such that i = V ∗m and, for any database state

D′′ and insert update m′′ : D �� �� D′′ such that V ∗m′′ = i′i for some i′ : W �� �� V ∗D′′,

there is a unique insert m′ : D′ �� �� D′′ such that V ∗m′ = i′. If every insert update on V ∗D

is propagatable, we say that the view state V ∗D is insert updatable.

This definition is simply a precise statement of the requirement that m be the ‘best’

(minimal) insert update of D that maps to i under V ∗. Note that Hegner states, in essence,

that his notion of an update strategy for a closed update family (see below) provides

propagatability for inserts (see Hegner (2004, Lemma 4.2)).

To define propagatability for a deletion d : W �� �� V ∗D and delete updatability for a

view state, we simply reverse arrows. It is often the case that all arrows in Mod(E) are



Lenses, fibrations and universal translations 31

monic. For example, this is the case if E is keyed (Johnson et al. 2002). Note that in that

case the arrow m in Definition 2.5 is opcartesian and the analogous arrow for a delete is

cartesian. In any case, it makes sense to drop the monic requirement above and generalise

the insert and delete update notions by calling any morphism of database states with

domain D an insertion in D, and similarly for deletes. We will adopt this convention from

here on. When all insert (respectively, delete) updates of a view are propagatable, V ∗ is

an opfibration (respectively, fibration), and conversely. Some criteria guaranteeing that V ∗

is an (op)fibration are discussed in Johnson and Rosebrugh (2007).

When the database states are the category of models for an EA sketch, we can

also consider an update process, which ought to be a functor. Then we can consider a

‘translation’ of a view update process to be a compatible update process (functor) on states

of the underlying database, as mentioned in the Introduction. Thus compatibility requires

that the view update functor and its translation commute with the view substitution

V ∗. However, since we now have morphisms among states available, it is natural to

require a comparison between a state and its image under the process (the updated state).

Furthermore, we can also say when a translation is the best possible, as we did above for

propagatable single updates. These considerations motivate the following definition.

Definition 2.6. Let V : V �� QE be a view. A pointed view (insert) update is a pair

〈U, u〉 where U : Mod(V) �� Mod(V) is a functor and u is a natural transformation

u : 1Mod(V)
�� U. If 〈U, u〉 is a pointed view update, a translation of 〈U, u〉 is a pair

〈LU, lu〉 where LU : Mod(E) �� Mod(E) is a functor with:

— UV ∗ = V ∗LU;

— lu : 1Mod(E)
�� LU is a natural transformation; and

— uV ∗ = V ∗lu : UV ∗ �� V ∗LU:

Mod(V) Mod(V)
U ��

Mod(E)

Mod(V)

V ∗

��

Mod(E) Mod(E)
LU �� Mod(E)

Mod(V)

V ∗

��

Mod(E) Mod(E)

1

��

Mod(V) Mod(V)

1

��

lu
��

u
��

A translation 〈LU, lu〉 is universal when, for any other translation k : 1Mod(E)
�� K and

u′ : U �� U ′ with V ∗k = u′uV ∗ (so V ∗K = U ′V ∗), there is a unique transformation

k′ : LU
�� K such that k = luk

′ and V ∗k′ = u′V ∗.

Note that a pointed (view) update provides a process and a comparison from the

original state to the updated state, like an insert update. There are dual notions of a

copointed view update and a couniversal translation, which correspond to delete updates.

Example 2.3. A pointed view update on the persons view states of the movies database

system might be expressed by the insertion process of adding a new actor. For any view

state, there is an updated view state with the new actor added. Note that this will also

imply an update to the persons entity. Taken together, these updates define an endofunctor



M. Johnson, R. Rosebrugh and R. J. Wood 32

on the view states. This is a pointed update because for any view state there is an insertion

morphism from it to the updated view state. Taken together, these updates form a natural

transformation from the identity functor to the update functor. Note that the insertion is

trivial for states where the new actor is already present.

Clearly, a universal translation is unique up to a natural isomorphism of its functor

part. As in the case of propagatability, the requirement here is not simply that there be

some translation for the view update process, but also that it be optimal.

3. Lenses and ‘constant complements’

Our ultimate goal is to study sufficient conditions for universal translations. In this section

we begin with the notion of a lens and review its relation to some classical results on view

updatability. Then we consider lenses in the context of our categorical data model.

We begin with the context of given sets of underlying database states S , view states

V and a view definition mapping g : S �� V . Here a view update process is an

endomorphism u : V �� V . Informally, a lens provides a way to specify a global update

process tu : S �� S that is compatible with u, no matter which u is chosen. In particular,

a lens specifies, for each state s and each updated view state v′, what the value of tu(s)

should be. The lens specification depends on s, but it does not depend on the particular

view update u, only on its value v′ at g(s).

Example 3.1. If we ignore the morphisms among states of the movies database system and

treat both the database states and the view states simply as sets rather than categories,

we can almost imagine a lens. Given a database state and a state of the people view,

the lens creates a database state with exactly the specified people information, ignoring

the people information from the original database state. Of course, for this to work there

must be no interaction between the people information and the other information in

the original database state. To achieve this, we would have to require that the original

database schema be modified.

We use π0 : X × Y �� X, and so on, to denote projections, and also abbreviate

〈π0, π2〉 : X × Y × Z �� X × Z to π0,2.

Definition 3.1. Let C be a category with finite products. A lens in C is denoted by

L = (S, V , g, p), with states S and view states V , which are objects of C, and two arrows

of C, a ‘Get’ arrow g : S �� V and a ‘Put’ arrow p : V × S �� S satisfying the following

equations:

(i) (PutGet) the Get of a Put is the projection:

gp = π0.

(ii) (GetPut) the Put for a trivially updated state is trivial:

p〈g, 1S 〉 = 1S .



Lenses, fibrations and universal translations 33

(iii) (PutPut) composing Puts does ont depend on the first view update:

p(1V × p) = pπ0,2.

The ‘Put’ arrow does the job of specifying the database update value for the pair

consisting of a database state and an updated version of its image under the view

mapping. ‘PutGet’ guarantees the lifting condition mentioned above.

For any category C and any object V of C, we denote the slice category by C/V and

use ΣV : C/V �� C to denote the functor that remembers the domain, that is ΣV g = C

for an object g : C ��V . For C with finite products, the functor ∆V : C ��C/V is defined

on objects by ∆VC = π0 : V × C �� V , but we will often drop the subscripts. There is an

adjunction

C/V C��
∆

C/V C

Σ

��⊥

For an object g : C �� V of C/V , we have ∆Σg = π0 : V × C �� V , and the adjunction

determines a monad ∆Σ on C/V . The gth component ηg of the unit for the monad is

ηg = 〈g, 1〉 : C �� V × C.

The gth component µg of the monad multiplication is

µg = π0,2 : V × V × C �� V × C.

Proposition 3.1 (Johnson et al. 2010). Let C be a category with finite products. An algebra

structure on g : C �� V in C/V for the monad ∆Σ on C/V is determined by an arrow

p : V ×C ��C satisfying the lens equations, PutGet, GetPut and PutPut, and conversely.

To explain the relation between lenses and the ‘constant complement’ view updating

strategy, we consider the monadicity of ∆V . To define the notation, consider the following

diagram, in which K is the comparison functor from C to ∆Σ algebras:

C (C/V )∆ΣK ��C

C/V

∆

��

C

C/V

��

Σ

�

C/V

(C/V )∆Σ

		
U

C/V

(C/V )∆Σ

F





�

The next result follows from Janelidze and Tholen (1994, Theorem 2.3), or can be

proved using Beck’s theorem.

Proposition 3.2 (Johnson et al. 2010). For C with finite products and V an object, suppose

V �� 1 is split epi (so V has a global element). Then K is an equivalence, that is, ∆ is

monadic.

This result means that if (S, V , g, p) is a lens, then g : S �� V is essentially just a

projection to V , that is, for some C , we have g ∼= π0 : V ×C ��V . Indeed, given the lens



M. Johnson, R. Rosebrugh and R. J. Wood 34

(S, V , g, p), the ‘complement’ C just mentioned is the object of C given by the essential

inverse of K .

There is a close relationship between lenses in set and the ‘translators’ in Bancilhon

and Spyratos (1981). Bancilhon and Spyratos define a view g : S �� V to be a surjective

function and also define a complete set of updates to be a set U ⊆ set(V , V ) of updates

closed under composition and such that for u in U and s in S there is a v in U such that

vu(s) = s. A translator T for U is a composition-preserving function T : U �� set(S, S)

such that for u in U, we have gT (u) = ug. The fact that there is a one–one correspondence

between lenses and translators was noted in an unpublished manuscript by B. Pierce and

A. Schmitt. Note that a lens in set was called a ‘total, very-well-behaved lens’ in Bohannon

et al. (2006).

Bancilhon and Spyratos showed directly that a translator determines a product de-

composition of the domain S of the view mapping and that the view mapping is the

projection to the factor V . The other factor (with its projection) is called a complementary

view.

Hegner (2004) extended the ideas of Bancilhon and Spyratos to the ordered setting.

Hegner’s idea is that the database states should be an ordered set S and that a view

definition mapping should be a surjective monotone mapping g : S �� V . This idea has

the appealing advantage that states can be compared if they are related by the order.

Hegner considers an (order-compatible) equivalence relation on the view states V . The

intention is that equivalent states are mutually updatable, and he defines an update strategy

to be a (partial) mapping p : V × S �� V satisfying a list of equations that includes both

the requirement that p be monotone and the lens equations. We use pos to denote the

category of partially ordered sets and monotone mappings, which has finite limits. The

authors of the current paper showed in Johnson et al. (2010) that, at least for the ‘all’

equivalence relation, an update strategy is exactly a lens in pos. Consequently, an update

strategy or a lens provides a product decomposition of the database states for a view in

pos (as Hegner also pointed out).

The lens concept explains the constant complement view updating strategy when

database states are considered to be an abstract set or an ordered set. A ∆Σ al-

gebra or a lens is the same thing as a projection to the view states. Moreover, the

second factor in the projection is provided by the inverse of the equivalence K and

is the ‘constant complement’ found directly by Bancilhon and Spyratos, and also by

Hegner.

The category of categories cat has finite products. We are interested in the view

definition functor V ∗ : Mod(E) �� Mod(V) for EA sketches E and V. Whenever V has

at least one model, so that Mod(V) has at least one object, it has a global section in cat.

By Proposition 3.2, a lens in cat with view states Mod(V) is essentially a projection to its

codomain. Thus, whenever V ∗ is a lens, Mod(E) decomposes as Mod(V) × E′.

Proposition 3.3 (Borceux 1994, 8.1.13). Let P : V × C �� V be a projection in cat. Then

P is a fibration and an opfibration.

Thus, if a view definition functor V ∗ has a lens structure, we have both insert and delete

updatability of view updates. Indeed, a lens structure is a powerful condition on V ∗ since



Lenses, fibrations and universal translations 35

it prescribes a view update strategy not just for updates of a single view, but also, as we

will see below, for any pointed functorial update process.

Remark 3.1. When C has pullbacks and a terminal object (and thus finite products too),

there is a ‘relative’ version of the lens notion and the lens equations, which we leave

as an exercise: for an object α : J �� I in C/I , an I-indexed family of lenses with

view states α is a ∆αΣα-algebra structure on α. When α is split epi, ∆α is monadic here

also.

4. Fibrations and universal translations

In this section we consider a variation on the lens concept that turns out to be equivalent

to being a split (op)fibration and that guarantees the existence of universal translations.

We again consider a lens (S, V , g, p) in set. In order to define a translation for an

update u : V �� V , it is sufficient for the Put mapping p to be defined on the subset

du = {(ug(s), s) | s ∈ S} of V × S . As u varies, the union of the du is all of V × S ,

so the domain of p should be V × S . In the categorical model for a view definition

V ∗ : Mod(E) �� Mod(V), a database state D, a pointed view update u : 1 �� U and

uD : V ∗D ��UV ∗D, to define a translation will require us to have an arrow luD : D ��D′

with V ∗luD = uD . Thus, the domain of Put needs to include the arrows uD : V ∗D ��UV ∗D.

These are arrows of the form V ∗D �� W in Mod(V), so they are objects of the comma

category (V ∗, 1Mod(V)).

Example 4.1. Returning to the movies database schema and people view, we note that

for an insert update process on the view states, we are considering insertions into

the image under the view definition of a database state. These insertion arrows are

actually objects of the comma category just described. If we want to provide compatible

updates to the original database states, it is these comma category objects that must be

considered.

While our interest is primarily view definition functors V ∗, the following definitions

and results make sense for any functor G : S �� V. For notation, we denote the comma

category and projections for a functor G using

S V

(G, 1V)

S

Q0

�����������
(G, 1V)

V

Q1

�����������

S

V
G �������������S VV

V
1V�������������−→α

and recall that a functor X �� (G, 1V) is specified by a triple (H,K, ϕ) where H : X �� S,
K : X �� V and ϕ : GH �� K . Using this, we will now establish some further notation.



M. Johnson, R. Rosebrugh and R. J. Wood 36

First we denote the iterated comma category using

(G, 1V) V

((G, 1V), 1V)

(G, 1V)

Q2

���������
((G, 1V), 1V)

V

Q3

�����������

(G, 1V)

V
Q1 �����������(G, 1V) VV

V
1V�������������−→β

Then we define a functor ηG = (1V , G, 1G) : S �� (G, 1V) as in

S

S



1V

S

(G, 1V)

ηG

��

S

V

G

��
S V

(G, 1V)

S

Q0

�����������
(G, 1V)

V

Q1

�����������

S

V
G �������������S VV

V
1V�������������−→

and define µG = (Q0Q2, Q3, β(αQ2)) : ((G, 1V), 1V) �� (G, 1V), where we recall that β(αQ2) :

GQ0Q2
�� Q1Q2

�� Q3 in

S

((G, 1V), 1V)



Q0Q2

((G, 1V), 1V)

(G, 1V)

µG

��

((G, 1V), 1V)

V

Q3

��
S V

(G, 1V)

S

Q0

�����������
(G, 1V)

V

Q1

�����������

S

V
G �������������S VV

V
1V�������������−→

Finally, for a functor P : (G, 1V) �� S satisfying GP = Q1 so that β : GPQ2
�� Q3, we

define, for use in Definition 4.1,

(P , 1V) = (PQ2, Q3, β) : ((G, 1V), 1V) �� (G, 1V)

as in

(G, 1V)

((G, 1V), 1V)
��
Q2 �����

S

(G, 1V)

��

P

((G, 1V), 1V)

(G, 1V)

(P ,1V)

��

((G, 1V), 1V)

V

Q3

��
S V

(G, 1V)

S

Q0

�����������
(G, 1V)

V

Q1

�����������

S

V
G �������������S VV

V
1V�������������−→



Lenses, fibrations and universal translations 37

As noted above, in the cat case the domain of Put for insert updates should be a

comma category. Notice that the equations in the next definition are similar to those of

Definition 3.1 with the domain of Put replaced by the appropriate comma category.

Definition 4.1. A c-lens in cat is L = (S,V, G, P ) where G : S �� V and P : (G, 1V) �� S
satisfy:

(i) PutGet: GP = Q1

(ii) GetPut: PηG = 1S

(iii) PutPut: PµG = P (P , 1V)

or, diagrammatically,

S (G, 1V)
ηG ��S

S

1S

����
��

��
��

��
��

� (G, 1V)

S

P

��
S V

G
��

(G, 1V)

S
��

(G, 1V)

V

Q1

�������������

(G, 1V) S
P

��

((G, 1V), 1V)

(G, 1V)

µG

��

((G, 1V), 1V) (G, 1V)
(P ,1V) �� (G, 1V)

S

P

��

A c′-lens is as above except that the domain of P is (1V , G), and so on.

We recall from Street (1974) that the assignment G �→ (G, 1V) is the object part of a

KZ monad on cat/V. The ηG and µG defined above provide the unit and multiplication

for the monad. Dually, G �→ (1V , G) is a co-KZ monad.

Proposition 4.1. An algebra structure on G : S �� V in cat/V for the monad

cat/V
(−,1V) �� cat/V

is determined by an arrow P : (G, 1V) �� S satisfying the c-lens equations, PutGet, GetPut

and PutPut, and conversely.

Proof. This result is proved in a similar way to Proposition 3.1. We first note that the

GetPut equation says that P is a morphism of cat/V from Q1 to G. The upper right-hand

triangle defining ηG shows that ηG is a morphism of cat/V and the PutGet equation is

then exactly the unit law for the algebra structure. Finally, the upper right-hand triangle

defining (P , 1V) is the arrow of cat/V, which defines the action of the monad applied

to Q1. Thus the PutPut equation expresses the other law required to make a c-lens an

algebra. Conversely, an algebra structure on G : S �� V is an arrow P from Q1 to G in

cat/V and GetPut is satisfied, so satisfaction of the algebra equations immediately implies

satisfaction of PutGet and PutPut.

Remark 4.1. As proved in Street (1974), the algebras for (−, 1V) are the split opfibrations

(and algebras for (1V ,−) are split fibrations). Of course, it is also the case that pseudo-

algebras for the monad in question are not necessarily split fibrations. We could have

considered those by requiring that the c-lens equations GetPut and PutPut hold only up

to isomorphism (equation PutGet would still be required). However, the extra generality

would buy us little in the applications we have in mind, and, moreover, a lens in cat is

a split fibration. This is a good place to make two further points. First, to be a c-lens is



M. Johnson, R. Rosebrugh and R. J. Wood 38

to be an op-fibration. This is a property of a functor, not extra structure, so the algebra

structure P noted above is essentially unique. This is a satisfying observation because it

means that there is no choice in the update strategy associated with a view functor that

is a c-lens. Second, a mere isomorphism of models of an EA sketch is not always a useful

concept in database practice. For example, the value of an entity or attribute under a

model is a particular set. While an isomorphic set might be the value in an isomorphic

model, an isomorphism between Actor sets {Harlow, Monroe} and {Gable, McQueen}
vastly changes the meaning of the model.

All the (op)fibrations mentioned in the rest of this paper are assumed to be split.

Corollary 4.1. A c-lens with codomain V is an opfibration with codomain V, and

conversely.

The dual statement is that a c′-lens is a fibration.

Note that while a c-lens structure on a functor G is defined equationally, we have just

identified as an algebra structure for a KZ-monad. Thus, being a c-lens is a property of G

rather than extra structure. Since opfibrations compose, it also follows that a composite

of c-lenses is a c-lens.

Our aim is to apply Corollary 4.1 to show that a c-lens structure is sufficient to provide

universal translations. For the rest of this section we discuss opfibrations, but one should

bear in mind that they are c-lenses. We begin with an example illustrating the fact that

there are interesting views whose states are updatable by the fibrational criterion when

the view is a c-lens, but for which there is no lens structure.

Example 4.2. A simple example shows that a non-trivial view may give rise to a c-lens that

does not have a lens structure. For the base sketch E we take a single arrow specification:

A
f �� B.

The sketch V has a single node B and no other data. The view V : V �� E is just the

obvious inclusion. For example, V could be a view of a view on the movies database

schema where, for example, A is playsin, B is actor and f is the arrow p0. A model D

for E is simply a mapping

DA
Df �� DB

in set, and Mod(E) the category of arrows in set. A model for V is a set. Thus V ∗

specifies the codomain of Df. That is, V ∗ is the well-known ‘codomain’ op-fibration (also

a fibration if Mod(E) has pullbacks). Now V ∗ is not isomorphic to a product projection

in cat, and thus is not a lens.

We begin by recalling two well-known lemmas, which show that homming into an

(op)fibration gives an (op)fibration, and that the pullback of an (op)fibration is also an

(op)fibration.

Lemma 4.1 (Borceux 1994, 8.1.15). Let G : S �� V be an (op)fibration. For any category

X, (1X, G) : cat(X, S) �� cat(X,V) is an (op)fibration.



Lenses, fibrations and universal translations 39

Lemma 4.2 (Borceux 1994, 8.1.16). For a pullback

B V
F

��

E

B

G′

��

E S
F ′

�� S

V

G

��

in cat, if G is an (op)fibration, then G′ is an (op)fibration.

The following consequence of the lemmas may be a new observation.

Proposition 4.2. Let G : S �� V be an (op)fibration and

cat(V,V) cat(S,V)
(G,1V)

��

K

cat(V,V)

Q

��

K cat(S, S)�� cat(S, S)

cat(S,V)

(1S ,G)

��

be a pullback. Then the functor Q is an (op)fibration

Proof. The statement follows immediately from Lemmas 4.1 and 4.2.

When Q is an opfibration, we have the following explicit description.

Corollary 4.2. Let Q in the previous theorem be an opfibration. Suppose HG = GF such

that H = Q(H, F) and u : H �� U. Then there is LU : S �� S and lu : F �� LU such

that Glu = uG and such that for any L′ : S �� S and l′ : F �� L′ satisfying Gl′ = vuG for

some U ′ : V �� V and v : U �� U ′, there is a unique k : LU
�� L′ with Gk = vG.

V V
U ��

S

V

G

��

S S
LU �� S

V

G

��

S S

F

��

V V

H

��

lu
��

u
��

The important special case we point out next also clearly holds when V ∗ is a lens.

Proposition 4.3. Let V : V �� QE be a view and 〈U, u〉 be a pointed view update. If V ∗

is an opfibration, there is a universal translation 〈LU, lu〉 of 〈U, u〉.

Proof. Take F = 1Mod(E), H = 1Mod(V) in Corollary 4.2.

The dual is given by the following corollary.

Corollary 4.3. Let V : V �� QE be a view and 〈U, u〉 be a copointed view update. If V ∗

is a fibration, there is a couniversal translation 〈LU, lu〉 of 〈U, u〉.



M. Johnson, R. Rosebrugh and R. J. Wood 40

Pointed view updates can be composed horizontally, and there is a comparison from a

universal translation for the horizontal composite to the horizontal composite of universal

translations. Formally, we have the following proposition.

Proposition 4.4. Let V : V �� QE be a view and 〈U1, u1〉 and 〈U2, u2〉 be pointed view

updates. If V ∗ is an opfibration, then 〈U2U1, u2 ◦u1〉 has a universal translation k : 1 ��K
and there is a unique comparison k′ : K �� LU2

LU1
to the composite of the (codomains

of the) universal translations for 〈U1, u1〉 and 〈U2, u2〉.

Proof. The statement is immediate from Proposition 4.3.

There is no reason to expect k′ to be invertible, so while 〈LU2
LU1

, lu2
◦ lu1

〉 is certainly a

translation for u2 ◦ u1, it may not be universal.

These results show that when V ∗ satisfies the fibrational criteria of Johnson and

Rosebrugh (2007) for updatability, and, in particular, when it has a lens structure in

cat, universal translations are available. It is worth repeating that such translations are

essentially unique, and optimal. By contrast, there is no way even to measure a translation’s

properties if we restrict view definition morphisms to be functions in set. This defect is at

least partly fixed when, as in Hegner (2004), the view definition morphism is a monotone

mapping.

The following Proposition is of interest for updates when we have a keyed EA sketch

E, so Mod(E) is ordered, when it provides a partial converse to Corollary 4.2.

Proposition 4.5. Let G : S �� V be a functor and

cat(V,V) cat(S,V)
(G,1V)

��

K

cat(V,V)

Q

��

K cat(S, S)�� cat(S, S)

cat(S,V)

(1S ,G)

��

be a pullback. Suppose also that S is an ordered set viewed as a category and Q is an

opfibration. Then the functor G is an opfibration

Proof. Suppose α : GS �� V in V. We need to define an opcartesian arrow for α. For

any categories A, B, we use KB : A �� B to denote the functor that is constant at B in B.

For f : B �� B′, there is an obvious natural transformation κf : KB
�� KB′ . Indeed, any

natural transformation from KB to KB′ arises in this way.

For A = B = V, we use the denotation H = KGS , and for A = B = S, the denotation

F = KS . Thus HG = GF (so F lies over H).

We define U = KV : V �� V and u = κα, so, by hypothesis, there are LU : S �� S and

lu : F �� LU satisfying Glu = uG and, in particular, GLU = UG, so for any S in S, we

have GLU(S) = UG(S) = V .

We use ᾱ : S �� Sα∗ to denote the arrow lu(S) : F(S) �� LU(S), and show that ᾱ is

opcartesian for α. So we suppose ϕ : S �� S ′ satisfies Gϕ = βα for some β : V �� GS ′.

We use the denotations M = KS ′ and W = KGS ′ , and note that GM = WG, κϕ : F ��M
and κβ : U �� W . Furthermore, we have Gκϕ = κGϕG = κβαG = κβκαG = κβuG.



Lenses, fibrations and universal translations 41

Now since Q is an opfibration, we know that there is a unique transformation k :

LU
�� M satisfying Gk = κβG and κϕ = klu, and we have the required fill-in arrow

defined by kS : Sα∗ = LU(S) �� M(S) = S ′. Moreover, since Gk = κβG, we have

GkS = κβGS = β : V = U(GS) �� W (GS) = GS ′, and necessarily, (kS)ᾱ = ϕ since S is

ordered. For the same reason, kS is unique.

Note that we use the hypothesis that S is ordered to show both the commutativity and

uniqueness of the ‘fill-in’ arrow. Some converse of Proposition 4.3 would be desirable,

even just for the case where S and V are ordered sets, but we do not know of any.

5. Conclusions and future work

The concept of lens in a category with finite products is relevant to the lifting problem,

which is also known as the view update problem for databases. Because a lens determines

a product structure (up to isomorphism) on its domain, it is strong enough to guarantee

that compatible liftings (or translations) can be computed for any update process. As

such, it unifies interpretations of database states and view mappings in the category of sets

and the category of ordered sets. The definition also applies to the category of categories,

for which the product decomposition implies that the view definition functor underlying

the lens is both a fibration and an opfibration.

Johnson and Rosebrugh (2007) has already considered the view update problem in the

context where database states are models of sketches. For a single insert update of a view

state viewed as an arrow in the category of view states, the existence of an opcartesian

arrow is a suitable criterion for a universal solution to the view update problem. Thus,

when the view definition functor is an opfibration, such problems have a solution.

In the current paper the focus has been on update processes in the categorical context.

That motivates considering updates to be functors. Asking for a (natural) comparison

from (or to) the current state to (or from) the updated state introduces a (co)pointing of

the update functor. We have shown that an obvious slight weakening of the lens concept,

called the c-lens, is equivalent to the view functor being an opfibration (or fibration).

Furthermore, a c-lens structure on a view is sufficient to guarantee even universal updates

for pointed update processes. The original lenses provide an important special case.

While a lens in the category of categories provides updates for both delete and insert

functorial update processes, a c-lens structure does so only for inserts. The next step is

to consider what structure on a view mapping will provide universal updating for both

inserts and deletes. We expect that the categorical notion of a distributive law will play a

role in this study.

Acknowledgements

The authors are grateful for helpful suggestions from the referees.



M. Johnson, R. Rosebrugh and R. J. Wood 42

References

Bancilhon, F. and Spyratos, N. (1981) Update semantics of relational views. ACM Transactions on

Database Systems 6 557–575.

Barr, M. and Wells, C. (1995) Category theory for computing science, second edition, Prentice-Hall.

Barr, M. and Wells, C. (1985) Toposes, Triples and Theories. Grundlehren Math. Wiss. 278.

Bohannon, A., Vaughan, J. and Pierce, B. (2006) Relational Lenses: A language for updatable views.

In: Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems: PODS ’06, ACM.

Borceux, F. (1994) Handbook of Categorical Algebra 2, Cambridge University Press.

Diskin, Z. and Cadish, B. (1995) Algebraic graph-based approach to management of multidatabase

systems. In: Motro, A. and Tennenholtz, M. (eds.) Proceedings of The Second International

Workshop on Next Generation Information Technologies and Systems (NGITS ’95).

Foster, J., Greenwald, M., Moore, J., Pierce, B. and Schmitt, A. (2007) Combinators for bi-directional

tree transformations: A linguistic approach to the view update problem. ACM Transactions on

Programming Languages and Systems 29.

Gottlob, G., Paolini, P. and Zicari, R. (1988) Properties and update semantics of consistent views.

ACM Transactions on Database Systems 13 486–524.

Hegner, S. J. (2004) An order-based theory of updates for closed database views. Annals of

Mathematics and Artificial Intelligence 40 63–125.

Hofmann, M. and Pierce, B. (1995) Positive subtyping. SIGPLAN–SIGACT Symposium on Principles

of Programming Languages (POPL), ACM 186–197.

Janelidze, G. and Tholen, W. (1994) Facets of Descent I. Applied Categorical Structures 2 245–281.

Johnson, M. and Rosebrugh, R. (2007) Fibrations and universal view updatability. Theoretical

Computer Science 388 109–129.

Johnson, M., Rosebrugh, R. and Wood, R. J. (2002) Entity-relationship-attribute designs and

sketches. Theory and Applications of Categories 10 94–112.

Johnson, M., Rosebrugh, R. and Wood, R. J. (2010) Algebras and Update Strategies. Journal of

Universal Computer Science 16 729–748.

O’Hearn, P. and Tennent, R. (1995) Parametricity and local variables. Journal of the ACM 42

658–709.

Oles, F. J. (1982) A category-theoretic approach to the semantics of programming languages, Ph.D.

Thesis, Syracuse University.

Oles, F. J. (1986) Type algebras, functor categories and block structure. In: Algebraic methods in

semantics, Cambridge University Press 543–573.

Piessens, F. and Steegmans, E. (1995) Categorical data specifications. Theory and Applications of

Categories 1 156–173.

Rosebrugh, R., Fletcher, R., Ranieri, V., Green, K., Rhinelander, J. and Wood, A. (2009) EASIK:

An EA-Sketch Implementation Kit. Available from http://www.mta.ca/~rrosebru+ (accessed

20 August 2010).

Street, R. (1974) Fibrations and Yoneda’s lemma in a 2-category. Springer-Verlag Lecture Notes in

Mathematics 420 104–133.


