
View Updates in a Semantic Data Modelling Paradigm

Michael Johnson
Department of Computing

Macquarie University
Sydney, Australia

Email: mike@ics.mq.edu.au

Robert Rosebrugh
Department of Math and CS

Mount Allison University
NB, Canada

Email: rrosebru@mta.ca

C. N. G. Dampney
Department of Computing

Macquarie University
Sydney, Australia

Email: kit@ics.mq.edu.au

Abstract

The Sketch Data Model (SkDM) is a new semantic mod-
elling paradigm based on category theory (specifically on
categorical universal algebra), which has been used suc-
cessfully in several consultancies with major Australian
companies. This paper describes the sketch data model and
investigates the view update problem (VUP) in the sketch
data model paradigm. It proposes an approach to the VUP
in the SkDM, and presents a range of examples to illustrate
the scope of the proposed technique. In common with previ-
ously proposed approaches, we define under what circum-
stances a view update can be propagated to the underly-
ing database. Unlike many previously proposed approaches
the definition is succinct and consistent, with no ad hoc ex-
ceptions, and the propagatable updates form a broad class.
We argue that we avoid ad hoc exceptions by basing the
definition of propagatable on the state of the underlying
database. The examples demonstrate that under a range of
circumstances a view schema can be shown to have propa-
gatable views in all states, and thus state-independence can
frequently be recovered.
Keywords: View update, category theory, data model, se-
mantic data modelling

1 Introduction

This is a paper about the view update problem in the
framework of a new semantic data model, the sketch data
model.

View updating has long been recognised as important
and difficult (see for example [11, Chapter 8]). With the
growth of the need for database interoperability and grace-
ful evolution, the importance is even greater. Yet proposed
approaches continue to be ad hoc, or incomplete, or require
explicit application code support. For a range of recent ap-
proaches to views see [5], [13], [19], [20], [21], [29], [1].

Interoperability and evolution have also led to calls for

greater semantic data modelling [24] with the power to bet-
ter model real world constraints. The authors and their
coworkers have been developing such a modelling paradigm
[16], [18] and Dampney and Johnson have been using it
in large scale consultancies [9], [8], [28]. Recently the
methodology has come to be called the Sketch Data Model
(SkDM) as it is based on the category theoretic notion of
mixed sketch [3], [4].

In this paper, in the framework of the SkDM, we propose
an approach to the view updating problem which is based,
unlike previous approaches, on database states (also known
as database instances or snapshots). The approach is con-
sistent across the range of different schemata and instances.
Despite the approach being instance based, we can prove
that for a large number of schemata view updates can be
propagated to the underlying database independently of the
specific instances involved.

The plan of the paper is as follows. In Section 2 we
introduce the sketch data model, illustrating it with an ex-
ample based on a health informatics model. Section 3 out-
lines briefly the mathematical foundation of the sketch data
model. The foundation is important, although we try to sup-
press mathematical details as far as possible in the rest of
the paper, and we believe that the paper can be understood
reasonably well without detailed study of this section. Sec-
tion 4 sets the view update problem in the framework of the
sketch data model by presenting a formal, and very broad,
definition of view. In Section 5 we discuss the importance
of logical data independence, and use it to motivate our def-
inition of propagatable inserts and deletes in a given view.
Section 6 presents a selection of examples of view inserts
and deletes and shows that propagatability can frequently be
determined for a schema without reference to its instances.
Finally, Section 7 reviews related work and Section 8 con-
cludes.



In-patient
operation

��

at

���
��

��
��

��
��

��
��

��

under

��

by

��� �
� �
� �
� �
� �
� �
� �
� �

Oper’n
type

GP ��
isa

����
���

���
�

Specialist �� isa ��

has

��

Medical
pract’ner

isa

����
���

���
�

memb

��

Practice
agreem’t

�� �� Hospital

Spec’n �� isa �� College Person

Figure 1. A fragment of a health informatics
graph, the main component of a health infor-
matics SkDM

2 The sketch data model

The sketch data model paradigm is a semantic data mod-
elling paradigm, closely related to ER modelling [7] and
functional data models [12, 204–207], while incorporat-
ing support for constraints via commutative diagrams, fi-
nite limits and finite coproducts [3]. Formally a sketch data
model is specified by giving an ER sketch. The notion of
ER sketch is defined below (Section 3), but in this section
we will concentrate on giving an informal presentation of
a sketch data model by working through an example (Fig-
ure 1).

Figure 1 presents a small fragment of a health informat-
ics graph, chosen for its illustrative value. (Figure 1 is not
in fact part of the Department of Health data models as they
are confidential.) To aid the following discussion we have
simplified the model a little.

The affinity with ER modelling should be clear on ca-
sual inspection. The graph shows as nodes both entities and
relationships, and as arrows certain many-to-one relations
(functions). Attributes are often not shown, but may also be
included by representing the domain of attribute values as a
node and the function representing the assignment of those
values as an arrow. Some relationships, such as Practice
agreement, are tabulated — represented as two functions
— while others, such as isa, can be represented as single
functions.

Now to the extra-ER aspects of a sketch data model. Fur-
ther semantics are incorporated into the model by recording
which diagrams commute, and which objects arise as limits
or as coproducts of other components of the graph.

A diagram is said to commute when the composites of the
functions along any two paths with common source and tar-

get are required to be equal. Thus, for example, a Specialist
isa Medical practitioner who is a member of a College,
and a Specialist has a Specialisation which isa College.
Naturally we require that the two references to “College”
in the last sentence refer, for any single specialist, to the
same college — we require the diagram to commute.

Not all diagrams commute, and we have demonstrated
repeatedly in consultancies the value of determining early
in the design process which diagrams do commute, and
why those that do not commute should not do so. The
fact that commuting diagrams can be used to model real
world constraints (for example business rules) can be seen
by considering the two triangles: Their commutativity re-
flects the requirement that no operations take place without
there being a practice agreement between the practitioner
and the hospital. If instead the arrow under was not in
the model, then Practice agreement would merely record
those agreements that had been made. If the arrow was
there and the triangles were not required to commute then
each operation would take place under an agreement, but it
would be possible for example to substitute practitioners —
to have one practitioner operate under another practitioner’s
agreement.

We will not define limits and coproducts here. Instead
we refer the reader to a standard text, say [30] or [3]. But
we will indicate some uses of limits and coproducts in our
example.

Coproducts correspond to disjoint union. They can be
used to model logical disjunctions and certain type hierar-
chies. To take a simple example, requiring that Medical
practitioner be the coproduct of Specialist and GP ensures
that every practitioner also appears as either, but not both of,
a specialist or a GP. The registration details, which are dif-
ferent for specialists and GPs, are recorded as attributes (not
shown) of the relevant subtypes.

Limits can take many forms. We will mention just three:

1. The cartesian product is a limit, usually just called the
product. It could be used for example to specify a func-
tion

Specialisation�Operation type �� Scheduled fee�

2. Injective functions can be specified via a limit. The
functions in Figure 1 shown as �� �� are required to
be injective, and this is achieved via a limit specifica-
tion. (A minor, but important point for the model: The
arrow into Person is not required to be injective, re-
flecting the fact that a single person may appear more
than once as a medical practitioner, for example, the
person might practice both as a GP and as a specialist,
or might have more than one specialisation.)

3. A wide range of selection operations can be expressed
as pullbacks. For example, specifying that the square



in Figure 1 be a pullback ensures that all and only those
practitioners who are members of colleges which occur
among the list of specialisations will appear as special-
ists.

To sum up, a sketch data model IE is a graph, like an
ER graph, together with specifications of commutative dia-
grams, limits and coproducts. We emphasise that this is a
very simple structure: all of these notions can be described
in terms of a graph with an associative composition of ar-
rows which has identities (such a graph is called a category).
Yet the specifications have a surprisingly wide range of se-
mantic power. Furthermore, this approach has been demon-
strated to be useful in industrial consultancies.

3 Formal definitions for the SkDM

For completeness, this section outlines the mathematical
foundation for the sketch data model paradigm. The full
details are not essential for understanding the main points of
the paper and some readers might wish to skip this section
on a first reading.

A cone C � �Cb� Cv� in a directed graph G � �N�E�
consists of a graph I and a graph morphism Cb � I ��G
(the base of C), a node Cv of G (the vertex of C) and, for
each node i in I , an edge ei � Cv

��Cbi. Cocones are
dual. The edges ei in a cone (respectively cocone) are called
projections (respectively injections).

Definition 1 A sketch IE � �G�D�L� C� is a directed
graph G, a set of pairs of paths in G with common source
and targetD (called the commutative diagrams) and a set of
cones (respectively cocones) in G denoted L (respectively
C).

Definition 2 Suppose IE � �G�D�L� C� and IE � �
�G��D��L�� C�� are sketches. A sketch morphism h �
IE �� IE � is a graph morphism G ��G� which car-
ries, by composition, diagrams in D, cones in L and co-
cones in C to respectively diagrams in D�, cones in L� and
cocones in C �.

Definition 3 A model M of a sketch IE in a category S is
an assignment of nodes and edges of G to objects and ar-
rows of S so that the images of pairs of paths in D have
equal composites in S and cones (respectively cocones) in
L (respectively in C) have images which are limit cones (re-
spectively colimit cocones).

To each sketch IE there is a corresponding theory [3]
or classifying category [6] which we denote by eIE. Using
the evident inclusion G �� eIE we can refer to nodes of
G as objects, edges of G as arrows and (co)cones of IE as
(co)cones in eIE.

A model M of IE in S extends to a functor fM �
eIE �� S. If M and M � are models a homomorphism

� � M ��M � is a natural transformation from fM to
fM �. Models and homomorphisms determine a category of
models of IE in S denoted by Mod�IE�S�, and it is a full
subcategory of the functor category � eIE�S�.

We speak of (limit-class, colimit-class)-sketches whenL
and C are required to contain (co)cones only from the spec-
ified (co)limit-classes. For example, A (finite limit, finite
coproduct)-sketch is a sketch in which all cones and co-
cones are finite (the graphs which are the domains of the
(co)cone bases are finite graphs), and all the cocones are
discrete (the graphs which are the bases of the cocones have
no edges, only nodes).

Definition 4 An ER sketch IE � �G�D�L� C� is a (finite
limit, finite coproduct)-sketch such that

� There is a specified cone with empty base in L. Its ver-
tex will be called �. Arrows with domain � are called
elements.

� Nodes which are vertices of cocones whose injections
are elements are called attributes. An attribute is not
the domain of an arrow.

� The underlying graph of IE is finite.

In this paper an ER sketch is frequently called a sketch
data model (while the sketch data model refers to the SkDM
paradigm).

Definition 5 A database state D for an ER sketch IE is a
model of IE in Set�, the category of finite sets. The cat-
egory of database states of IE is the category of models
Mod�IE�Set�� of IE in Set�. Thus morphisms of database
states are natural transformations.

Remark 6 Notice that every ER model yields an ER
sketch: Let G be the ER graph, let D be empty and let L
contain only the mandated empty cone with vertex �. Let
C be the set of discrete cocones of elements of each at-
tribute domain. If we want to ensure that the ER-relations
are actual mathematical relations, add for each ER-relation
a product cone with base the discrete diagram containing the
entities that it relates, and a “monic” arrow from the relation
node into the vertex of the cone. Add cones to L to ensure
that the “monic” arrows are indeed monic in all models (a
pullback diagram for each such arrow will suffice).

It is now easy to see precisely the extra descriptive capa-
bilities of the sketch data model: D can be used to record
constraints, and L and C can be used to calculate query re-
sults from other objects. These query results can in turn be
used to add constraints, etc. Furthermore, the techniques we



are using here have been developed with a firm mathemati-
cal foundation, much of which was originally developed for
categorical universal algebra.

4 The view update problem

Views, sometimes called external models or instances of
subschemes, allow a user to query and/or manipulate data
which are only a part of, or which are derived from, the
underlying database. Our medical informatics graph (Fig-
ure 1) represents a view of a large health administration
database. It in turn might provide views to an epidemiolo-
gist who only needs to deal with the two triangles, with Op-
eration type, and with their associated attributes; or to an
administrator of the College of Orthopaedic Surgeons who
needs to deal with all data in the inverse image of that col-
lege, and not with any of the data associated only with other
colleges, hospitals, etc.

The view update problem (VUP) is to determine un-
der what circumstances updates specified in a view can be
propagated to the entire database, and how that propagation
should take place. The essence of the problem is that not
all views are updatable, that is, an insert or a delete which
seems perfectly reasonable in the view, may be ill-defined
or proscribed when applied to the entire database. For ex-
ample, a college administrator can insert the medical prac-
titioner details for a new member of the college, but even
though such administrators can see the practice agreements
for members of their college, they cannot insert a new prac-
tice agreement for a member because they cannot see (in
the inverse image view) details about hospitals, and every
practice agreement must specify a hospital.

In order to limit the effect of the view update problem,
views have sometimes been defined in very limited ways.
For example, allowable views might be restricted to be just
certain row and column subsets of a relational database. But
generally we seek to support views which can be derived in
any way from the underlying database so views might be
the result of any query provided by the database, and ought
to be able to be structured in any way acceptable under the
data model in use.

For the sketch data model we now provide a definition
of view which supports the generality just described, and in
Section 5 we provide a solution to the view update prob-
lem in the sketch data model paradigm, while in Section 6
we give a range of examples to give some indication of the
breadth of that solution.

Recall from Section 3 that for each sketch IE there is a
corresponding category denoted eIE. We observed in [10]
that the objects of the classifying category correspond to
the structural queries of the corresponding database (struc-
tural queries do not include numerical computations like

count() or avg()). This motivates the following defi-
nition:

Definition 7 A view of a sketch data model IE is a sketch
data model V together with a sketch morphism V �
V �� eIE.

Thus a view is itself a sketch data model V, but its en-
tities are interpreted via V as query results in the original
data model IE. In more formal terms, a database state D
for IE is a finite set valued functor D � eIE �� Set�, and
composing this with V gives a database state D� for V, the
V -view of D.

Notation 8 The operation composing with V is usually
written as V �. Thus D� � V �D. In fact, V � is a func-
tor, so for any morphism of database states � � D ��C
we obtain a morphism V �� � D� �� V �C.

Following usual practice we will often refer to a database
state of the form V �D as a view. Context will determine
whether “view” refers to such a state, or to the sketch mor-
phism V . If there is any ambiguity, V should be referred to
as the view schema.

5 Logical data independence

The definition of view provided in the previous section
has wide applicability: The presentation of a view as a
sketch data model means it can take any SkDM structural
form; the sketch morphism V ensures that the semantics as-
sociated to the view by the diagrams, limits and colimits in
its sketch data model is compatible with the structure of the
underlying database; and the fact that V takes values in eIE
allows the view to be derived from any data obtainable from
IE.

Views thus support logical data independence — the
logical structure, the design, of a database can change over
time, but applications programs which access the database
through views will be able to operate unchanged provided
only that the data they need is available in the database, and
that the view mechanism V is maintained as the underlying
database design IE is changed.

We have argued in [17] that view based logical data inde-
pendence is required for database interoperability, and that
it should be provided, as suggested by Myopoulos [24], in
a semantically rich model like the sketch data model.

Views, being ordinary database states, albeit obtained as
V �D from some database D, can be queried in the same
way as any database. The important question to ask, the
view update problem, is “When are views updatable?”. Af-
ter all, logical data independence only works fully when up-
dates to the view can be propagated via the view mechanism
to the underlying database.



In the sketch data model, view updates can fail in either
of two ways:

1. There may be no states of the database which would
yield the updated view. This usually occurs because
the update, when carried to the underlying database,
would result in proscribed states. For example, a view
schema might include the product of two entities, but
only one of the factors. In the view, inserting or delet-
ing from the product seems straightforward, after all,
it looks like an ordinary entity with a function to an-
other entity. But in the underlying database the result-
ing state of the product might be impossible, as for
instance if the numbers of elements in the product and
the factor become coprime.

2. There may be many states of the database which would
yield the updated view. The simplest example of this
occurring is when a view schema includes an entity,
but not one of its attributes. Inserting into the entity
seems straightforward, but in the underlying database
there is no way to know what value the new instance
should have on the invisible attribute, and there are
usually many choices.

Since a view is just a database state, we know how to
insert or delete instances. Thus we define

Definition 9 We say that a specified view insert/delete is
propagatable if there is a unique minimal insert/delete on
the entire database whose restriction to the view (via V �) is
the given view insert/delete. When an insert/delete is propa-
gatable, we call the database obtained from the unique min-
imal insert/delete the propagated update.

Remark 10 i) In mathematical terms, the definition is: Let
V � V �� eIE be a view of IE. Suppose q � Q �� ��Q�

consists of two database states for V and a database state
monomorphism, with Q� being an insert update of Q and
with Q � V �D for some database state D of IE. We
say that the insert q is propagatable when there exists an
initial m � D �� ��D� among all those database states
m� � D �� ��D�� for which V �D�� � Q� and V �m� � q.
Initial here means an initial object in the full subcategory of
the slice category under D. The state D� is then called the
propagated update (sometimes just the update). The defi-
nition of propagatable delete is dual (so we seek a terminal
D� among all those D�� �� ��D).
ii) The use of “unique minimal” in the definition does not in
general mean a unique state obtained by inserting or delet-
ing a minimal number of elements. An insert update D� is
unique minimal among a class of insert updates if for each
other updateD�� in the class, there is a unique morphism of
databases states � � D� ��D��, respecting the inclusions
of the database state D in the updates.

iii) When, as will usually be the case, the database is keyed
(that is, for each entity there is a specified attribute called
its key attribute and a specified injective function from the
entity to the attribute) these two interpretations of “unique
minimal” do in fact coincide.
iv) Notice that we define when an insert/delete of a view
(database state) is propagatable, rather than trying to de-
termine for which view schemata inserts and deletes can
always be propagated. Thus, propagatability, view updata-
bility, is in principle dependent on the database state being
updated.

In fact we can frequently characterise the updatable
states for a given view schema, or even prove that for a va-
riety of view schemata, all database states are updatable.
Such results are important for designers so that they can de-
sign views that will always be updatable. The next section
provides a collection of examples in which this happens.

Definition 11 A view is called insert (respectively delete)
updatable when all inserts (respectively deletes) are propa-
gatable, independently of the database state.

6 Examples

We collect here a range of illustrative examples. Gen-
erally we keep them (unrealistically) small and simple to
better emphasise the point made by each example. The ex-
amples are intended to show that the definition given in the
previous section does embody an intuitively reasonable no-
tion of propagatability, and to give some indication of the
breadth of the applicability of the definition.

Example 12 Take the square from Figure 1, and consider
it as a sketch data model. Remember that attributes are not
shown in Figure 1. Consider a view consisting of all of
the specialists with a given specialisation, say all obstetri-
cians. In formal terms, in this view V has one entity Ob-
stetrician, together perhaps with some attributes, and the
sketch morphism V is just the inclusion of that entity and
those attributes into the classifying category generated by
the square. The image of Obstetrician in the classifying
category is the limit of

� �� College �� Medical practitioner

where the first arrow “picks out” the College of Obstetri-
cians, and the second arrow is member. (This limit is an
example of a pullback.)

This view is delete updatable. If all attributes of Medical
practitioner appear in the view (as attributes of Obstetri-
cian) then the view is insert updatable.

Notice that the results are independent of the states and
attributes of Specialisation and College, and note that



some systems will not support inserts for this view, since
those systems would require the user to specify the special-
isation of each newly inserted obstetrician (even though it
is always obstetrics) and this can’t be done in a view which
doesn’t include Specialisation. Date [12, p153] has argued
from this to the need for systems to allow the specification
of defaults in view defining fields.

Example 13 Consider the same sketch data model (the
square from Figure 1), and suppose the view consists of
all specialists from possibly several specialisations, perhaps
obstetrics, paediatrics and orthopaedics. Suppose further
that the view includes an attribute of Specialisation that in
the current database state has unique values for each of the
chosen specialisations.

The formal definition of the view is little changed: V
still has one entity, and associated attributes including this
time an attribute of Specialisation. The morphism V is
still an evident inclusion. The image of the entity in the
classifying category is now the limit of

�n� �� College �� Medical practitioner

where n is the number of specialisations viewed, the first
arrow “picks out” each of the corresponding colleges, and
the second arrow is still member.

This view is also delete updatable. If all attributes of
Medical practitioner appear in the view (as attributes of the
viewed entity) then inserts are propagatable for the current
state. If the viewed attribute of Specialisation is guaran-
teed to take unique values, for example if it is a key, then
inserts will be propagatable for all states and so the view
will be insert updatable. Conversely, if in some state the
viewed attribute of Specialisation did not take unique val-
ues on the chosen specialisations, then inserts would not be
propagatable for that state.

Example 14 Take all of the entities in Figure 1 from which
College can be reached by following a chain of arrows in
the forward direction, that is all entities except Operation
type, Hospital and Person, and consider them as a sketch
data model in which both the triangle and the square com-
mute. The view data model will be given by taking as V
a diagram of the same shape except that the node corre-
sponding to College, and its two arrows will be missing.
Let V send each entity to the inverse image of (say) the Or-
thopaedics College along the path of arrows connecting the
corresponding entity to College. This is the college admin-
istrator’s view for the Orthopaedics College. The adminis-
trator can see all the details, except the Personal details,
of all of the members of that college, and no other practi-
tioner’s details.

The view is delete updatable (but be careful: if the square
is specified to be a pullback then deleting the one instance

of Specialisation will in fact delete everything from the
view, and correspondingly all members of the college and
all of their data from the full database). It is insert updat-
able at all entities except at In-patient operation and Prac-
tice agreement (where the full database needs to know
about the associated operation types and hospitals) and at
Specialisation (which can have at most one element by the
construction of the view). If in the sketch data model for the
entire database the square is specified to be a pullback, and
Medical practitioner is specified to be a coproduct, then
inserts at GP are not propagatable (an insert at GP neces-
sitates an insert at Medical practitioner which necessitates
an insert at Specialist after which the coproduct constraint
can never be recovered).

Example 15 Let’s extend Figure 1 by adding a new sub-
type of In-patient operation called Under investigation.
It will contain those operations which are under investiga-
tion as a result of complaints, whether from patients, their
families, or practitioners. This extended graph will be our
new data model. Let V consist of two entities and an in-
jective function between them, A �� ��B. Let V take B
to the in-patient operations conducted by surgeons who are
practicing members of the Orthopaedics College (these in-
stances were in the view in the previous example). Let V
take A to the pullback of that inverse image V B along the
inclusion of Under investigation into In-patient opera-
tion (thus V A is the intersection of V B and Under inves-
tigation as subtypes of In-patient operation). This is the
view for the investigating board of the Orthopaedics Col-
lege.

The view is insert and delete updatable. For example an
insert into A would, as part of the view, specify which or-
thopaedic operation was being investigated, and when prop-
agated would generate a new instance in Under investiga-
tion corresponding to the operation. This is what would
happen when the complaint was first received at the col-
lege. (If instead the complaint arrived at say the hospital,
a new instance would be inserted into Under investigation
and the college investigating board would be able to see it
appear in their view.)

In fact, if the view conisted only of A, it would still be
insert and delete updatable (provided that it included all the
attributes of Under investigation and In-patient opera-
tion) although it wouldn’t match the semantics of our exam-
ple very well — inserts into A would propagate to new in-
stances in Under investigation and In-patient operation.
This would correspond to a complaint arriving about an or-
thopaedic operation which was not stored in the database.
This only seems surprising because we know that the oper-
ation must have taken place before the complaint.

If instead we change the semantics to consider, for ex-
ample, among employees the intersection of those who are
senior executives, and those who are medical staff, an ad-



ministrator who is responsible for hiring senior executive
medical staff might employ someone and perform an in-
sert into the intersection (their view) which would propa-
gate successfully to the entities Senior executives, Medi-
cal staff and All employees.

Example 16 It is interesting to see what the definition says
about data models which include no attributes, so as to see
an extreme case of its applicability. Suppose the data model
includes no cocones and no cones except the mandated “1”
cone. It happens that a view of any single entity in such
a data model is insert updatable. The update can be calcu-
lated as a Kan extension ([23]) and amounts to freely adding
instances related to the inserted instance (rather than seek-
ing extant instances to satisfy obligatory relations). This
doesn’t work in the presence of attributes because attribute
domains are fixed, so we can’t freely add new attribute val-
ues.

Example 17 Finally, let’s consider the effect of having
Medical practitioner specified to be the coproduct of GP
and Specialist.

If the two triangles are taken as the sketch data model,
Medical practitioner is just an ordinary entity, and a view
including only Medical practitioner is insert and delete up-
datable.

If the two triangles plus GP and Specialist, together
with the coproduct specification, are taken as a sketch data
model, then a view including only Medical practitioner is
delete updatable, but not insert updatable. If the view in-
cludes both Medical practitioner and GP (or instead Spe-
cialist) then it is both insert and delete updatable.

7 Related Work

A number of authors are now using sketches to support
data modelling initiatives. Notably Piessens [25], [26] has
developed a notion of data specification including sketches.
He has since obtained results on the algorithmic determi-
nation of equivalences of model categories [27] which are
intended to support plans for view integration. Diskin and
Cadish have used sketches for a variety of modelling cir-
cumstances. See for example [14] and [15]. They have been
concentrating on developing the diagrammatic language of
“diagram operations”.

Atzeni and Torlone [2] have developed a solution to the
problem of updating relational databases through weak in-
stance interfaces. Although they explicitly discuss views,
and note that their approach does not deal with them, the
technique for obtaining a solution is similar to the tech-
nique used here. They consider a range of possible solu-
tions (as we here consider the range of possible updates
D �� ��D��) and they construct a partial order on them,

and seek a greatest lower bound (analogous with our ini-
tial/terminal solution). A similar approach, also to a non-
view problem, appears in [22].

8 Conclusion

To date our approach, in common with many others,
deals with inserts and deletes, but not with modifications
of extant values. Also, our views do not contain arithmetic
operations, and we have not developed special treatments of
null values. Each of these is the subject of ongoing work.
Similarly, this paper does not deal with implementational
issues which are the subject of ongoing research in compu-
tational category theory. Despite these caveats the approach
presented here has surprisingly wide applicability.

It seems that a significant part of the difficulty of solving
the view update problem has arisen because previous au-
thors have sought a single coherent solution and have based
their proposed solutions on schemata. In practice, many
particular situations (states) have “solutions” although they
fall outside the proposed solution so ad hoc adjustments are
made, losing coherence. This has also contributed to the
impression that the class of updatable views is difficult to
characterise.

We have proposed a single coherent solution, but based
it on states, avoiding ad hoc amendments. Although it is
based on states, we can prove that many schemata always
are or aren’t updatable, and we have provided a range of
examples of such situations. This gives the benefits that
were sought in schema based solutions while avoiding ad
hoc amendments.

9 Acknowledgements

The research reported here has been supported in part
by the Australian Research Council, the Canadian NSERC,
the NSW Department of Health, and the Oxford Computing
Laboratory.

References

[1] Serge Abiteboul and Oliver M. Duschka. Complex-
ity of Answering Queries Using Materialized Views.
ACM PODS-98, 254–263, 1998.

[2] P. Atzeni and R. Torlone. Updating relational
databases through weak instance interfaces. ACM
TODS, 17:718–743, 1992.

[3] M. Barr and C. Wells. Category theory for computing
science. Prentice-Hall, second edition, 1995.

[4] M. Barr and C. Wells. Toposes, Triples and Theories.
Grundlehren Math. Wiss. 278, Springer Verlag, 1985.



[5] F. Bancilhon and N. Spyratos. Update semantics of
relational views. ACM TODS, 6:557–575 1981.

[6] F. Borceux. Handbook of Categorical Algebra 3.
Cambridge University Press, 1994.

[7] P. P. -S. Chen. The Entity-Relationship Model—
Toward a Unified View of Data. ACM Transactions
on Database Systems, 2:9–36, 1976.

[8] C. N. G. Dampney and Michael Johnson. Fibrations
and the DoH Data Model. Consultants’ report to NSW
Department of Health, 1999.

[9] C. N. G. Dampney, Michael Johnson and G. M. Mc-
Grath. Audit and Enhancement of the Caltex Informa-
tion Strategy Planning (CISP) Project. Consultants’
report to Caltex, 1993.

[10] C. N. G. Dampney, Michael Johnson, and G. P. Monro.
An illustrated mathematical foundation for ERA. In
The unified computation laboratory, pages 77–84, Ox-
ford University Press, 1992.

[11] C. J. Date. Introduction to Database Systems.
Addison-Wesley, fourth edition, 1986.

[12] C. J. Date. Introduction to Database Systems, Volume
2. Addison-Wesley, 1983.

[13] U. Dayal and P. A. Bernstein. On the correct trans-
lation of update operations on relational views. ACM
TODS, 7:381–416, 1982.

[14] Zinovy Diskin and Boris Cadish. Algebraic graph-
based approach to management of multidatabase sys-
tems. In Proceedings of The Second International
Workshop on Next Generation Information Technolo-
gies and Systems (NGITS ’95), 1995.

[15] Zinovy Diskin and Boris Cadish. Variable set seman-
tics for generalised sketches: Why ER is more object
oriented than OO. In Data and Knowledge Engineer-
ing, to appear, 2000.

[16] Michael Johnson and C. N. G. Dampney. On the value
of commutative diagrams in information modelling. In
Springer Workshops in Computing, Springer-Verlag,
1994.

[17] Michael Johnson and Robert Rosebrugh. Database
interoperability through state based logical data inde-
pendence. To appear in CSCWD2000, the Fourth In-
ternational Conference on Computer Supported Col-
laborative Work and Design, IEEE Hong Kong, 2000.

[18] Michael Johnson, Robert Rosebrugh, and R. J. Wood.
Entity-relationship models and sketches. Submitted to
Theory and Applications of Categories, 2000.

[19] A. M. Keller. Algorithms for translating view up-
dates into database updates for views involving selec-
tions, projections, and joins. ACM PODS-85, 154–
163, 1985.

[20] Rom Lagerak. View updates in relational databases
with an independent scheme. ACM TODS, 15:40–66,
1990.

[21] A. Y. Levy, A. O. Mendelzon, D. Srivastava, Y. Sa-
giv. Answering queries using views. ACM PODS-95,
1995.

[22] C. Lecluse and N. Spyratos. Implementing queries and
updates on universal scheme interfaces. VLDB, 62–75,
1988.

[23] Saunders Mac Lane. Categories for the Working
Mathematician. Graduate Texts in Mathematics 5,
Springer Verlag, 1971.

[24] John Myopoulos. Next generation database systems
won’t work without semantics! Panel session, SIG-
MOD Record, 27:497, 1998.

[25] F. Piessens. Semantic data specifications: an analy-
sis based on a categorical formulation. PhD thesis,
Katholieke Universiteit Leuven, 1996.

[26] F. Piessens and E. Steegmans. Categorical data spec-
ifications. Theory and Applications of Categories,
1:156–173, 1995.

[27] F. Piessens and E. Steegmans. Selective At-
tribute Elimination for Categorical Data Specifica-
tions. Proceedings of the 6th International AMAST.
Ed. Michael Johnson. Lecture Notes Computer Sci-
ence, 1349:424-436, 1997.

[28] G. Southon, C. Sauer, and C. N. G. Dampney. Lessons
from a failed information systems initiative: issues for
complex organisations International Journal of Medi-
cal Informatics, Elsevier Science, 1999.

[29] J. D. Ullman. Information integration using logical
views. ICDT-97, 1997.

[30] R. F. C. Walters. Categories and Computer Science.
Cambridge University Press, 1991.


