
GUIDE to DATA STRUCTURES

and ALGORITHMS

for a

DATABASE of CATEGORIES

Version � March ����

M� Fleming R� Gunther

R� Rosebrugh �

Department of Mathematics and Computer Science

Mount Allison University

Sackville� NB E�A �C�� Canada

This manual describes the data structures used to store categories and functors� and the
algorithms which implement the tools for manipulating categories� It accompanies the User
Guide for the Categories Database�

This document is available as
ftp���sun��mta�ca�pub�papers�rosebrugh�catdsalg��dvi�tex��

The user guide is
ftp���sun��mta�ca�pub�papers�rosebrugh�catuser��dvi�tex��

ANSI C source and Unix �Sun Sparc��� executables of the programs are in
ftp���sun��mta�ca�pub�sources�rosebrugh�unix�category�exe

For DOS excutables see
ftp���sun��mta�ca�pub�sources�rosebrugh�DOS�category�exe

�This work was done while the �rst two authors were supported by NSERC Canada Undergraduate

Summer Research Awards

�



� Data Structures

��� Storing Categories

struct �

int lhs�MAXWORD�

int rhs�MAXWORD�

� relation	

struct �

char name�MAXWORD�

char obj�MAXARR�

int arr�MAXARR��
�

char arrow�MAXARR�

int numobj

int numarr

int num�rel

relation �rel�set

� category	

Categories are stored using the two C structures shown above� The name of the category is
stored as an array of characters with maximum length de�ned by MAXWORD� Each object of
the category is represented by a unique integer value� This is done by storing the names of
the objects in an array of characters� called obj� the object names are assumed to be single
characters� The subscripts of the array are the integers that represent the objects� i�e� if A
is stored in the array with subscript �� obj�
�� A� then the integer � represents object A�
The maximum number of objects that can be stored is equal to MAXARR�

The names of arrows of the category are stored in exactly the same way as the objects� The
name of the array which holds the arrows is arrow� The maximum number of arrows that
can be stored is equal to MAXARR� The domains and codomains of the arrows are stored in a
two	dimensional array of integers� The array for this is arr�MAXARR��
�� Suppose that the
arrow represented by � had domain A �represented by �� and codomain B �represented by

�� Then arr����
� � � and arr������ � 
� This example illustrates how this array holds
the domains and codomains of all of the arrows�

The equations for a category are stored in the relation structure which is a part of the
category structure� The equations are stored using the integers that represent the arrows�

�



There are two arrays to do this� lhs�MAXWORD� and rhs�MAXWORD�� lhs�
� holds the left
hand side of the �rst equation and rhs�
� holds the right hand side of the �rst equation�
Suppose the second equation is ab � �� where � is the identity� Let a be represented by �
and b be represented by �� When stored� all of the equations are terminated by ��� The
identity is stored simply by ��� This second equation would be stored as follows�

rel�set����lhs�
� � � rel�set����rhs�
� � ��

rel�set����lhs��� � 


rel�set����lhs�
� � ��

Thus� all of the equations for a category are easily stored� There is no maximum number of
equations�

The number of objects� number of arrows� and number of equations are also stored under
the variable names numobj� numarr� num�rel�

��� Storing Functors

struct �

char name�MAXWORD�

int obj�MAXARR�

int arr�MAXARR��MAXWORD�

� cat�functor	

The name of a functor is stored in an array of characters� with the maximum length of a
name being equal to MAXWORD�

The image of an object under the functor is stored in the array of integers called obj� If
the functor sends object A to object C where A is represented by � and C is represented by
� then obj��� � ��

The image of each arrow of the category under the functor is stored in the two	dimensional
array of integers called arr� What is stored in this array depends on whether the functor
has codomain a �nitely presented category or the category set� of �nite sets� If the functor
s
codomain is a �nitely presented category� then in arr� the �rst subscript is the integer rep	
resenting an arrow and the array corresponding to this subscript contains the image arrow

�



under the functor� which may be represented by a path� For instance� suppose arrow a �rep	
resented by ��� goes to the path cd �represented by ��� under the functor� Then arr����
�

� 
� arr������ � �� and arr����
� � ��� If the functor has codomain the category set�
then the �rst subscript is the integer representing an arrow and the array corresponding to
this subscript contains the image function in set� For example� if a �represented by �� has
domain A and codomain B and A has image the object � in set and B has image the object
� in set then if the image of a under the functor is the function given by � �� � and � �� �
then this information would be stored as�

arr����
� � 
� arr������ � ��

��� Trees

struct nodetype �

struct nodetype �down

struct nodetype �across

struct nodetype �tree

datatype data

bool flag

int info

�

This is a tree structure where each node of the tree can have any number of children� The
�rst child of a node is pointed to by the down pointer� The second child is pointed to by the
across pointer of the �rst child� the third by the across pointer of the second child� and so
on� The across pointer of the last child of a node points back up to the node it is a child of�
The �ag variable of a node indicates whether or not it is the last child of its parent node� If
the value of the �ag is �� then it is not the last child and its across pointer points to another
child� if the value of the �ag is �� then this node is the last child of its parent and its across
pointer points to its parent�

The tree pointer of a node determines whether or not the node is the last node of a path
in the tree� If the tree pointer is NULL then it is not the last node of a path� otherwise it is
the last node of a path and its tree pointer points to another tree which contains all of the
objects associated with the path that it is the last node of� The info variable is used as a
check to see whether an object has been checked already� If it equals �� then the object has
not been checked yet and if it equals � then the object has been checked� The datatype is






what is to be stored in each node of a tree� In our program it is just an integer� Each tree
is created with a root node that has a value of �� as its data�

��� Storing Left Kan Extensions

The tree structure described in ��� is also used to store Left Kan Extensions� The Left
Kan information is stored in a series of �tables�� Each table is stored as a pointer to a
nodetype� Section ���� contains complete information on the purpose of these tables� With
the exception of the epsilon	tables� the root node of the tree contains as its data the number
of rows in the table� Each move �down� the tree is equivalent to moving down the left
column of the table� while a move �across� the tree is equivalent to moving across a row of
the table�

The coincidences described in Section ���� are simply stored in a list�

��� Storing Right Kan Extensions

struct big�list �

struct rkan�list �head

struct rkan�list �tail

�

struct rkan�list �

struct rkan�node �head

struct rkan�node �tail

struct eonodetype �paths

struct rkan�list �next

�

struct rkan�node �

struct b�node �head

struct b�node �tail

�

struct b�list �

struct b�node �head

�



struct b�node �tail

�

struct b�node �

struct pointer�list p�list

struct b�node �next

�

struct pointer�list �

struct pointer�node �head

struct pointer�node �tail

�

struct pointer�node �

struct rkan�node �p

struct pointer�node �next

�

Big�list is a list of rkan�lists� There is an rkan�list for each object in the product tree�
An rkan�list has a pointer to a tree which contains all of the paths out of the object in the
product tree that the rkan�list is associated with� An rkan�list is a list of rkan�nodes�
where each rkan�node contains an integer and a pointer to a b�list� Suppose ���B� is an
object in the product tree and X�B� � � in set� Then� the integers in the rkan�nodes of the
rkan�list associated with that object would be �� �� and �� A b�list is a list of b�nodes�
there is a b�node for each rkan�list in the Big�list after the current rkan�list� Each
b�node contains a pointer to a p�list� which is a list of pointer�nodes� A pointer�node

contains p� a pointer to a rkan�node�

��� Lists of Categories and Functors

Category list�

struct �

struct category�node �head

struct category�node �tail

� category�list	

�



struct category�node �

category cat

struct category�node �next

int saved

�

This structure is used to store a number of categories� Each node of the list contains a
category and an integer variable named saved� If saved has a value of �� then the category
of that node has not been saved to disk� if saved has a value of � then the category has been
saved to disk�

Functor list�

struct �

struct functor�node �head

struct functor�node �tail

� functor�list	

struct functor�node �

cat�functor f

struct functor�node �next

int saved

category A

category B

int functor�type

�

The functor�list structure is a list of functor�nodes� The functor�nodes contain all of
the information for a functor� A node contains the functor �f�� the domain category of the
functor �A� and the codomain category �B�� A node also contains an integer variable� saved�
which is set to � if the functor has not been saved on disk and � if it has been saved on
disk� The integer variable functor�type has a value of � if the functor is a functor between
�nitely presented categories� It has a value of � if the functor is a functor from a �nitely
presented category to the category of sets� If the functor goes to set then the category
variable B contains nothing�

�



� The Algorithms

��� Make Con�uent

The functions in the �le confluen�c are used to take a set of reductions� or equations direct	
ed here from left to right� in a category and add any necessary reductions to make the set
con�uent� That is to say that a path of generating arrows in the category will reduce to one
and only one normal form� regardless of the manner in which it is reduced� This is accom	
plished primarily by the use of the overlap and subpath rules of the Knuth	Bendix algorithm�
The main function� make�confluent� uses three other functions� overlap� reduce�overlap
and reduce�subpath� The functions reduce�overlap and reduce�subpath use yet another
function� add�relation�

make�confluent

The main operation of this function involves a double loop which looks at every pair of
relations in the category� For each of these pairs� the following is done�

�� Check for any overlap between the left sides of the two relations� This is done by
calling the function overlap� which returns the size of the overlap� or �� if there is
none�

�� If there is an overlap� call function reduce�overlap to add reductions to the category
if this is necessary to make the set of reductions con�uent�

�� Check to see if the left side of one of the relations is a subpath of the left side of the
other relation� If so� call function reduce�subpath to add reductions to the category
if necessary�


� Once this has been done for all pairs of relations� the set of reductions is con�uent�

reduce�overlap

This function accepts two reductions �call them u� �� u� and v� �� v��� and checks to see
if they satisfy the overlap rule of the Knuth	 Bendix procedure� If not� it adds any necessary
reductions to make the set of reductions con�uent�

�� An overlap occurs when u� � xy and u� � yz for some paths x� y� z� That is� the end
of one relation
s left side is identical to the beginning of the other relation
s left side�
�In this example� the overlap is y��

�



�� Construct two paths r� � xv� and r� � v�z�

�� Reduce each of these to their normal forms using the existing relations�


� If these two reduced forms �w� and w�� respectively� are not equal� then adding the
relation w� � w� to the set of reductions will help to make it con�uent� The relation
is added by calling the function add�relation�

reduce�subpath

This function takes two reductions �u� �� u� and v� �� v��� and checks to see if they satisfy
the subpath rule of the Knuth	Bendix procedure� If not� it adds any necessary reductions to
make the set of reductions con�uent�

�� A subpath occurs when u� � xu�y for paths x and y�

�� Construct two paths r� � v� and r� � xv��

�� Reduce each of these to their normal forms using the existing relations�


� If these two reduced forms �w� and w�� are not equal� then the relation w� � w� is
added to the set of reductions to make it con�uent� Again� this is done by calling the
function add�relation�

Once reduce�overlap has been called for all pairs of relations having an overlap� and
reduce�subpath has been called for all pairs having a subpath� the set of reductions will be
con�uent and the process will be complete�

��� Get functor arrows and check relations

For functors from category A to category B� whether B is a �nite category or the category
of �nite sets� we must check that all relations in A also hold in B under the functor� The
process has two cases�

����� Functor to a �nite category
The following algorithm makes use of two functions� namely get�functor�arrows and
check�functor�relations�

�� For each arrow f in category A� the user is asked to enter the path in B that f is
taken to by the functor�

�



�� Check to see that all arrows in the path entered are actually arrows in B�

�� Check that the path entered is composable� and that the path
s domain and codomain
are the images of f 
s domain and codomain under the functor�


� For each relation in category A� �nd the paths that the left and right sides go to under
the functor�

�� Reduce these paths� If the reduced forms are not equal for any relation� then the set
of relations do not hold under the functor� and the functor is not valid�

�� If the reduced forms are equal for all relations in the category� then all relations hold
and the functor is valid�

����� Functor to set
This algorithm also uses two functions� get�sf�arrows and check�sf�relations�

�� Loop through each arrow of the category A�

�� For each element of the arrow
s domain� have the user enter which element in the
codomain it is taken to by the set functor�

�� For example� consider the case where f is an arrow from object M to object N� and X
is a functor from category A to set� If X�M� � ��� and X�N� � �
�� then for arrow f�
the user will be prompted for all � elements in the domain to enter an element in the
codomain �a number from � to 
 in this case��


� Loop through each relation in the category�

�� Get the domain of the left and right sides of the relation�

�� Call the function function�value �discussed below� to calculate the element of the
codomain that each element of the domain is taken to under the functor by the paths
on the left and right sides�

�� For example� suppose we are looking at a relation fhk � gm� The two paths fhk and
gm must both have the same domain� say C� and suppose that X�C� � ���� Then� we
must check each element in ���� i�e�� we must check that X�fhk���� � X�gm���� and
X�fhk���� � X�gm�����

��



�� If this equality does not hold in any case� then this relation does not hold under the
functor� and the functor is not valid�

�� If all relations hold� then the functor is valid and it is stored in memory�

function�value

This function is best described using an example� Suppose once again that we are looking
at the relation fhk � gm� and that we are checking it for the element �� function�value
will be called twice� once for fhk and once for gm�

Consider the case of fhk� function�value will �rst take X�k� and apply it to �� Then�
X�h� is applied to this element� and �nally X�f� is applied� The result returned will be an
element of the codomain of fhk�

If the values returned for fhk and gm are equal� then this relation holds� if the values are
di�erent� the relation does not hold�

��� Check if an object is initial

The algorithm that we use to determine whether or not an object is initial uses two functions�
initial�object and check�initial�

initial�object

�� Ask the user to enter the object to be tested�

�� Check that the object exists in the category�

�� Call check�initial� If there is an object in the category with more than one path
into it from the test object� then check�initial will return false� and the object is
not initial�


� If check�initial returns true� then check that each object has one path into it from
the test object� If there is an object with no path into it� then the test object is not
initial�

�� If all objects are found to have exactly one path into them from the test object� then
the test object is initial�

��



check�initial

This is a recursive procedure which makes use of the algorithm to go through a category�
tracing all loop	free paths from the test object� For each path� the following is done�

�� If the path is the �rst path encountered with its codomain� then store that path in the
array location reserved for that codomain�

�� If it is not the �rst path� then the following must be done�

	 If the codomain is the same as the test object� reduce the path and compare it to
the identity arrow on that object� If the path equals the identity� continue on with the
next path� If the path does not equal the identity� the test object has more than one
path to itself and is therefore not initial� Display a message� and return false�

	 If the codomain is some object other than the test object� reduce the path and
compare it to the path previously stored for that codomain� If they are equal� continue
on with the next path� If the current path does not equal the stored path� then the
test object has more than one path to this object and is therefore not initial� Display
a message� and return false�

��� Make Product Tree

The product tree is built to contain all objects in the category B�F � for B an object of B�
that will be used in the product to build the right kan extension at B�

	 The function get�all�betas is a recursive function which goes through a tree of �s �objects
in the category B�F �� and gets each �� One of the operations performed on each of these
�s is adding it to the product tree using the tree function search�and�add� This is how the
product tree is originally constructed�

	 eliminate�betas is a recursive function which takes an arrow � � B �� F �A�� It �nds
all paths � � A �� A� and eliminates F ���� from the B�tree� At the same time� it removes
F ���� from the product tree if it is there� This is accomplished by going to the last node of
the path in the product tree� and setting the tree pointer to NULL�

	 After all such paths have been eliminated� what is left in the product tree are all of the
paths �objects in B�F � needed for the product to be used in the right kan extension�

��



��� Check for sum

The function sum is used to get user input about the sum to be tested� It then tests this sum
by calling the function is�sum� which in turns calls three other functions� check�oneone�
check�onto and make�rhotree�

sum

�� Prompt the user to enter the object of the sum�

�� Check that this is in fact an object in the category�

�� Prompt the user to enter � and �� the two paths into the object�


� For each of these paths� check that each arrow in the path is an arrow in the category�
check that the domains and codomains of consecutive arrows match up �i�e�� that the
path is composable�� and check that the path has the object of the sum as its codomain�

�� Prompt the user to enter the maximum number of visits to an object during the sum
checking�

�� Call function is�sum to determine if the object and paths represent a sum in the
category� and display an appropraite message�

is�sum

�� Loop through each object in the category�

�� If the current object is the test object� the identity is a � �a path from the test object
to the current object�� so add � and � to the tree of ��s and ��s� and add the identity
to the tree of �s�

�� Call function check�oneone� If it returns false� then we do not have a sum� and is�sum

can return false without any further testing�


� If check�oneone returns true� then checking continues� Get the domain of the path
�� Call function make�rhotree to construct the tree of paths from the domain of � to
the current object �from the loop�� If domain of � is the current object� then add the
identity to the rho tree�

��



�� If the rho tree is not empty� then we must check onto� If the identity is not in the tree
of ��s and ��s� or if the subtree of the identity is not identical to the rho tree� then it
is not onto� and is�sum can return false without any further checking�

�� Otherwise� call function check�onto� If it returns false� then we do not have a sum�
and is�sum returns false� otherwise� is�sum returns true�

check�oneone

�� Use the algorithm to �nd all paths out of test object�

�� If the codomain of the path is the destination object� then add the reduced form of
the path to the tree of �s�

�� Construct �� and �� by appending � and � to the path� and reduce them�


� If the pair ���� ��� is already in the tree� then it is not one	one and return false�
Otherwise� add �� to the tree of ��s� and add the �� to the subtree of the ��� and
continue with the next path�

�� If all paths are tested without �nding that the sum is not one	one� then it is one	one�
and return true�

make�rhotree

Creates a tree from one object to another by using the algorithm to go through a category
to get every path out of an object� If a path has the desired codomain� adds it to the tree
using the tree function search�and�add�

check�onto

�� Use the algorithm to go through a category and get all paths� For each path� do the
following�

	 Reduce the path and search for it in the tree of ��s and ��s� If it is not there� then
it is not onto� and return false�

	 If the path is in the tree� then check that its subtree is identical to the rho tree� If
not� return false� otherwise� continue with the next path�

�� If all paths are traversed without �nding that the sum is not onto� then it is onto� and
return true�

�




��� Algorithm to �nd all paths in a category	

This algorithm is used extensively throughout the program� It is a recursive algorithm that
�nds paths out of a given object� The recursive function has three main parameters passed
into it� One keeps track of the current path� the other is the current domain� and the third
is an array that keeps track of how many times each object has been visited during the
current path� The user sets how many times an object can be visited in a path using the
Change maximum order of endomorphisms option in the program
s main menu� The �rst
thing the function does is check to see that the object which is the current domain has not
already been visited the maximum number of times in the current path� If it has already
been visited the maximum number of times then backtrack to the previous arrow of the
path�i�e� return to the function that called the current function�� otherwise �nd all of the
arrows out of the current domain and have a for loop which does the following each time
through� It increments the number of times the object which is the current domain has been
visited� adds the next arrow that is out of the current domain to the current path� �nds the
codomain of this arrow and calls the recursive function again passing in the codomain as
the current domain� Then� right after the function has been called again the new arrow is
removed from the current path and the number of times that the object which is the current
domain has been visited is decremented� This ends the for loop� This algorithm allows us
to recursively visit the the paths of a category� It is used throughout our program and often
after each new path is found some kind of checking on this path will be done�

��
 Algorithm to make the B�F tree	

This algorithm stores the objects and arrows of the category B�F in a tree� It uses the follow	
ing functions� make�beta�objects� go�through�betas� get�all�arrows� make�beta�arrows�
The functions go�through�betas and get�all�arrows are used in the function make�beta�arrows�

make�beta�objects

�� recursively trace through the category that B is an object of and �nd all of the paths
out of B�

�� for each path out of B do the following� go through all the objects in domain the
category of F and for each one of these objects� A� check to see if F �A� equals the
codomain of the loop free path� if it does then add the path to the B�F tree �if it is
not already there� and set the tree pointer of the last node of this path to point to
another tree where the A
s that make up objects with this path will be stored�

��



Thus each object� � ��A � is stored in the B�F tree which is now a tree of trees�

make�beta�arrows

�� recursively goes through the B�F tree and �nds all of the objects in the tree� �an
object is denoted by � ��A ��

�� for each � ��A � the function get�all�arrows is called�

This function will �nd all of the arrows out of the object � ��A � and store them in a tree�
The tree pointer of the node which contains the A of � ��A � will then be set to point to
this tree of paths� Thus all of the arrows of the category B�F have been stored in the B�F
tree which has now become a tree of trees of trees�

get�all�arrows

�� goes through the domain category of F and �nds all of the paths out of the object A
from � ��A ��

�� for each path the function go�through�betas is called�

go�through�betas does the following�

�� recursively goes through the B�F tree and �nds all of the objects in the tree �an object
is denoted by � ��� A� ��

�� for each � � �� A� � it checks to see whether A� is the codomain of the path found in
get�all�arrows� If A� is the codomain of this path then the function checks to see if
F �path�� � � �� If this equation holds then we store the path in the tree pointed to by
the tree pointer of the node of A in � ��A �� We also have the tree pointer of the last
node of the path point to the node which contains A� of � ��A� �� In this way each
path has a pointer to its codomain�

��� Algorithm to add to a tree	

This algorithm uses the functions� search�and�add� search�level� and add�node to add a
path to a tree�

search�and�add

Call search�level to check if the current arrow of the path is in the present level of the

��



tree� If it is not� then this arrow and all the rest of the path is not in the tree so for each
arrow left to add to the tree we call the function add�node and add the arrow to the tree�

search�level

Keep going across a level of the tree and return true if the arrow is found and false if at the
end of the level and the arrow has not been found�

add�node

�� creates a new node and adds it to the beginning of a level �i�e� it is the node pointed
to by the parent node of the level�

�� then we go through the level and sort it alphabetically� We do this by exchanging the
information stored in each node�

��� Algorithm to create R
B� tree	

This algorithm uses the functions make�big�list� assign�pointers� check�pointers�
find�p�� find�p
� test�self� test�self
� display�RB�rho� and find�RofB�

make�big�list� This is a recursive function that goes through the product tree and �nds
all of the objects stored in the product tree� For each object� it �nds X�A� for that object�
It then makes a list for that object with the integers from � to n stored in the nodes of the
list where X�A� � n� A pointer to the tree which contains all of the arrows from that object
is also stored in the list structure� This list is added to the big�list�

assign�pointers�

This function goes through the big�list to access each rkan�node� For each of these
rkan�nodes� it allocates space for a list of lists containing pointers to the rkan�nodes which
follow it in the big�list�

check�pointers�

This function tests all pairs of objects in the big�list� For each pair of objects� it calls
find�p� to �nd all paths out of the �rst object� For each path out of the �rst object� it calls
find�p
 to �nd all paths out of the second object with the same codomain as the path out
of the �rst object� It then tests each pair of paths for all the pairs of rkan�nodes� one from
each object� If X�p����� �� X�p������� where p� and p� are the paths� � is an integer of
an rkan�node of the �rst object and �� is an integer of an rkan�node of the second object�
then remove the pointer from the rkan�node containing � to the rkan�node containing ���
The functions test�self and test�self
 serve the same purpose as find�p� and find�p
�

��



except that they compare paths out of the same object which have a common codomain�

display�RB�rho

This is the �rst of two functions which goes through the big�list and �nds all n	tuples
�where n is the number of objects in the big�list� for which every element has a pointer
to every other element that follows it in the n	tuple� This function displays R�B�� for an
object B in B� along with information about the natural transformation � for each object A
in Awhere B � FA�

find�RofB�

This function is similar to display�RB�rho� However� instead of information about �� this
function displays the action of the Right Kan extension R on all arrows out of the object B�
The next section discusses in detail how these calculations are done�

���� Algorithm to calculate R
arrows�	

A number of functions in the program are used in this procedure� display�images� traverse�cod�tree
traverse�dom�tree� and alt�dom�tree�

The process is best illustrated with an example� Suppose we are dealing with an object B
in B� and suppose that there is an arrow f � B � B� in B�

display�images�
This function is called by find�RofB and is used to call the other functions�

traverse�cod�tree�
Consider an arrow f � B � B�� This function picks out each object � � � B�

� FA� in B��F
used to index the tuples in R�B��� It then calls traverse�dom�tree� If traverse�dom�tree
is not successful� it calls alt�dom�tree�

traverse�dom�tree�
When called by traverse�cod�tree� this function tests to see if ��f is equal to some �
in B�F � If it is� then the ��th element of the image tuple in R�B�� is equal to the betath
element of the tuple in R�B�� and we are �nished�

alt�dom�tree�
If traverse�dom�tree was unsuccessful� this function is called� ��f is a path from B to
FA�� but it was not found in the B�F tree� This means that it was removed from the B�F
tree because it had a path into it from some other object in B�F � This function looks for an
object � � B � FC in B�F such that there is a path � � C � A� such that F ���� � � �f � If
this is found� then we de�ne s�

� � X����t�� where s�

� is the ��th element of the image tuple

��



in R�B�� and t�� is the �th element of the tuple in R�B��

���� Left Kan Extensions

The algorithm used to compute Left Kan Extensions is the generalized Todd	Coxeter pro	
cedure� The following tables are stored as trees �see section ��
��

��	tables� For allA inA there is a table to store information about the natural transformation
� � XA� LFA�

�A

XA���LFA

�




�

�

n

�L	tables� These tables store the elements of L�B� along with the action of L on each arrow
in B that had B as domain�

Lg Lh

LB LB� LB�

�

�

�

�relation	tables� For each relation gn						g� � hm						h� � B � B �� there is a table of the form

Lg� Lgn � Lh� Lhm

LB���������LB� � LB���������LB�

�

��� � ���

�Naturality tables� For all generating arrows f � A� � A� in A� there is a table of the
following type� where Ff � gn					g�� and eA�� eA
 represent �A� and �A�

�

��



Xf eA
 � eA� Lg� Lgn

XA����XA
���LFA
 � XA����LFA����������LFA


� � � � ���


 � 
 � ���

� � � � ���

� � � � ���

n 
 n � ���

In the following algorithm� a coincidence is something that occurs in a relation or naturality
table when the last entry in the left side of a row and the last entry in the right side of the
same row are di�erent elements� These elements are to be made equal� A coincidence can
also occur in an L	table when two di�erent elements occur in the same column of a pair of
rows which have already been found to be a coincidence�

Filling in consequences means to use data from the �	tables and L	tables to �ll in the relation
and naturality tables�

De�ning a new element means� given an empty entry in a table in a column headed by LB�
to �ll the entry with the lowest integer not already de�ned in LB�

The general algorithm is�

initialize tables

while there are empty entries in a table

�

define new elements

fill in consequences

while there are coincidences

�

deal with coincidences

fill in consequences

�

�

Dealing with coincidences means� given a coincidence of the elements x and y under LB� to
do the following�

�� Add any coincidences that arise as a result of this coincidence�

��



�� Replace y with x anywhere it appears under LB in any of the tables�

�� Remove the row headed by y from the L	table for LB and from any relations with LB
as domain�

After everything is �nished� the elements in each set L�B� are renumbered so that they form
a set of consecutive integers �� �� 			� n�

The following are the main functions used in this section of the program�

add�to�e�table� adds an element to an �	table�

update�nat� updates naturality tables after a change has been made to an �	table�

define�L� de�nes new elements in an L	table�

fill�conseq�rel� fill�conseq�nat� �ll relation and naturality tables with any informa	
tion that is available in the �	tables and L	tables�

check�coinc� checks a relation or naturality table for any coincidences that might occur�
This function calls add�coinc to add any such coincidences to the list�

deal�with�coinc� eliminates coincidences using the algorithm discussed above� This func	
tion calls a number of others to accomplish this� including update�e� update�L� check�coinc
�

delete�row� delete�rel�row and update�coinc�list�

renumber� performs the renumbering of L�B�
s�

��


