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Abstract

A complete lattice, L, is constructively completely distributive, (CCD)(L), if
the sup map defined on down closed subobjects has a left adjoint. It was known
that in boolean toposes (C'C'D)(L) is equivalent to (CCD)(L°). We show here
that the latter property for all L (sufficiently, for Q) characterizes boolean toposes.
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Introduction

The notion of constructive complete distributivity for a complete ordered set
L, (CCD)(L), was defined in [1] to mean the existence of a left adjoint to
V : DL — L, where DL is the set of down-closed subsets of L ordered by
inclusion. Terminology springs from (i) the fact that (CCD)(L) is equivalent
to

(vs <L) (N{VS|sest=V{AN{T(5)|5eS}H| T ens}

(which becomes the condition for complete distributivity of L, (CD)(L), if
D is replaced by P,the power set functor) and (ii) the following:

Theorem 1 (ac) <= ((CD) & (CCD)), where (ac) denotes the axiom of

choice. |

Somewhat less cryptically, the (CC' D) condition is the restriction of the
more familiar (C' D) to down-closed subsets; it implies the stronger condition
in the presence of the axiom of choice which in turn is implied by identifying
the two notions of distributivity.

Thus, in classsical lattice theory, with the axiom of choice freely assumed,
it would appear that (CCD) is simply an easier condition to verify than
(C'D). However, a considerable body of literature has explained the value
of doing Mathematics in a topos and in this more general context the very
definition above and Theorem 1 suggest that (C'C'D) is the relevant notion.
Indeed, in any topos, PX is (CCD) for all X while the statement “PX is
(C'D) for all X7 is equivalent to choice.

The power objects, PX, in a topos are not, in general, boolean algebras
and it transpires that booleaness of the topos of “sets” does make a sub-
stantial difference to the theory of constructive complete distributivity. For
a topos E, we write (boo)(E) to indicate that PX is boolean for all X in E.
We write (CCD?)(L) for (CCD)(L?). With this notation, Theorem 18 of
[1] becomes:

(boo) = ((CCD) < (CCD?)).

Somewhat contrary to intuition, the hypothesis is necessary. In this note we
prove:



Theorem 11 (boo) <= ((CCD) & (CCD)). |

Even in a general topos, ( ) is an involution, so
(CCD)= (CCD)?) = ((CCD)™ = (CCD)).

To prove Theorem 11 we will show that (CCD) = (CCD)% reduces to
(CCD)?(Q), where Q@ = P1 = DI is the subobject classifier of the topos.

This reduction involves showing that
(CCD)(L) = (VX inord(E))((CCD)(ord(E)(X, L)))

where ord(E) is the 2-category of ordered objects in E. (As in [1], an order
is assumed to be reflexive and transitive, but not necessarily antisymmetric.)
This follows from the observation that powers of (CC D) objects are (CCD)
which in turn follows from the fact that arbitrary products of (C'C D) objects
are (CCD) .

1 The Main Result

For any topos, E, the subobject classifier, Qg, is a locale (complete heyting
algebra) in E. On the other hand, given any locale, L, in set the subobject
classifier for I' : sh(L) — set enjoys I'(Qpr)) = L. However, the logic of
E when viewed from E itself is more classical. The fact that Qg is always
(CCD) shows this. In fact, more is true:

Theorem 2 In any topos we have
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More generally, for any ordered object X, | ppx has such a string of ad-
joints.

Proof. It suffices to observe that @ = D1 = DD0 and argue as in [l,
Theorem 3. |



(The adjoint string exhibiting set as a total category in [5] arises in a
similar way, starting with the empty category; the common thread is what
is called a yoneda structure in [4].)

The situation for Q2° is quite different unless E is boolean. Indeed, the
proof of Theorem 10 towards the end of this section shows that if Q2 is
merely a locale then © (and hence E) is boolean. That this is somewhat
contrary to intuition, as claimed in the Introduction, is seen by considering

{ o< <1}
(=

{ o <7}

in set?. The distributive law for binary meets over binary joins intuitionis-
tically implies its dual. Since both the domain and codomain of the above
example are finite and the lattice structure is “pointwise” it appears at first
glance that all distributivities are consequences of the binary ones. However,
even in this simple example the infinitary operations \ : D) — ) and
AP DOQP — QP cannot be obtained by considering all iterates of their
binary counterparts. Conceptually: €2 is not cardinal finite. Technically: the
functions witnessing {¢ < £ < 7} and {¢ < 7} as (CC D) objects of set do
not give an arrow of set?.

Another illustration of this sort of phenomenon is encountered when one
considers the infinite demorgan law. We digress slightly.

For H a (not necessarily complete) heyting algebra, (HEY )(H ), we write
1@ H® — H for its negation and observe that we always have 717 4 .
In spite of the fact that - is a right adjoint, we always have 711 = 0 which is
usefully construed as a fragment of left exactness of 71°?. Indeed, demorgan’s
law, (DM L)(H), 7(a Ab) < 7aV b, holds if and only if 7% is left exact,
in which case 71 is “geometric” modulo (HEY?)(H) and completeness of H.
We say that H satisfies the infinite demorgan law, (IDM)(H) if and only if
1% preserves all infs, which occurs precisely if 7 has a right adjoint. It is
easy to see that H is boolean, (BOO)(H), if and only if 7 4 2. Clearly,
the following implications hold for heyting algebras in any topos:

(BOO) = (IDM) => (DM)
(BOO) = (HEY*?)

4



In general, they are all strict. To see that (BOO) = (IDM) is strict it
suffices to consider a finite heyting algebra in set, H, for which we have
(DM)(H) but not (BOO)(H). From finiteness we have (DM)(H) =
(IDM)(H). Clearly, 3 = {¢ < ¢ < 7} will do. However, ) in set? illustrates
that (IDM) = (DM) is strict. Once again, (DM )(Q) follows immediately
from pointwise considerations, but (I DM )(Q) fails via the same obstructions
as (CCD?)(Q).

But € is not a mere locale in its own topos. In showing the equivalence
of (CCD?)(Q) and (BOO)(Q) it is convenient also to establish their equiv-
alence with (IDM)(Q) and (HEY°?)(Q). The next two lemmas are crucial.

(In neither case is a assumed to be order-preserving.)
Lemma 3 (Higgs) (a: Q— Q) = (a? = 1g).
Proof. Consult Johnstone [2], exercise 3, p.44. |

Lemma 4 (Bénabou) (o <15:Q — Q) = (a(7) =7 A a(1)).

Proof. Let y: Ur— Q be (a representative of) the subobject classified by
a: Q—— () so that

U—"r—1
7 T
Q a Q
is a pullback and
!
U = 1
N: /
Q

the latter since 7 is classified by 1g and a < 1g. We must show that

a=(0 QXQ—/\>Q)

(1Q,Oé . T’Q)
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The subobject classified by A is (7,7) : 1—— Q x Q so the result follows if
and only if

1

l(m)
0 x 0

(1Q,Oé . T’Q)

is a pullback; this follows easily from the information now assembled. 1
Corollary 5 (a < lgand a(r) = 7) = (a = 1g). |
Theorem 6 (IDM)(Q) = (BOO)(Q)

Proof. Assume that 7 : Q% — ) has a right adjoint, p : @ — Q°?. The
counit for the adjunction gives 1p < 1g. We have p(7) = ¢, since p is a right
adjoint, and thus 7p(7) = 1¢ = 7. It follows from Corollary 5 that 71p = 1g
so that p is a (split) monomorphism. By Lemma 3 we have p®p = 1q, hence
p=lgwp = 1%p?Pp = 1%1lg = 11° and hence () is boolean. |

Lemma 7 For L a (CCD) object of ord(S) and I in' S, L' is a (CCD)
object of ord(S).

Proof. A product of (C'CD) objects is (CCD) [3], or observe that (CCD)

is equivalent to saying that, for any family & of down-closed subsets of L, we

AV s1sest=\ns)

and this identity is constructively inherited by powers. |

have

Lemma 8 For L a (CCD) object of ord(S) and X an object in ord(S), we
have ord(S)(X, L) is a (CCD) object of ord(S).
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Proof. The arrow D|X| — X in ord(S) gives rise to ord(S)(X,L) —
ord(S)(D|X|, L) = LIX1, the inclusion of order preserving arrows in all arrows
from X to L. Since L is complete the latter has both left and right adjoints,

given by Kan extensions. Since LX!is (CCD) the adjoint string exhibits
ord(S)(X, L) as a (CCD) object. See [1, Proposition 10]. |

Theorem 9 ((CCD) & (CCD?)) < (CCD”)(Q)

Proof. We always have (CCD)(2). See [1, Corollary 4]. So the equivalence
of (CCD) and (CCD) trivially implies (CCD?)(2). For the converse,
assume (C'C'D?)(Q), that is (CCD)(2°), and (CCD)(L). We need to show
(CCD)(L). From

L ‘#DL
%
I
application of ( ) : ord®(S) — ord(S) gives
11
op
17~k (DL)7 2 (ord(S)(L*7, Q) = ord(S)(L, 2).

By Lemma 8, we have (C'CD)(ord(S)(L,Q°)). and so by [1, Proposition
11], we have (CCD)(L°). |

Theorem 10 (C'C'D?)(Q)) = (BOO)(Q).

Proof. Asnoted in [1], a completeobject L is a locale, (LOC)(L), if and only
if V: DL — L is left exact; hence (CCD) implies (LOC). In particular,
our hypothesis makes 2°? a heyting algebra, the negation for which, a priori
distinct from 17, we write as —( ) : @ — Q. Necessarily, =% — () < 1g
and —° — (7) = 7, giving, by an application of Corollary 5, =% — () = 1g.
Thus Q°P, and hence €2, is boolean. |

(The implications of Theorems 6 and 10 are trivially reversible.) Com-
bining Theorem 10 with Theorem 9 and Theorem 18 of [1] we have:
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Theorem 11 (boo) <= ((CCD) & (CCD)). |
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