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Abstract

A complete lattice L is constructively completely distributive� �CCD�� when the sup arrow from

down�closed subobjects of L to L has a left adjoint� The Karoubian envelope of the bicategory of

relations is biequivalent to the bicategory of �CCD� lattices and sup�preserving arrows� There is a

restriction to order ideals and �totally algebraic� lattices� Both biequivalences have left exact ver�

sions� As applications we characterize projective sup lattices and recover a known characterization

of projective frames� Also� the known characterization of nuclear sup lattices in set as completely

distributive lattices is extended to yet another characterization of �CCD� lattices in a topos�
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Introduction

Idempotents do not split in the category of relations� rel� so it has a non�trivial idempotent�
splitting completion� also called Karoubian envelope� kar�rel�� Roughly speaking� this paper
shows that kar�rel� is equivalent to the category of completely distributive lattices and
supremum�preserving arrows and then derives related equivalences as corollaries� The rel
we refer to though is rel � rel�E�� where E is an arbitrary elementary topos that serves
as the base for the entire discusssion and of course the result is proved for �constructively�
completely distributive lattices� the subject of this series of papers	 
��� 
��� 
����

Now the categories of the equivalence mentioned above are both ��categories� more pre�
cisely ord�� ord�E���categories� so it is obvious that one should make this an ord�result
� if it is one and indeed it is� This is not an extra chore� We use adjunction in the ord�
category kar�rel� systematically in our proofs and there is a sense in which these results are
ineluctably ��categorical� It does not even seem extravagant to say that any ��categorical
proof of these results is likely to be �lengthier�� However� because our subject is ord�
categorical the reader does not need to be versed in the coherence complexities of general
��categorical matters�

The objects of kar�rel� are not themselves categories but there is a sense in which they
are only a slight generalization of ordered sets and this provides considerable motivation and
direction for the use of adjunctions� For example� since each object of kar�rel� belongs to
a related ord�category which has �nite products we are able to say what it means for an
idempotent in rel to have ��nite meets� � using the calculus of adjunctions � and such
idempotents characterize� in a way which we make precise� the lattices which were called
�stably supercontinuous frames� in a recent paper by Banaschewski and Nie�eld 
��� Indeed
this is one of the corollaries of the main result mentioned above� We consider that the
point of view on idempotents presented here is likely to be useful elsewhere and while we
do not burden this paper with aspects of the theory that are not reasonably germane to our
characterizations of various categories of lattices� category theorists should infer a subtext
that will appear explicitly in 
���� In particular we hope it is clear to such readers that one
can� upon facing general ��categorical matters� apply similar ideas to the study of categories
which are not necessarily ordered sets�

Section � sets the stage for the paper by highlighting the ord�categorical aspects of
kar�rel� that we need throughout� In particular we show that it is naturally an object of IF
as studied in 
��� We do not assume familiarity with that paper but the reader who has read it
will doubtless anticipate the direction of the present work� We �nd it convenient to prove at
this early point that IDX � �kar�rel�����X� is �CCD� �our usual acronym for constructively
completely distributive�� In Section � we cover quickly some elementary properties of what
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has been called the �totally below� relation for a complete lattice 
��� specializing for the
most part to �CCD� lattices� The main result then appears in Section � We conclude that
section with a construction of the real closed unit interval from the rationals�

An �element� of a complete lattice is said to be totally compact if it is totally below
itself and a useful subcategory of �CCD� lattices are those in which each �element� is the
supremum of the totally compact elements below it� Such lattices� which we call totally
algebraic� are the subject of Section �� We show that the equivalence of Section  restricts
to yield an equivalence between totally algebraic lattices with sup preserving arrows and the
category idl of ordered objects and order ideals� Also in that section we prove an �adjoint
arrow theorem� concerning existence of a right adjoint to a right adjoint to an arrow between
�CCD� lattices� It is fairly clearly a specialization to lattices of a more general result� of
independent interest� that will be dealt with in 
���� In Section � we show that most of the
results admit �lex� versions and this allows us to characterize the stably supercontinuous and
supercoherent frames of 
��� We extend the work of these authors on projectivity in Section ��
In Section � we show that the interesting characterization of completely distributive lattices
given by Higgs and Rowe in 
�� is constructively equivalent to �CCD�� Our proof uses the
machinery developed in Section � Finally� in Section � we discuss brie�y adjoint sequences
which are longer than that de�ning �CCD��

Our ordered objects are re�exive and transitive but not necessarily antisymmetric� As
in the other papers in this series we use the word ��complete� lattice� in the context of
such orders but we de�ne relations and hence ideals in terms of subobjects rather than
monomorphisms when working over a topos � as we do here � so lattices such as PX� DX
and the IDX� which we introduce here� are in fact antisymmetric� Our rationale for these
conventions is explained in 
��� Some �equivalences� that we deal with are biequivalences
in the absence of antisymmetry� We point this out as we go�

We are greatly indebted to Steve Vickers for stimulating correspondence on complete
distributivity and for reminding us of Raney�s work on idempotent relations in 
���� It is
di�cult to overestimate Raney�s insights into complete distributivity� We have attempted in
Sections � and � to acknowledge those results which� in non�categorical form� �rst appeared
in 
���� We should also mention the work of Guitart and Riguet� 
��� who have proved a
constructive� but non�ord�enriched� version of Theorem �� using methods quite di�erent
from ours� Vickers too has proved a version of our Theorem �� 
���� The results here are
fundamentally indebted to Eilenberg and Mac Lane� for without the language of categories
Proposition ��� which separates our contributions from those of Raney� is di�cult to state
succinctly and� more importantly� di�cult to even conjecture�

Finally we thank the referee for an inspiring report� In the course of replying to the ques�
tions raised we learned considerably more about our subject� We discussed those questions





with Bob Par�e and we thank him for his insights�

� Idempotents in categories of relations

If R is a relation from X to A� we write R 	 X � A but if a in A is R�related to x in X�
we write aRx� �This is consistent with the notational convention for profunctors and the
like which holds that the contravariant variable comes from the codomain��

A relation � 	 X � X is said to be interpolative if x�y implies ��z��x�z�y�� In
terms of relational composition this means that � � � � � � The containment � � � � �

holds precisely if � is transitive so an idempotent in rel is a transitive interpolative relation�
Of course any order relation� �� provides an example of an idempotent� Not all idempotents
split in rel so the splitting completion� also known as the Karoubian envelope� kar�rel�� is
not equivalent to rel� Recall that the objects of kar�rel� are idempotents �X� � � and an

arrow R 	 �X� � � � �A� � � is a relation R 	 X � A such that R � � � R � � � R�
Thus we have ��y��aRy�x� if and only if aRx if and only if ��b��a�bRx�� Since rel is a
��category� in fact an ord�category� so is kar�rel� � transformations being containments of
arrows� This observation is central to our considerations�

Vickers 
��� uses the term infosys for an object of kar�rel� and we adopt this name� We
refer to the arrows as modules� For Vickers they are the lower approximable semimappings�
If X and A are orders then a module is an �order��ideal as studied in 
�� In the present

context the conditions on R 	 X � A simplify to aRy � x implies aRx and a � bRx

implies aRx� We have full and locally full containments rel� � idl� � kar�rel� where
for the �rst we regard an object of the base� E� as a discrete ordered object� Recall that a
��functor is locally fully faithful if each of its e�ects on hom categories is fully faithful� So
an ord�functor F is locally fully faithful precisely when� for parallel f and g� f � g if and
only if Ff � Fg� We also speak of the locally�full sub�ord�category determined by a class
of arrows�

If �X� � � and �A� � � are infosyses then any relation R 	 X � A gives rise to a module�

namely � �R � � 	 �X� � � � �A� � � which we denote by R�� In particular� if R is f�� the
graph of an arbitrary arrow f 	 X �� A in E� then we have the module � � f� � � � �f���
which we abbreviate by f� � It is worth noting that af�x if and only if ��y��a�fy and y�x��
Say that f is below�preserving if y�x implies fy� fx� In this case we write f� for f�� If
�X� � � is an order and f is below�preserving then af�x simpli�es to a�fx� This is not true
of a general below�preserving arrow but the condition that X be an order is not necessary
as we will see in Section �� We follow the convention of reserving the word map for an arrow
with a right adjoint and write f� for the right adjoint of f� in rel� It is well known that
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map�rel� is isomorphic to E and we can freely identify the two� abbreviating f� to f� If f
is below�preserving� we write f� for �f����

A general comment about kar�rel� is in order� It may at �rst seem that the notion
of infosys� without re�exivity assumed� �ies in the face of categorical practice� Consider�
however� a general adjunction S a R 	 A � X in kar�rel�� Since �X is � 	 X � X� the
unit condition� �X � R � S� says x�y implies ��a��xRaSy�� which is an �interpolativity� of
sorts� Similarly� the counit condition� S �R � �A � says aSxRb implies a�b � a �transitivity��
If adjunction is deemed to be the leading aspect of category theory then the notion of infosys
is remarkably natural�

Proposition � If f 	 X �� A is below�preserving then f� a f� in kar�rel��

Proof� That f is below�preserving means precisely that f � � � � � f � From f� a f� in
rel we have also � � f� � f� � � � The required inequalities now follow easily�

Infosyses and below�preserving arrows clearly form a category� For f� g 	 X �� A de�ne
f � g if and only if f� � g� � It is easy to show that this de�nition gives an ord�category�
which we call inf � and an ord�functor � �� 	 inf �� kar�rel�� By construction� � �� is
the identity on objects� locally fully faithful and every arrow in inf gives an adjunction
in kar�rel�� By de�nition therefore� � �� is proarrow equipment 
��� and an object of the
�category IF studied in 
��� It restricts to � �� 	 ord �� idl� well known to be an object
of IF which as such contains � �� 	 E �� rel� As we said in the Introduction� familiarity
with general proarrow equipments and 
�� is not assumed but these observations ensure that
� �� 	 inf �� kar�rel� shares many ��categorical properties with � �� 	 ord �� idl� In
fact � �� 	 inf �� kar�rel� satis�es the stronger Axioms � and � of 
���� For reference later�
note that if f 	 X �� A and u 	 A �� X in inf then f a u if and only if f� � u�� This
follows immediately from the de�nition of the ord�structure of inf �

We denote the discrete infosys structure on the E terminal object by �� For infosyses X
and Y we understand X � Y to be the infosys with structure de�ned component�wise on
the E product of the underlying objects� Just as for rel and idl � � � � can be de�ned
component�wise on modules giving an ord�monoidal structure� Neither � nor X � Y are
�nite products in kar�rel� but � �� 	 inf �� kar�rel� is a cartesian object of IF as described
in Section � of 
��� Note though that �nite meets of modules are not intersections in general�

We write IDX for the ordered object �kar�rel�����X� and �nd it convenient to speak
set�theoretically of its �elements� as down�sets� For S � IDX we have x � S if and only
if ��y��x�y � S�� Important examples of down�sets are those which are of the form �x �
fy � X j y�xg� for x � X� If X is an order then IDX is just DX � the ordered object of
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down�closed subsets of X and � is the usual Yoneda embedding� In general� however� the
adjective �closed� is inappropriate� Writing jXj for the underlying E object of an infosys

we see that the inclusion IDX� � PjXj is core�ective but fails in general to preserve even
�nite meets� The involution � �op for orders extends to infoyses in the obvious way and the
same �variance� rules apply if one considers inf �� kar�rel� as an object of IF � In other
words� the following diagram commutes�

kar�rel�op kar�rel��
� �op

infco inf�� �op

�

� ��

�

� ��

Now it should be clear that a module X � A can be identi�ed with a down�set of
Xop�A� In fact we can identify �kar�rel���X�A� with ID�Xop�A� which both explains the
remark about �nite meets of modules and gives the following	

Proposition � �kar�rel����� ��� is ord�symmetric�monoidal�closed with its closed struc�
ture given by ��X a Xop ���

Recall that both rel and idl are biclosed ord�categories in that they have all right liftings
and all right extensions� That is� for each R 	 X � A� each �kar�rel���Y�R� has a right
adjoint and each �kar�rel���R�B� has a right adjoint�

Proposition � kar�rel� is a biclosed ord�category�

Proof� If R 	 X � A and S 	 Y � A in kar�rel� then the right lifting in rel�

denoted R	 S 	 Y � X� gives the module

�R	 S�� � � � �R	 S� � � 	 Y � X

as right lifting in kar�rel�� For if T is a module and T � � � �R 	 S� � � then RT �
R � � � �R	 S� � � � R � �R	 S� � � � S � � � S� Conversely if R �T � S then T � R	 S

whence T � � � T � � � � � �R	 S� � � �

If R 	 X � A and T 	 X � B in kar�rel� then the right extension in rel� T
R 	

A � B� gives �T
R�� as the right extension in kar�rel� similarly�
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We have already given an elemental characterization of adjunctions in kar�rel�� It is now

easy to characterize those S 	 X � A which are maps� For if S has a right adjoint then it
must be �S 	 �A�� and the latter is the right adjoint of S precisely if �X � �S 	 �A�� �S�
�These are generalities valid in any biclosed ord�category�� We leave it as an exercise for
the reader to show that this simpli�es to �X � �S 	 �A� � S� In elemental terms then�
S is a map if and and only if x�y implies ��a��aSy and ��b��bSx implies b�a��� We are
grateful to the referee for informing us of this simpli�ed characterization which is attributed
to Reinhold Heckmann� It shows clearly that maps in kar�rel� are more general than the
modules of the form f� for f an arrow in inf � However� there is a sense in which this
generality is somewhat illusory as we will show at the end of Section ��

We will be preoccupied by IDX so let us note that the core�ector for IDX� � PjXj is
given by � �o� where Bo �

S
f�x j �x � Bg�

Proposition � �Raney� For any infosys X� IDX is �CCD��

Proof� Consider � 	 IDX �� DIDX� We know from the above that any union of down�
sets is a down�set� In particular the union of a ��down�closed set of down�sets is a down�set
so the left adjoint to � 	 IDX �� DIDX is given by union� We show that

S
has a left adjoint�

l� given by lS � f�x jx � Sg �� where � � �indicates down�closure with respect to �� This at
least de�nes l 	 IDX �� DIDX �order preserving�� �Incidentally� it is necessary to take the
�downclosure� above� as becomes apparent by considering an infosys of the form �X�����
We show S �

S
lS for S � IDX and l�

S
S� � S for S � DIDX� For the �rst it su�ces to

show that if x � S then x �� y for some y � S� But since S is a down�set we have x � S

if and only if ��y��x�y � S� if and only if x �� y for some y � S� So S �
S
lS� For the

second let T � l�
S
S�� We have T ��x for some x �

S
S and for such x we have x � S � S

for some S� Since S is a down�set we have �x � S and hence T ��x � S � S� Since S is
down�closed we have T � S as required�

� The totally�below relation

Let L denote a complete lattice� Thus we assume that � 	 L �� DL has a left adjoint
L �� DL 	

W
� The Yoneda embedding � is� in any event� full�y faithful� so we note thatW

�� �L� Write a � b as an abbreviation for the relation on L which is de�ned by
��S � DL��b �

W
S 	 a � S�� Following 
�� we call � the totally�below relation� �We called

it �way below� in 
�� but we now think that term should be reserved for the case of �ltered
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�directed� sups where it originated� For Raney it was the anonymous relation � and Vickers
speaks of �completely below���

Lemma � For � the totally�below relation on a complete lattice�
�i� a� � a � b implies a� � b �ii� a � b � b� implies a � b� �iii� a � b implies a � b

�iv� a� b� c implies a� c

By �i� and �ii� above we see that � is an arrow in idl� It is of some interest to note that

DL L�
W
�

L
�

�� �
�
�
�
���

�

is a right extension in idl � This follows immediately from the de�nitions�
Since identity arrows in idl are given by the order relations of the objects in question�

�iii� gives us �� �L� while transitivity of � �iv�� is simply� � � � �� Thus� has both
a �counit� and a �multiplication�� A �unit� for � is impossible �for in a complete lattice
we never have �� �� but a �necessarily idempotent� �comultiplication� exists if and only if
� is interpolative�

From the natural bijection between arrows X � A in idl and arrows X �� DA in
ord� � corresponds to � 	 L �� DL given by � a � fb � L j b � ag� We have � � � and
hence

W
� � �L�

Lemma � �
W
� �DL�

Proof� Let S � DL� Let a � �
W
S� Then a �

W
S and

W
S �

W
S implies a � S� So

�
W
S � S�

Say that L is totally continuous if for every a � L � a �
W
� a� That is to say� every

element is a supremum of those elements totally�below it� �In 
�� this condition is called
supercontinuity�� In view of

W
� � �L which we noted above� L is totally continuous if and

only if �L �
W
� �

Proposition 	 �Raney� For a complete lattice L� L is totally continuous if and only if L
is �CCD� �
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Proof� From the previous remark and Lemma �� L is totally continuous if and only if
� is left adjoint to

W
� So total continuity certainly implies �CCD�� for recall that the latter

is just the condition that
W
have a left adjoint� Conversely� assuming the latter condition�

say f a
W
� then to show total continuity the condition �L �

W
� can be replaced by the

equivalent f � � � So let b � fa� take any S � DL and assume a �
W
S� Adjointness gives

fa � S and hence b � S� So b� a� that is b � � a which shows f � ��

Lemma 
 �Raney� If L is �CCD� then � is interpolative�

Proof� We merely have to simplify the proof given in 
�� by deleting the �directedness�
conditions� Assume a� b� De�ne

S � fd j ��c��d� c� b�g �
�
f� c j c� bg

which is down�closed� We have
W
S �

W
f
W
� c j c� bg �

W
fc j c� bg � b� Now a� b and

b �
W
S gives a � S so ��c��a� c� b��

So now Lemma � �iv� and Lemma � show that any �CCD� object L gives rise to an
infosys� �L���� and Lemma � �iii� says that the identity E arrow on jLj gives an arrow
�L��� �� �L��� � L in inf � For any infosys X� the preceding considerations apply to
the lattice IDX which is �CCD� by Proposition �� We prefer to write �� for the totally�
below relation on IDX� It follows from the second part of the proof of Proposition � that for
down�sets S and T we have S��T if and only if ��t��S � � t and t � T ��

Lemma � For any infosys X� � provides an arrow X �� �IDX���� in inf �

Proof� Assume x�y� Then �x � �x and x � �y shows that �x�� �y�

Remark �� We have throughout this series systematically used � 	 X �� DX for the
Yoneda embedding in ord of an ordered object X � �X��� into the lattice of down�closed
subsets DX � �DX���� For X an infosys we have � 	 X �� IDX� where IDX � �IDX���
which specializes to the previous convention� The point of Lemma � is simply that in any
event � factors through �IDX���� �� IDX� an instance of the inf arrow mentioned after
Lemma �� We allow the symbol � to serve double duty by being explicit about its codomain�

Proposition �� ��	 X � �IDX���� is an isomorphism in kar�rel��
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Proof� By Proposition � we have �X ����� and ����� ��IDX����� Assume x ���� y�

that is to say ��S��x �� S �� y�� Invoking the de�nitions gives

��S����u��x�u and �u��S� and ��v��S�� �v and v� y��

which immediately simpli�es to x�y� So ����� �X �
Now S ���

� T holds if and only if ��x��S �� x �� T � if and only if ��x����u��S�� �u
and u�x� and ��v��x�v and �v��T ���

On the other hand� if S��T then we have S �� t for some t � T which can be interpolated
to S �� t� with t�u�x�v � T � since T is a down�set� giving S�� � u and u�x�v and
� v �� T � the last from � v �� v� v � T� From the display above it is clear that S �� T

implies S ���� T so ��IDX���� � ���
� �

Remark �� It is not too surprising that �X � ����� After all� the classical Yoneda em�
bedding is full�y faithful�� But having also ��IDX���� � ���

� provides isomorphisms between
objects in kar�rel� whose underlying E objects may be de�nitely not isomorphic� For ex�
ample� if X is any object of E then� regarding it as a discrete infosys �X���� Proposition
�� provides an isomorphism X �� �PX���� in kar�rel�� Note too that while the totally�

below relation �	 L � L for any complete lattice L is given as a right extension in idl �
the second identity can be interpreted to express �� for DX � where X is an ordered object�
as a composite in idl 	

DX
��

� DX � DX
��

� X

��

� DX�

It says that for S� T � DX� S �� T if and only if ��x��S � �x � T �

If L is any �CCD� object then the de�ning left adjoint to supremum� � 	 L �� DL given
by � a � fb � L j b� ag factors through ID�L��� � �ID�L�������

Proposition �� For any �CCD� lattice L� � 	 L �� ID�L��� is an ord equivalence�

Proof� We have
W
	 ID�L��� �� L� the restriction of

W
	 DL �� L and

W
� � �L as

noted in the proof of Proposition � � Now consider �
W
S for S a down�set with respect to

�� We have �
W
S � S by adjointness� so let x � S� We want to show x�

W
S� Since S is

a down�set we have x� y � S for some y� Now y �
W
S and x� y �

W
S gives x�

W
S as

required�
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Remark �� If the order on L is antisymmetric then the equivalence above is just an order
isomorphism�

� Categories of �CCD� lattices

We write ccdsup for the ord�category of �CCD� lattices� sup�preserving arrows and point�
wise inequalities� Let f 	 L ��M be an arrow in ccdsup � It does not follow that f preserves
� � so f does not de�ne an arrow from �L��� to �M��� in inf but as in Section � we do
have the module f� 	 �L��� �� �M��� in kar�rel��

Lemma �� The construction above de�nes an ord�functor ccdsup �� kar�rel� �

Proof� Assume f � g 	 L �� M � Recall that we have xf�a if and only if ��b��x �
fb and b � a�� Since x � fb � gb implies x � gb we have f� � g�� Also� ��L�� ���
��L���� Now assume f 	 L �� M and g 	 M �� N in ccdsup � Since f is sup�preserving
we have f

W �
W
f�� where f� 	 DL �� DM is the left adjoint to Df 	 DM �� DL�

Since L and M are �CCD� we have by adjointness � f � f� � which means that x � fa

implies ��b��x � fb and b � a�� Similarly� p � gx implies ��y��p � gy and y � x��
We have p�g�f��a if and only if ��x���b��p � gx and x � fb and b � a� which yields
��x���b���c��p� gx and x � fc and c� b� a� hence ��x���c��p� gx � gfc and c� a�
and �nally ��c��p � gfc and c� a� which is p�gf��a� Conversely starting with the latter
and interpolating gives ��q���c��p � q � gfc and c � a� yielding ��y���q���c��p � q �
gy and y � fc and c � a� and hence ��y���c��p � gy and y � fc and c � a� which is
p�g�f��a� So g�f� � �gf���

Given R 	 X � A in kar�rel� we de�ne R� 	 IDX �� IDA by the formula R��T � �S
ffa j aRxg jx � Tg� This makes sense since each fa j aRxg is a down�set and a union of

down�sets is a down�set� But viewing T as T 	 � � X in kar�rel� we see that R��T � is

precisely the composite RT 	 � � A in kar�rel� which shows immediately that R � S

implies R� � S�� ��X�� � �IDX and �SR�� � S�R��

Lemma �� The construction above de�nes an ord�functor kar�rel� �� ccdsup �

Proof� It su�ces to show that each R� has a right adjoint� De�ne IDR 	 IDA �� IDX

by IDR�S� � fx j ��y��x�y and fa j aRyg � S�g� Recall that since rel is biclosed� we have

R 	 S 	 � � X� the right lifting of S 	 � � A through R 	 X � A in rel� It is easy
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to see that IDR�S� is the composite � � �R	 S� 	 � � X and hence certainly a down�set�
The adjunction R� a IDR follows from � � �R	 S� � � � �R 	 S� � � � �R 	 S�� being
the right lifting of S through R in kar�rel� as given in full generality in Proposition �

An ord�functor F 	 X �� A and an ord�functor U 	 A �� X underlie a biequivalence
of ord�categories in the presence of equivalences � 	 �X �� UF and � 	 FU �� �A� If
equivalences in X and A are merely isomorphisms then such a biequivalence is merely an
equivalence� In kar�rel�� for example� equivalences are isomorphisms because transforma�
tions between modules are containments and containment is antisymmetric�

Theorem �	 The ord�functors of Lemmas �� and �	 underlie a biequivalence of ord�
categories� ccdsup

�
�� kar�rel��

Proof� The isomorphism �� 	 X �� �IDX���� of Proposition ��� for X an infoysys�
and the equivalence � 	 L �� ID�L��� of Proposition �� for L a �CCD� lattice� are all that
we need provided that they are natural with respect to the functors of Lemmas �� and ���
Thus we require commutativity of the following diagrams	

�IDX���� �IDA�����
�R���

X A�
R

�

��

�

��

ID�L��� ID�M����
�f���

L M�
f

�

�

�

�

the �rst in kar�rel�� the second in ccdsup� The �rst follows from the observation that both
composites reduce to the relation ��a��T � � a and aRx� while in the second the value of
each composite at a is �fa�

From Remark �� it follows that if one�s �lattices� are antisymmetric then the biequiv�
alence above is merely an equivalence� For inspection of the proof of Proposition � shows
that � is an isomorphism if

W
� � �L is an equality� In any event� the result has many spe�

cializations which we pursue in the remaining sections� Let us note some simple corollaries�

Corollary �
 The ord�category ccdsup is biclosed and has an ord�symmetric�monoidal�
closed structure�
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From the earlier papers in this series �
���
���
���� it is clear that an important class of
arrows between �CCD� lattices is that consisting of those arrows that preserve both sups
and infs� We write ccd for the locally�full sub�ord�category of ccdsup determined by these�
If g 	 M �� L is such an arrow then considered as an arrow of ord it has both left and
right adjoints� say f a g a h� Now f also preserves sups and we have an adjunction f a g

in ccdsup� �So f is a map in ccdsup�� Since taking adjoints reverses both the direction of
arrows and the sense of inequalities� it follows that ccdcoop �map�ccdsup�� We study these
arrows in more detail in the next section�

Corollary �� The ord�functors of Lemmas �	 and �� restrict to a duality ccdcoop
�
��

map�kar�rel���

An interesting application of Theorem �� arises by considering the closed unit interval
II � 
�� �� in a Boolean topos� We showed in 
�� that II is �CCD� with � given by ��
mere strict inequality� Thus we have II � ID�II���� Now let IK denote the intersection
of II with the rationals and observe that �IK���� � as above� is again an infosys and the
inclusion i 	 �IK��� �� �II��� is an arrow of inf � So we have i� 	 �IK��� �� �II��� in
kar�rel� � But the unit for the adjunction i� a i� is an equality because i is �full� and
the counit is an equality because i is �dense� in that between any two distinct reals there
is a rational� Thus i� is an isomorphism giving ID�II��� � ID�IK���� Together with the
isomorphism above we have II � ID�IK��� in ccdsup � In an arbitrary topos one might want
to consider the latter as a de�nition of II since it allows the development of � using only
positive statements� The closed interval resulting from this construction is isomorphic to the
closed interval in the semicontinuous reals� The semi�continuous reals is the �real numbers
object� constructed from lower Dedekind cuts on the rationals and is isomorphic to the sheaf
of lower semi�continuous functions in a spatial topos 
���

� Totally algebraic lattices

For any i 	 X �� L in ord� i is said to be dense if �L is the left extension of i along i� In
terms of elements this means that for all a in L� a �

W
fi�x� jx in X and i�x� � ag�

If c� c in a complete lattice� we say that c is totally compact� �In 
�� this is called super
compactness�� Let X �L� � fc � L j c� cg� Since by �iii� of Lemma � we have � � �� we can
identify X �L� as the inverter of � � � 	 L �� DL� In 
�� we showed that a �CCD� lattice
L is equivalent to one of the form DX� for some X in ord � if and only if the inclusion
X �L�� � L is dense� in which case L is equivalent to D�X �L��� But density of X �L� in L
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is just the statement that every a in L is the supremum of the totally compact elements
c with c � a� Such a lattice is said to be superalgebraic in 
��� We use the term totally
algebraic� By Proposition � it is clear that every totally algebraic lattice is �CCD� and we
note that the totally below relation for totally algebraic lattices simpli�es to a � b if and
only if ��c��a � c� c � b�� We must comment on the nesessity of the density condition in
order to correct a typographical error in 
���

In 
�� Proposition � it was asserted that the inverter of � � �	 DX �� DDX is X� The
proof is easily seen to invoke the axiom of choice and according to the convention of that
paper the words �Proposition �� should have been preceded by an asterisk to indicate that
dependence� The point there was simply to show that not all �CCD� lattices are what we
are here calling �totally algebraic�� The exhibited counterexample� namely the closed unit
interval with its usual ordering� survives but careful clari�cation of this point will provide a
deeper analysis of the main result of this paper�

For X an ordered object we write QX for the Cauchy completion of X as de�ned in

��� and studied explicitly in this context in 
�� It is de�ned as a representing object for
map�idl����X� 	 ordop �� ord� �So for each Y we have ord�Y�QX� � map�idl��Y�X���
It is a central result of 
� that QX � map�ccdsup��D��DX�� This follows easily from the
de�nition and our Theorem �� for we have

QX � ord���QX� �map�idl����X� �map�kar�rel�����X� �map�ccdsup��D��DX��

The formula is useful but it exhibits QX as a subobject of �D�DX�op�op �since DX �
ord�Xop�D�� and map�ccdsup��D��DX� � ccdcoop�D��DX� � ccd�DX�D��op� and yet
QX � DX� since DX is a representing object for idl���X� 	 ordop �� ord� In fact� we
claim that QX is the re�ection of X in the ord�category of antisymmetric orders and is
obtained by identifying isomorphic elements of X� For antisymmetric X� X �� QX is an
order isomorphism and it is always a �strong� epimorphism in E� In the presence of the
axiom of choice it is an equivalence in ord for any X� In 
� it is shown that the axiom
of choice for E is equivalent to every ordered object X being Cauchy complete �meaning
that X �� QX is an equivalence�� The following Proposition is helpful for establishing our
claim and admits useful generalizations that will be considered in 
���� Recall that the order

isomorphism ord�Y�DX� � idl�Y�X� is given by composition with ��	 DX � X�

Proposition �� For any X in ord� QX �� DX is the inverter of ��� 	 DX �� DDX�

Proof� An arrow r 	 Y �� DX in ord inverts � � � if and only if r � r which as
we pointed out in Remark �� is the case if and only if ��x��r ��x � r�� The latter means
that there exists an epi e 	 U��Y in E and an arrow x 	 U �� X such that re � � x�
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Now let R ��� r and note that ��� x � x�� It follows that r factors through the inverter of
� � �� call it I� if and only if the corresponding ideal� R� satis�es Re � x� for such e and x�
According to 
� the latter is the case if and only if R is a map� Thus ord�Y�DX� � idl�Y�X�
restricts to ord�Y� I� �map�idl��Y�X� which shows that I �� DX is order isomorphic to
QX �� DX�

Certainly� from its very de�nition� QX is antisymmetric and the full�y faithful� QX ��
DX is a monomophism inE� The full�y faithful� and dense �	 X �� DX is a monomorphism
in E if and only if X is antisymmetric� In any event it inverts � � � so that we have
�	 X �� QX fully faithful and QX �� DX dense� Moreover the proof of the Proposition
also shows that �	 X �� QX is an epimorphism in E so that QX can also be seen as the
image inE of �	 X �� DX� equipped with the induced order� Note that while antisymmetry
implies Cauchy completeness� the converse is not true� For example� a complete lattice L is
Cauchy complete � an inverse equivalence to �	 L �� QL is provided by the restriction of
the supremum arrow�

We now specialize Theorem ��� Write talsup� for the full and locally�full sub�ord�category
of ccdsup determined by the totally algebraic objects� Since for X an order IDX � DX� the
ord�functor kar�rel� �� ccdsup restricts to idl �� talsup�

Theorem �� The ord�functor above is the inverse of a biequivalence of ord�categories�
talsup

�
�� idl�

Proof� Let f 	 L �� M be a sup preserving arrow between totally algebraic lattices�
We de�ne X �f� 	 X �L� � X �M� by xX �f�a if and only if x � fa� If also g 	 M �� N

is sup preserving with N totally algebraic then pX �gf�a gives p � p � gfa and hence
��x��p � gx and x� fa�� There is no reason to assume that x is totally compact but� from
the simpli�cation of � here that we noted above� x � fa yields ��y��x � y � y � fa�
so that we have ��y��p � gy and y � y � fa� and hence pX �g�X �f�a� The other details
showing that X is an ord�functor talsup �� idl are trivial� Consider now

QX QA�
X �R��

X A�
R

�

��

�

��

DXL DXM�
�Xf��

L M�
f

�

k

�

k

��



the �rst in idl� the second in talsup � For the �rst diagram we have used � 	 X �� XDX �
QX� as discussed above� which by the universal property of QX induces an isomorphism in
idl� The diagram is easily seen to commute� In the second diagram k is the left kan extension
of � 	 XL �� DXL along XL �� L� an equivalence here as shown in 
��� Theorem �� Since
f preserves sups commutativity can be shown by �chasing an element of X �L�� the details
of which we also omit�

Remark �� Of course we could have argued above that for L totally algebraic we have an
inclusion �XL��� �� �L��� in inf which induces a natural isomorphism in kar�rel�� This
follows immediately from the simpli�ed description of �� This approach also shows that
�DX���� provides yet another description� up to isomorphism in kar�rel�� of QX� albeit as
an infosys� In fact� as we will show shortly� for X an infosys� �IDX���� is the appropriate
notion of Cauchy completion�

Corollary �� The ord�category talsup is biclosed and the ord�symmetric� monoidal�closed
structure of ccdsup restricts to it�

Write tal for the full and locally�full sub�ord�category of ccd determined by the totally
algebraic objects� Equivalently tal is the locally�full sub�ord�category of talsup determined
by the arrows which preserve both sups and infs and we thus have talcoop � map�talsup��
Let cor denote the full and locally�full sub�ord�category of ord determined by the Cauchy
complete objects� Then cor is biequivalent to map�idl��

Corollary �� There is a duality talcoop
�
�� cor with inverse given by D�

Proof� Apply map to the biequivalence established above and note that the biequiva�
lence cor map�idl� identi�es D 	 cor �� talcoop with map�idl �� talsup��

To see what the map construction is hiding in both Corollaries �� and �� it is instructive
to note the following Proposition which is of some independent interest�

Proposition �� For �CCD� objects L and M and an adjunction f a g 	 M �� L in ord�
g has a right adjoint if and only if f preserves �� If L is totally algebraic then preservation
of � by f is equivalent to f preserving totally compact elements�
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Proof� Write f� for the left adjoint of Df 	 DM �� DL� For any f in ord � f� � � � f�
Since L and M are complete we have the mate

W
f� � f

W
which is �invertible� �saying f

preserves sups� since f a g� Now the inequality f
W
�
W
f� has mate �f � f�� since L and

M are �CCD� objects� However� the containment f� ���f is equivalent to �g � g�� which
in turn is equivalent to g

W
�
W
g� �saying g preserves sups� and hence is equivalent to g

having a right adjoint� On the other hand� direct translation of f����f gives f � � � f � ��
which is preservation by f of �� The second clause of the Lemma holds in virtue of the
simpli�cation of � in a totally algebraic lattice�

From the proof it follows that f has a right adjoint which has a right adjoint precisely if
the following diagram �commutes��

DL DM�
f�

L M�
f

�

�

�

�

That is to say� we can dispense with the assumption that f is part of an adjunction� While
this is an apparently sensible categorical condition it is not ord�categorical because for a
general f there need be no transformation �containment� of which the ��� above expresses
the invertibility� This might seem inconsequential but many of our results generalize to
Yoneda structures 
��� on ��categories that are not locally ordered� In that case �commu�
tativity� is obviously too strong but we cannot simply replace equality by an isomorphism
because the mates of both such an isomorphism and its inverse are required to be speci�c
transformations� It seems to be di�cult to prescribe the �right� isomorphism in advance�

The proposition shows that if we apply the ord�functor ccdsup �� kar�rel� to an ad�
junction f a g 	 M �� L then we get f 	 �L��� �� �M��� in inf and hence f� a f� in
kar�rel�� Corollaries �� and �� could be derived directly from this observation�

Moreover� inspection of the �rst diagram in the proof of Theorem �� now shows that
any diagram of maps in kar�rel� can be replaced by an isomorphic diagram of maps of the
form f� with f in inf � For if R is a map then R� is a map in ccdsup and so preserves ��
giving �R��� � �R���� We leave it as an exercise for the reader to show that �IDX����
is a birepresenting object for map�kar�rel�����X� 	 infop �� ord� Indeed� composition
with ��	 �IDX���� �� X provides for each A� an equivalence inf�A� �IDX����� ��
map�kar�rel���A�X�� In the next section some of our de�nitions are given in terms of inf
arrows where one might feel that maps in kar�rel� are more natural� The results above show
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that our approach is justi�ed and certainly from a constructivist�s point of view the more
deterministic inf arrows are a better starting point�

� Left exactness

The main results of the previous two sections and their proofs admit �lexi�cation�� Roughly
speaking this means that if all objects are required to have �nite meets which all arrows
are required to preserve then the biequivalences of Theorems �� and �� and the dualities of
Corollaries �� and �� restrict accordingly�

Write lex�ord for the locally�full sub�ord�category of ord determined by the �nitely
complete objects and arrows which preserve �nite meets� In the terminology of 
��� the
objects of lex�ord are the cartesian objects of ord� Note that to ask for a left adjoint in
lex�ord is to ask for a left adjoint in ord and further require that it preserve �nite meets�
For example� a complete lattice is an object L in ord for which � 	 L �� DL has a left
adjoint� To require this of an object L in lex�ord is to require that the left adjoint�

W
�

preserve �nite meets � which is to require that L be a frame� Similarly� a lex �CCD� object
is a �CCD� object for which the de�ning left adjoint� �� is left exact� One could say that
a lex �CCD� object is simply a �CCD� object relative to lex�ord and its inherited Yoneda
structure� as in 
���� However� careful pursuit of that idea would take us too far a�eld for our
present purposes� After all� the notion of �CCD� itself begs consideration as �completeness�
relative to yet another Yoneda structure�

In terms of �� left exactness of � says precisely that
L�� �� �
L�� if c� a and c� b then c� �a � b��
Thus lex �CCD� is stable supercontinuity in the terminology of 
��� We write lex�ccdfrm

for the locally�full sub�ord�category of ccdsup determined by the lex �CCD� objects and
frame homomorphisms� A frame homomorphism between frames� f 	 L �� M � is a sup�
preserving arrow that satis�es

F�� f��� � � and
F�� f�a � b� � f�a� � f�b��

An object X in inf is cartesian precisely if
C�� t 	 X �� � is a map in inf
C�� d 	 X �� X �X is a map in inf �
Here of course t refers to the unique inf arrow to the terminal object and d refers to the

product diagonal in inf� It should be noted that if X above is in ord then the conditions
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express that X is in lex�ord � In general� the notion of adjunction in inf � as noted in Section
�� allows us to translate the conditions as follows	

C�� There is an element � in X

with ���
such that ��y��x�y� implies x��

C�� There is a binary operation � �� on X

with �c�a and d� b implies �c � d�� �a � b��
such that ��y��x�y and �y� a and y� b�� if and only if
��c� d��x�c � d and �c�a and d� b���

For X and A cartesian infosyses and R 	 X � A in kar�rel� we say that R is left exact
if it satis�es

M�� �R�
M�� if aRx and aRy then aR�x � y��
We write lex�kar�rel� for the locally�full sub�ord�category of kar�rel� determined by the

cartesian infosyses and left exact modules� Observe that if X and A are orders then a left
exact module as above is precisely what one usually understands by a left exact order ideal�

Before proceding with the main results of this section it will be useful to spell out explicitly
the �nite meets of IDX � �IDX���� for X an infosys�

The top element is Xo �
S
f� y j y � Xg while for S� T in IDX� S �T � �S �T �o� Thus u

is in S � T if and only if there exists a v with u�v and such that if x�v then x is in S � T�

Lemma �� For X an infosys �� If X satis�es C�� then Xo � � �� 
� If X satis�es C
�
then for S� T � IDX� if s � S and t � T then s � t � S � T �

Proof� �� is easy so consider the situation in ��� Since S and T are down�sets we can
take s� s� � S and t� t� � T from which we get �s � t�� �s� � t��� To show s � t � S � T

it su�ces now to show that if x� �s� � t�� then x � S � T� But we can take s�� s�� � S and
t�� t�� � T which with x� �s� � t�� and C�� gives y such that x�y and y� s�� and y� t�� from
which it follows that x � S � T�

Lemma �	 For L a �CCD� lattice� i� If L satis�es L�� then �L��� satis�es C��� ii� If L
satis�es L
� then �L��� satis�es C
�� For X an infosys� iii� If X satis�es C�� then IDX

satis�es L��� iv� If X satis�es C
� then IDX satis�es L
��
For f 	 L �� M sup�preserving with L and M lex �CCD�� v� If f satis�es F�� then

f� 	 �L��� � �M��� satis�es M��� vi� If f satis�es F
� then f� 	 �L��� � �M���
satis�es M
��
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For R 	 X � A a module with X and A cartesian� vii� If R satis�es M�� then R� 	
IDX �� IDA satis�es F��� viii� If R satis�es M
� then R� 	 IDX �� IDA satis�es F
��

Proof� iii� We recall from the paragraph preceding Lemma � that S �� T � IDX if and
only if ��t��S �� t and t � T �� If X satis�es C�� then by �� of Lemma �� we have Xo � ��
and also C�� implies that � � Xo so Xo �� Xo�

iv� For R�S� T in IDX assume that R �� S and R �� T with the �rst witnessed by
R ��s� s � S and the second by R �� t� for t � T� Let r � R� We have r� r� � R and hence
�r� r� and �r�� s and r�� t�� to which we can apply C�� and get r� �s� � t�� for some s�� s
and t�� t� Hence R �� �s�� t�� and since s� � t� � S �T by Lemma �� we have R �� �S �T ��

viii� For S� T � IDX and R 	 X � A it su�ces to show that RS � RT � R�S � T �
assuming that aRx and aRy implies aR�x � y�� But if a � RS � RT then certainly a � RS

and a � RT from which it follows that there exists s in S with aRs and there exists t in T

with aRt� Now aR�s � t� and by Lemma �� s � t � S � T so a � R�S � T � as required�
The proofs of the other clauses are left for the reader�

Theorem �
 The biequivalence ccdsup
�
�� kar�rel� restricts to a biequivalence�

lex�ccdfrm
�
�� lex�kar�rel��

It seems reasonable also to note the �map� version of the above theorem� Write lex�ccd
for the ord�category of lex �CCD� objects and arrows g 	 M �� L which are locale arrows
which have right adjoints� From Proposition �� it follows that the left adjoints� f 	 L ��M�

of such arrows are precisely frame homomorphisms that preserve � and such arrows were
of interest in 
���

Corollary �� The duality ccdcoop
�
��map�kar�rel�� restricts to a duality

lex�ccdcoop
�
��map�lex�kar�rel���

Finally� we turn again to totally algebraic lattices� The following Lemma is surely known
in much greater generality	

Lemma �� The forgetful ord�functor lex�ord �� ord creates inverters�
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The Lemma shows that in a lex �CCD� object the totally compact elements are closed
with respect to �nite meets� Thus a lex totally algebraic lattice is what was called a super�
coherent frame in 
�� � a lattice that is both lex �CCD� and totally algebraic� We write
lex�talfrm for the full and locally full sub�ord�category of lex�ccdfrm determined by these
and� similarly� lex�tal for the corresponding full and locally�full sub�ord�category of lex�ccd�
Again by Proposition ��� it follows that the left adjoint� L ��M� of an arrow M �� L in
lex�tal is precisely a frame homomorphism that preserves totally compact elements� �See

����

We write lex�idl for the ord�category of ordered objects with �nite meets and left ex�
act order ideals� In other words lex�idl is the full and locally�full sub�ord�category of
lex�kar�rel� determined by those infosyses which are orders� We de�ne Cauchy complete�
ness for objects of lex�ord in terms of maps in lex�idl and it is easy to see that for X in
lex�ord its Cauchy completion is given by QX as in Section �� Indeed� as was noted in 
���
� 	 DX �� DDX is given by �� for � 	 X �� DX� and if f 	 X �� Y is any arrow in
lex�ord then f� 	 DX �� DY is in lex�ord so that this remark follows from Lemma ��

Write lex�cor for the full and locally�full sub�ord�category of lex�ord determined by
the Cauchy complete objects� The results and proofs of Section � and the �rst part of this
section now combine to give the following	

Theorem �� The biequivalence talsup
�
�� idl restricts to a biequivalence lex�talfrm

�
��

lex�idl�

Corollary �� The duality talcoop
�
�� cor restricts to a duality lex�talcoop

�
�� lex�cor�

If E is the topos set and orders are assumed to be antisymmetric then the corollary
states the equivalence given in 
��� Remark �

� Projectivity

It is a central result of 
�� that the lex �CCD� lattices are precisely the regular projectives in
frm� the �ord��category of frames and frame homomorphisms� In view of our treatment of
left exactness above it is natural to conjecture that� modulo antisymmetry� �CCD� lattices
are precisely the �regular� projectives of sup and moreover that the proof of the result in 
��
is the lexi�cation of a proof of the latter� This is indeed the case as we show now� making
some ord�theoretic re�nements in the process�

��



Let e 	 L �� M be an arrow in either sup or frm and assume for the moment that all
objects are antisymmetric� Then� for well�known general reasons� e is a regular epimorphism
if and only if jej 	 jLj �� jM j is an epimorphism in the base� where we are using j � j to
denote underlying object functors to E� In either case e has a right adjoint� e�� �we switch
to the notation of the subject� and it follows� again for general reasons� that e is a regular
epimorphism if and only if ee� � �M � Of course it is well�known that in sup this last condition
characterizes epimorphisms� Said otherwise� epimorphisms are regular epimorphisms in sup�
In either case� the adjunction characterization� which we call co�fully faithful is the relevant
condition when antisymmetry is not assumed� �We have already had to distiguish carefully
between arrows which are monomorphisms in the base and those which are fully faithful��
Except as noted� we now revert to our usual position that orders are not assumed to be
antisymmetric�

We should point out that this notion of �cofully faithful� is best understood in terms
of the proarrow equipment sup �� supord� where the latter ord�category of sup lattices
is the full and locally�full sub ord�category of ord determined by the sup lattices and the
ord�functor is just the inclusion� For e above is cofully faithful if and only if for all N �
supord�e�N� is full�y faithful�� In other words� for all f� g 	 M �� N in supord� fe � ge

implies f � g� Similar remarks apply to the frm case�

Lemma �� For any X in ord� respectively lex�ord� and any diagram

L M�e

DX

�

g

in sup� respectively frm� with e co�fully faithful� the right lifting of g through e exists and
the exhibiting inequality is an isomorphism�

Proof� Consider� exactly as in 
���

L M�e

X DX��

�

h

�

gk

�
�
�
���

��



in ord� respectively lex�ord� where h is de�ned by h � e�g � and k is the unique sup�
respectively frm arrow that makes the top triangle commute in virtue of the fact that DX is
the free sup lattice� respectively frame� on X� We claim that k is the required lifting� Observe
that ek corresponds to eh � ee�g� � g� which corresponds to g and hence we have ek � g�

This is because in either case of the Lemma� D is an ord�left adjoint so that we have an
ord isomorphism ord�X�L� � sup�DX�L�� respectively lex�ord�X�L� � frm�DX�L�� Of
course if all our ordered objects are antisymmetric then we do not need this two�dimensional
aspect of the free functor to show that the triangle commutes but the stronger freeness
property allows us to conclude the �apparently� stronger lifting property� For assume that
l 	 DX �� L is any arrow in sup� respectively frm� with el � g� Then l � e�g and hence
l � � e�g� � h � k� which implies� by ord�universality� that l � k�

Let us say that an object C is universally projective if for all

L M�e

C

�

g

with e co�fully faithful� the right lifting of g through e exists and the exhibiting inequality
is an isomorphism�

Lemma �� Full core�ective subobjects of universal projectives are universal projectives�

Proof� Assume i 	 C� � D with i a r��C � ri and D a universal projective and
consider a con�guration as in the de�nition above� Let h � e	 gr� the right lifting of
gr through e and consider k � hi� Then ek � ehi � gri � g� where we have the �rst
isomorphism since D is a universal projective� If l 	 C �� L satis�es el � g then elr � gr

so that lr � h and hence l � hi � k

Remark �� Symbolically� we have above e	 g � �e	 gr�i� We have been deliberately
non�committal about the hypotheses for Lemma �� It is clearly abstract ord�nonsense and
generalizes in a variety of ways� For example� there is no mention in the proof of co�fully
faithfulness�

�



We have implicitly noted in 
�� that the adjoint sequence of a �CCD� lattice� �a
W
a��

may extend arbitrarily to the left� For example� if C is in ord then DnC has a sequence
�terminating at �� of length �n��� In particular� recall that � for DC is given by �� ��C���
so if C is a sup lattice then �

W
C�� a� �We always have ��� for a �CCD� lattice� so whenever

there is a further adjoint� n
W
a�� we have also

W
� n
W
� We return to this in Section �� Note

that we use the phrase �g 	 D �� C has a section� to mean that there exists f 	 C �� D

with gf � �C �

Theorem �� For C in sup� respectively frm� the following are equivalent�
�� C is �CCD�� respectively lex �CCD�

� C is a universal projective in sup� repectively frm
� Assuming orders are antisymmetric� C is a regular projective in sup� repectively frm
��
W
	 DC �� C has a section in sup� repectively frm�

Proof� ��	 �� In either case � 	 C� � DC exhibits C as a full core�ective subobject
of a universal projective� ��	� Trivial� �� or �	�� Follows immediately since

W
is co�fully

faithful� ��	�� Given any f with
W
f � �C we argue that f is necessarily left adjoint to

W
�

It su�ces to show that f
W
� �DC � But f preserves sups so we have

f
W �

S
f� �

W
� f� � �

W
f�� � ��C�� � �DC where the containment is an instance of the

inequality that precedes the theorem statement�

	 Tensor products

In 
��� it was shown that Grothendieck�s notion of nuclear object makes sense in a symmetric
monoidal closed category� To wit� L is nuclear if and only if� for all M � the canonical arrow
L��M �� 
L�M � is an isomorphism� where L� is 
L� I�� I being the unit object� The author
noted that it su�ces for the condition to hold for M � L� In a subsequent paper� 
��� the
condition was explored in the symmetric monoidal closed category sup � sup�set� and it
was shown that the nuclear objects are precisely the completely distributive lattices� If the
axiom of choice holds in set then completely distributive is equivalent to �CCD�� 
��� so it is
reasonable to expect that nuclearity is constructively equivalent to �CCD� � of course over
an arbitrary topos� E�

The monoidal structure of sup � sup�E� was used extensively in 
���� We recall that
the unit object is � so that L� is 
L��� while Lop is isomorphic to 
L��op�� There is a
comparison L� �� Lop in sup� namely 
L��� � where � is negation for �� Thus � ��� as
used in 
��� is isomorphic to � �op� if and only if the base is Boolean� Following 
��� we

��



de�ne � �� 	 supop �� sup by �f 	 L �� M�� � �f��op 	 Lop �� Mop� Note that various
expressions involving � �� in 
�� become expressions involving � �� in the context of 
��� but
the de�nition of nuclearity is not one of them�

Temporarily confusing are the observations that � �� for the monoidal category �kar�rel��
� � �� �� is � �op and that in this monoidal category every object is nuclear� Both follow
from the adjunction ��X a Xop �� given in Proposition �� Now the monoidal structure
of ccdsup as in Corollary �� is that given by transport of structure along the biequivalence
ccdsup

�
�� kar�rel�� so it follows that relative to thismonoidal structure every �CCD� lattice

is nuclear� Provisionally writing � �� for the transported � �� and � for the transported
tensor� L��M is the internal hom in ccdsup�

Lemma �	 The usual monoidal structure of sup restricts to ccdsup and the resulting struc�
ture is equivalent to the one above�

Proof� The unit for the transported structure is ID��� D� � P�� � �� which is the
unit for the tensor in sup � It now su�ces to show that the transported internal hom is
equivalent to that of sup � So we have to show that for �CCD� lattices L and M � L��M
is suitably isomorphic to 
L�M �� But the underlying ord�object functor� sup �� ord� is
given by sup����� and we have

sup��� L��M� � ccdsup��� L
��M� � ccdsup�L�M� � sup�L�M� � sup��� 
L�M ��

from which the result follows�

In particular� � �� is just the restriction of the usual � �� for sup and the following
summarizing statements may be helpful	

i� � �� 	 supop �� sup is an involution�
ii� � �� restricts to ccdsup

op �� ccdsup if and only if E is Boolean�
iii� � �� restricts to ccdsup

op �� ccdsup�
iv� � �� 	 ccdsup

op �� ccdsup is an involution�
v� For any infosys X� �IDX�� � ID�Xop��
Note that statement ii�� which has not been discussed above� was a central result of 
���

Theorem �
 A complete lattice is nuclear if and only if it is �CCD��

Proof� If L is �CCD� then by Lemma � we have L��L � 
L�L� which shows that L is
a nuclear object of sup � Conversely� assume that for allM in sup we have L��M � 
L�M �
and let e 	 M �� N be cofully faithful in sup � Then L� � e 	 L� �M �� L� � N is

��



cofully faithful� �We skip the details of this claim� It is best understood at this level of
generality in terms of the theory in 
��� Certainly though if orders are antisymmetric then
it is clear� For in that case we are simply saying that the left adjoint� L� � �� preserves
epimorphisms�� Hence 
L� e� 	 
L�M � �� 
L�N � is cofully faithful in sup� Now the arrow
sup�L� e� 	 sup�L�M� �� sup�L�N�� in ord has a right adjoint such that we can construct
the requisite lifting which shows that L is a universal projective in sup� Thus� by Theorem
�� L is �CCD��


 Adjoint Sequences

In this section we characterize DX for X a sup lattice and for X a �CCD� lattice in terms
of extra adjoints� We will refer to the following situation	

L DL� W
�

�

�
�

�
n
W

�
�
�

This con�guration was considered by R�E� Ho�mann 
�� for continuous posets� There
in place of down�closed subsets he considered down�closed and up�directed subsets� Some
of our proofs below are similar to his but a more systematic use of adjointness makes them
constructive�

For S � DL we have S � �b if and only if ��s � S��s� b� so that b is an �upper bound�
with respect to � of S� To say that there exists n

W
a� is to say that every S � DL has a

��least ��upper bound� We de�ne a � n
W
� a� so that a is the smallest �element� x such

that a� x�

Lemma �� a is totally compact�

Proof� We have a� a which implies ��b��a� b� a�� Now a � b� by universality of a�
hence a � b� a and so a� a�

As in Section �� write X � X �L� for the inverter of ��� i� e� fx � L j x� xg�

Lemma �� There is an adjunction� X L�� �
� � �

and hence X is a sup lattice�

��



Proof� From a � a we have a � a� so if a � x then a � x� Conversely� for x � X� if
a � x then a � x� x gives a� x� whence a � x�

Theorem �� For a sup lattice L� we have

L DL� W
�

�

�
�

�
n
W

�
�
�

if and only if L � DX for some sup lattice X�

Proof� �if� For a sup latticeX we have X DX�
�X

�
W

� which� as noted prior to Theorem
�� gives

DX DDX�
D�X �
�DX

�
��X��

� W
�

�

�

�

�

�only if� Assuming n
W
a�a

W
a � for L we show �rst that L is totally algebraic� It

su�ces to show that ��a��a �
W
fx j x� x � ag ���

We have a �
W
fb j b� ag since L is �CCD�

�
W
fb j b� ag since b � b

�
W
fx j x� x � ag since fb j b� ag � fx j x� x � ag�

From 
�� and as noted at the beginning of Section � we have

X L��X

DX

�
�
�
�
��R �

��

whereX � X �L�� Lemma �� already shows that X is a sup lattice and clearly the equivalence
identi�es � � and

W
X �

Theorem �� For a sup lattice L� we have

��



L DL� W
�

�

�
�

�
n
W

�
�

�
�
�
�

if and only if L � DX for some �CCD� lattice X�

Proof� �if� Applying D to the con�guration of adjoints which de�nes �CCD� produces
the con�guration above�

�only if� By Theorem �� we have L � DX� �X � X �L�� X a sup lattice� It su�ces to
show that X is �CCD�� Now consider

X DX� W

DX DDX
�

�X

�
�DX

��

� n
W
�
W
� �

�

which we have by assumption and general considerations� The left adjoint to
W

�
W
X isW

DX � �� �X �

Similar results for longer adjoint sequences terminating at � follow by induction�
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