
Constant Complements, Reversibility and
Universal View Updates�

Michael Johnson1 and Robert Rosebrugh2

1 Department of Computer Science
Macquarie University
mike@ics.mq.edu.au

2 Department of Mathematics and Computer Science
Mount Allison University

rrosebrugh@mta.ca

Abstract. The algebraic specification of information systems (including
databases) has been advanced by the introduction of category theoretic
sketches and in particular by the authors’ Sketch Data Model (SkDM).
The SkDM led to a new treatment of view updating using universal prop-
erties already studied in category theory. We call the new treatment suc-
cinctly ”universal updating”. This paper outlines the theory of universal
updating and studies the relationships between it and recent theoretical re-
sults of Hegner and Lechtenbörger which in turn studied the classical ”con-
stant complement” approach to view updates. The main results demon-
strate that constant complement updates are universal, that on the other
hand there are sometimes universal updates even in the absence of constant
complements, and that in the SkDM constant complement updates are re-
versible. We show further that there may be universal updates which are
reversible even for views which have no complement. In short, the univer-
sal updates provide an attractive option including reversibility, even when
constant complements are not available. The paper is predominantly theo-
retical studying different algebraic approaches to information system soft-
ware but it also has important practical implications since it shows that
universal updates have important properties in common with classical up-
dates but they may be available even when classical approaches fail.

Keywords: View update, semantic data model, category theory.

1 Introduction

To provide usability, security, access limitation, and even interoperability for
database systems, the designer of a database schema may specify a subschema
or “view”. Any database state instantiating the database schema determines a
view state instantiating the view schema by substitution. A user with access to
the view state may perform an update to the view state. The question arising

� Research partially supported by grants from the Australian Research Council and
NSERC Canada.

J. Meseguer and G. Roşu (Eds.): AMAST 2008, LNCS 5140, pp. 238–252, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Constant Complements, Reversibility and Universal View Updates 239

is how to determine an appropriate update to the state of the total database.
This problem, known as the “view update problem” has been widely studied.
There is a variety of “solutions”, referred to as “translations”, but many of these
are either narrow in their application or not apparently close to actual database
models. The implementation of view updates, especially within standards such
as SQL, has been largely based on ad hoc and very limiting requirements.

Much of the literature on the view update problem is over 15 years old, but in
recent years there have been several new contributions. In 2002, Hegner [6] intro-
duced an order based theory of database views and their updates which general-
ized the constant complement approach to view updating originally developed by
Bancilhon and Spyratos [1]. In 2003 Lechtenbörger [10] explored the relationship
between the reversibility of updates and constant complements. More recently
Bohannon, Pierce and Vaughan [4] introduced lenses, a structure providing a
lifted state for a given state and the updated version of its view state. Lenses
guarantee translations for the constant complement views and they noted that
view updating in the style of Bancilhon and Spyratos allows only a “relatively
small number of updates on a view to be translated”. Dayal and Bernstein [5]
were more permissive in the view update translations that they proposed and
also considered a criterion that in modern terms would be described as a univer-
sal property: They discuss (p 401) the desire for view update translations to be
unique and minimal. In a similar vein, Hegner finds that “within the constant
complement order-based framework, the reflection of an order based update of a
view to the base schema is unique, without qualification.” The present authors
have investigated an approach to database schemas, states and views based on
categorical algebra [7]. This data model prescribes a solution to the view update
problem using precisely universal properties (unique minimal translations).

The problem addressed by this paper is to understand better the relationship
between universal updates and constant complement updates in the context of
our data model. Hegner’s order-based context models database states more ac-
curately than considering them to be abstract sets, and his results are suggestive
of what we will find. Lechtenbörger showed that, in a suitable sense, constant
complement updates were always reversible, and conversely if all updates to a
view are reversible then it is possible to find a constant complement for it. The
main contributions of the present article are

1. To develop the framework in which universal updates properly reflect ambi-
ent database structure

2. To show that in that framework constant complement updates are, in har-
mony with Hegner’s results, necessarily universal

3. To show that in that framework constant complement updates are, in har-
mony with Lechtenbörger’s results, reversible

4. To provide examples to demonstrate that universal updates are more general
than both constant complement updates and reversible updates

We note particularly that view updates can have very attractive properties in-
cluding universality and even reversibility without necessarily having any con-
stant complement (without contradicting Lechtenbörger’s results, see below).

240 M. Johnson and R. Rosebrugh

As mentioned above, the work presented here uses the sketch data model
(SkDM) [8], [9] which is based on categorical algebra. This data model is related
to both the popular and widely used entity-relationship model and to the func-
tional data model of Shipman [12]. Entities and attributes are modelled using
a simple graphical language. Relationships among them are constrained using
concepts from category theory that express selection, projection, join and union
constraints. The syntactic formalism derived from these ideas is expressed by
the concept of “sketch”. The sketches we use are called Entity-Attribute (EA)-
sketches and are described in detail below.

Straightforward procedures and a variety of software applications translate
entity-relationship diagrams into relational database schemas, whose semantics
are database states. For the sketch data model, a similar implementation is in
progress (see for example [11], an EA-sketch compiler which supports graphical
manipulation of EA-sketches and automatic conversion into Oracle and MySQL
database schemas).

The structure of the paper is as follows. In Section 2 we present a small moti-
vating example of a sketch data model followed by the formal definitions of EA
sketches, views, and propagatable (universal) updates. Section 3 is devoted to
developing the main results relating propagatable updates to constant comple-
ments and reversibility respectively. Finally, Section 4 relates those main results
to the work of others.

2 An Example and the Sketch Data Model

The results presented in Section 3 need the technical details of the sketch data
model which are given below. First we work through a motivating example.
Other examples can be found in [9] and in case-studies and consultancies, cited
there.

We assume some familiarity with Entity-Relationship (ER) notation and the
basic language of categories and functors applied to Computer Science as found,
for example, in [2].

Example 1. When aircraft land at an airport in restricted visibility conditions
they use an “instrument approach”. We describe part of a database schema
for instrument approaches. The main entities involved are airports, runways,
waypoints (fixes) and the instrument approaches themselves. For example, there
is a VOR (VHF Omni-Range) approach to Runway 18 at Willard Airport near
Champaign. An approach also involves a specified waypoint of one of several
types which defines its final approach fix (faf). The main types of waypoints
are VOR, NDB (another kind of navigation aid) and GPS waypoints (GPSWP).
Also required is a waypoint to fly to in case of a missed approach (overshoot).

An EA sketch has four components which we will now prescribe for our exam-
ple. The first component (as for ER diagrams) is a directed graph G. Figure 1
shows (the main elements of) the directed graph for an EA sketch.

Entities are nodes of G, but there are no “relationship” nodes. In an ER
diagram Approach might be a relationship from Runway to Waypoint. Here that

Constant Complements, Reversibility and Universal View Updates 241

Waypoint Approach��

Airport

Waypoint

��

nrst

Airport Runway�� at
Runway

Approach

��

to

VOR VORApproach��

Waypoint

VOR

��

is a
��

Waypoint Approach��
faf

Approach

VORApproach

��

GPSWP

Waypoint

��
is a

����������

NDB Waypoint��is a �� Waypoint

Overshoot
��
at �����

Approach

Overshoot on�������

Fig. 1. Graph for part of an instrument approach database schema

is expressed by the directed edges to and faf. In a database state an entity node
is modelled by an entity set just as for an ER diagram. Instead of being modelled
as a relationship set in the ER fashion, Approach is also modelled as an entity set.
However, the directed edges from Approach are modelled by functions. The is a
relationships are denoted here by edges indicated �� �� . As for an ER diagram,
they are modelled by injective mappings. The other directed edges in G are
modelled by functions (and can be thought of as methods or, from the database
perspective, as integrity constraints). Given an instance of their source type they
return an instance of their target type.

The other three components of an EA sketch do not appear in ER diagrams
and they express database constraints. The second component is a set of com-
mutative diagrams. Here a commutative diagram is a pair of paths in G with
common source and target. They specify equality functional constraints. In our
example, the right-then-top and bottom-then-left paths around the upper rect-
angle is a commuting diagram. It represents a real-world constraint: Each (in-
strument) Approach to a particular Runway at a particular Airport uses as faf
a Waypoint located at that same airport. In contrast, the two paths from Ap-
proach to Waypoint (the triangle) is not a commutative diagram—the rules for a
particular approach require that on overshooting, an aircraft holds at a partic-
ular Waypoint which will not usually be the final approach fix Waypoint. In this
example, the bottom rectangle is also a commutative diagram as noted below.

The last two components of an EA sketch also express database constraints.
They will require a node of G to have an entity set in a database state that
depends on those of other nodes for the state. The third component of an EA
sketch is a set of finite cones in G. A cone in G has a vertex, a base diagram,
and projection edges from the vertex to base nodes. An example from Figure 1
follows. This cone has vertex VORApproach (the vertex is a node of G). The
base diagram of the cone is the pair of edges VOR �� Waypoint �� Approach.
The base is a diagram in the graph, given formally by a graph morphism to
G. The projections from the vertex to the base nodes are the edges in G from
VORApproach to Approach, VOR and Waypoint—the last edge is not shown in
Figure 1, but it is the common value of the right-then-top and bottom-then-left
paths (since the bottom rectangle is commutative!) The constraint this cone
expresses is that in models VORApproach is the pullback of the base cospan. In

242 M. Johnson and R. Rosebrugh

fact this is precisely how join database constraints are specified. Selection, is a
and projection constraints can also be expressed with finite cones. We mention
a further point about the cones. An EA sketch is required to have a special cone
whose vertex is called 1 (and usually not depicted) and whose base diagram is
empty so that in models its value is 1.

The fourth component of an EA sketch is a set of finite discrete cocones.
A discrete cocone has a vertex, a base diagram and links to the vertex from
base nodes. Being discrete means no edges are permitted in the base diagram.
In Figure 1 there is a discrete cocone with vertex Waypoint. Its base nodes are
NDB, VOR, and GPSWP. The links to the vertex from the base nodes are the is a
edges. For discrete cocones the links are called injections ; they are necessarily
injective functions in database states. This cocone expresses the constraint that
the elements of (the entity set) Waypoint are exactly the disjoint union of (the
elements of the entity sets) NDB, VOR, and GPSWP. The formal requirement is
that the vertex be the sum, or coproduct, of the base nodes.

As is usual practice, we did not draw the attributes—the “A” in EA—in Fig-
ure 1, but they are definitely a part of the EA sketch. Attributes are (often large)
fixed value sets. Examples in this case are the radio frequency of a navigation
aid, the surface type of a runway, the length of a runway, the four character
identifying code of an airport, etc. An attribute is the vertex of a cocone whose
finite discrete base has all of its nodes specified by the special node 1 and whose
injection edges are called elements. In every state, an attribute’s value is exactly
the sum of its elements. Formally, the cocones that define attributes are part of
the underlying graph. (In practice, attributes are usually listed separately in a
data dictionary.)

We now proceed with the formalism required for EA sketches and their model
categories. The first three definitions are general [2] and are included to establish
notation before we specialize to our EA sketches and their models.

Definition 1. A sketch E = (G,D, L, C) consists of a directed graph G, a set
D of pairs of directed paths in G with common source and target (called the
commutative diagrams) and sets of cones L and cocones C in G. The category
generated by the graph G with commutative diagrams D is denoted C(E).

Definition 2. Let E = (G,D, L, C) and E
′ = (G′,D′, L′, C′) be sketches. A

sketch morphism h : E �� E
′ is a graph morphism G �� G′ which carries,

commutative diagrams in D, cones in L and cocones in C to respectively com-
mutative diagrams in D′, cones in L′ and cocones in C′.

Definition 3. Denote the category of finite sets by setf . A model M of a sketch
E is a functor M : C(E) �� setf such that the cones in L and cocones in C
are sent to limit cones and colimit cocones in setf . If M and M ′ are models
of E a morphism φ : M �� M ′ is a natural transformation from M to M ′.
The category Mod(E) has objects the models of E and arrows the morphisms of
models.

Constant Complements, Reversibility and Universal View Updates 243

EA sketches as described in Example 1 have some limitations on their cones and
cocones and they are adequate for describing the needed database constraints,
but restrictive enough to permit definition of the query language.

Definition 4. An EA sketch E = (G,D, L, C) is a sketch with only finite cones
and finite discrete cocones and with a specified cone with empty base whose vertex
is called 1. Edges with domain 1 are called elements. Nodes which are vertices of
cocones all of whose injections are elements are called attributes. Nodes which
are neither attributes, nor 1, are called entities.

The next definitions are fundamental: the semantics i.e. database states, for an
EA sketch are specified by a set for each node of the graph and a function for
each edge subject to: equality of composition constraints (from the commutative
diagrams); select, project and join constraints (from the cones); and (disjoint)
union constraints (from the discrete cocones).

Definition 5. A database state D for an EA sketch E is a model of E. The
category of database states of E is Mod(E). An insert update (respectively delete
update) for a database state D is a monomorphism D �� �� D′ (respectively
D′ �� �� D) in Mod(E).

A morphism of database states is a monomorphism when each component mor-
phism is monic. Thus our definition of a delete (resp. insert) update means that
some elements are deleted (resp. inserted) in in the set specified for each node.
The following definition encodes the requirement of the relational model for en-
tity integrity, since it means that there is a chosen primary key for each entity.

Definition 6. The EA sketch E is keyed if for each entity E there is a specified
attribute AE called its key attribute and a chosen monic specification E �� �� AE.

For a keyed EA sketch, it turns out that all morphisms between database states
are monomorphisms ([8], Proposition 4.7) since all of the natural transformation
component mappings are injective.

Example 2. We give a simple EA sketch E1 that we will consider in the sequel.
It is a variant of an example in [6]. The database records people, their names
and departments and their assignments to projects.

The graph is just that depicted below. There are no commutative diagrams

AsstKA
��kA�� Asst

Person

p

���������
Asst

Proj

q

		�������

Person

Name

n

Person Dept
d �� Dept

KD

kD

Proj

KP

kP

The attributes are KA, Name, KD and KP (we do not show their cocone
specifications in the diagram). Entities are Asst, Person, Dept and Proj. The
edges kA, n, kD and kP are keys, so there are also several cones not shown. �

244 M. Johnson and R. Rosebrugh

Before giving the definition of view, we briefly discuss the query language of an
EA sketch. One of the advantages of the sketch data model is that an EA sketch
comes equipped with a query language. For any EA sketch E there is a category
called the theory of the sketch denoted Q(E) (for details consult [3, Section 8.2]).
This Q(E) is constructed starting from C(E) and then formally adding to it all
finite limits and finite sums, subject to the (co)cones in L and C. For example,
Q(E1) has objects like Pers × Proj and Dept + Asst. From its construction, Q(E)
includes E and actually has all finite limits and finite sums. An essential point is
that Mod(Q(E)) is equivalent as a category to Mod(E). This is because a Q(E)
model restricts to an E model and conversely an E model determines values on
queries and so a Q(E) model.

A view allows a user of an information system to manipulate data which are
part of, or are derived from, an underlying database. As we are about to define
it, a view of an EA sketch E has a new EA sketch V with the entities of V

interpreted via a sketch morphism V as entities from the original EA sketch E

or even query results (entities of Q(E)). Formally,

Definition 7. A view of an EA sketch E is an EA sketch V together with a
sketch morphism V : V �� Q(E).

Example 3. A view V1 : V1 ��Q(E1) of E1 is specified by the inclusion in Q(E1)
of the sketch whose graph is just the three edges kA, np and kP q (the latter two
being composites of edges in E1). Note that the composite edges np and kP q are
not edges in E1 but they are present in C(E1) and so in Q(E1). �

The equivalence of Mod(E) with Mod(Q(E)) means a database state D : E ��

setf can also be considered as a model of Q(E), also denoted D. Composing
the model D with a view V gives a database state DV : V �� Q(E) �� setf

for V, the V -view of D. This operation of composing with V is written V ∗ so
V ∗D = DV and so we obtain a functor V ∗ : Mod(E) �� Mod(V) which sends
a database state for E to one for V.

We sometimes refer to a database state of the form V ∗D as a “view”. Context
determines whether “view” refers to a database state, or to the sketch morphism
V . To avoid ambiguity we also refer to V ∗D as a view state and to V as the
view sketch. Our framework implies an inessential difference from other work on
views. When the database states are simply a set [1], [10] instead of a category
like Mod(E) the analogue of V ∗ is a mapping called the view definition mapping.
If the states are a partially ordered set [6] it is a monotone mapping. These
mappings are usually required to be surjective so that every view state arises
from a state of the underlying database. While V ∗ may be surjective on objects
(view states), we do not require this, so we formally allow view states not derived
from underlying database states. In examples V is usually one-one on objects
making V ∗ surjective on objects.

Since a view state is itself a database state for its view sketch, we may (subject
to the constraints of the view sketch) insert items in or delete items from a view
state. An insertion in, or deletion from, the view state V ∗D is translatable to
the underlying database state D if there is an insertion in or deletion from

Constant Complements, Reversibility and Universal View Updates 245

the underlying database which, on application of V ∗, becomes the given view
insert/delete. We will say the insertion or deletion is propagatable if there is a
unique “minimal” insert/delete in the following sense.

Definition 8. Let V : V �� Q(E) be a view of E. Suppose D is a database state
for E, T ′ a database state for V, and i : V ∗D �� �� T ′ is an insert update of V ∗D.
The insertion i is propagatable if there exists an insert update m : D �� �� D′ in
Mod(E) with the following property: i = V ∗m and for any database state D′′ and
insert update m′′ : D �� �� D′′ such that V ∗m′′ = i′i for some i′ : T ′ �� �� V ∗D′′,
there is a unique insert m′ : D′ �� �� D′′ such that V ∗m′ = i′ as in

V ∗D T ′�� i ��

D

V ∗D
�
�
�D D′�� m �� D′

T ′
�
�
�

V ∗D

V ∗D′′

��

V ∗m′′ ���������������� T ′

V ∗D′′

		 i′

					

D′

D′′

		
m′

			
	

	

D′′

V ∗D′′
�
�
�

D

D′′

��

m′′ �������������������

where the dashed vertical lines indicate, for example, that V ∗D is the image of
D under V ∗. If every insert update on V ∗D is propagatable, we say that the view
state V ∗D is insert updatable.

Definitions of propagatable for a deletion d : T ′ �� �� V ∗D and delete updatable
for a view state are obtained by reversing some arrows. Note that the m whose
existence is required is essentially unique. By this we mean that for any other
n : D �� �� E′ that satisfies the requirements on m, there is an invertible morphism
of database states j : D′ �� E′ satisfying jm = n.

Example 4. Let D be a model of E1. We consider some updates for the view V1
of Example 3.

First, any delete from the value V ∗
1 D(Asst) is propagatable: the deleted as-

signment is simply deleted from D(Asst). There are no other consequences. Since
the other nodes of the graph of V1 are attributes and hence their values are the
same in every database state, no other deletes are possible.

Next consider inserting an item a into the view state V ∗
1 D at V ∗

1 D(Asst).
That is, we wish to add an assignment in the view. Once again, there are no
other possibilities for insertion in V ∗

1 D. This requires defining V ∗
1 D �� �� T ′ and

so defining KA, Name and KP values T ′(kA)(a) and so on. If the proposed Name
and KP values, T ′(np)(a) and T ′(kP q)(a) are already in the images of D(n)
and D(kP) because the person and project exist already, and provided there is
a free assignment key in D(KA) for the value of T ′(kA)(a), then the insert is
propagatable to a D �� �� D′ since values of D′(p)(a) (and hence also D′(d)(a))
and D′(q)(a) are determined. Even if the proposed KP value is not an image of
D(kP) this remains true since it is then possible to insert an item b into D(Proj)
and set D′(q)(a) = b and D′(kP)(b) = T ′(kP q)(a). However, if the proposed
Name value is not an image of D(n), there is no canonical choice of Dept value
D′(dp)(a) and consequently the update is not propagatable. �

246 M. Johnson and R. Rosebrugh

When all insert (respectively, delete) updates of a view are propagatable then
V ∗ is called a right (resp. left) fibration. For criteria guaranteeing this property
see [9]. For historical reasons, the arrow m in Definition 8 is called op-cartesian,
while the analogous arrow for a delete is called cartesian and we will use these
names below.

3 The Main Results

In this section we will study constant complements and reversibility.
A notion of view complement appeared in the influential article of Bancilhon

and Spyratos [1], a study of the view update problem. They consider database
states to be a set S, view states to be a set V and give a surjective view definition
mapping f : S �� ��V from the database states onto the view states. A view update
is taken to be an endo-function u on the view states. A set U of view updates is
specified and assumed to be complete, i.e. closed under composition and including
the identity function. A translation Tu of a view update u is a database update
(endo-function on S) such that the view of a translated database state is the
update of the view of the state, i.e. f(Tu(s)) = u(f(s)) (and Tu acts as the
identity on any s whenever u acts as the identity on f(s)). A translation Tu is a
solution to the view update problem for the update u and a translator T for U
is a set of translations {Tu | u ∈ U}. The diagram following is suggestive:

f(s) u(f(s))� ��

s

f(s)

�
�s Tu(s)� �� Tu(s)

u(f(s))

�
�

Bancilhon and Spyratos show that a translator T for a complete update set
implies the existence of a “constant complement view” C. This is a second set C
of view states with a second view definition mapping, say g : S �� C, such that
the mapping 〈f, g〉 : S �� V × C is a bijection (C is a complement of V) and
such that g(Tu(s)) = g(s) holds for Tu ∈ T, s ∈ S (any Tu in T is constant on
C). They also showed a converse. This is the basis of the “constant complement”
update strategy.

Lechtenbörger [10] has recently shown that constant complement translators
exist when all of the view updates are reversible by other view updates.

In the description above the database states are taken to be an unstructured
set and (subject to completeness) the updates are simply an abstract set of endo-
functions. Hegner [6] suggests that the database states and the view states ought
to be partially ordered sets. Then delete and insert updates should relate states
that are comparable, i.e for a state s and update u, either s ≤ u(s) or u(s) ≤ s.
Our definition above suggests that updates should be arrows in a category of
database states. We point out an important difference. In [1] and [6] an update
u acts on every (view) state—it is a process mapping states to updated states—
whereas for us, an update compares a single state to an updated state.

We start with the definition that begins to express these ideas in our context.

Constant Complements, Reversibility and Universal View Updates 247

Definition 9. Let E, V and C be EA sketches and V : V �� Q(E) and C :
C �� Q(E) be views. We say C is a complement of V if the functor

〈V ∗, C∗〉 : Mod(E) �� Mod(V) × Mod(C)

is full, faithful and injective on objects.

Definition 10. Let V : V �� Q(E) and C : C �� Q(E) be views with C a
complement of V and α : R �� V ∗D be an arrow in Mod(V). We say that α
has a C-constant update if there is α̂ in Mod(E) with α = V ∗α̂ and C∗(α̂) an
isomorphism. Dually, α has a C-opconstant update if β : V ∗D �� S is V ∗β̂
and C∗(β̂) is an isomorphism.

The definition does not require that α be propagatable, but only that it be the
image under V ∗ of some α̂. More generally,

Definition 11. Let V : V �� Q(E) and C : C �� Q(E) be views with C a
complement of V . We say that V has C-constant updates if every α : R �� V ∗D
has a C-constant update. V has C-opconstant updates is defined dually.

Example 5. Consider an EA sketch E that is specified completely (except for 1)
by a sum diagram

Support i �� Dept �� j
Production

That is, in any state the Dept entity set will be the disjoint union of the support
departments and the production departments. Suppose that V and C are the EA
sketches whose graphs have (in addition to 1) exactly one node each: Support
and Production respectively and that V : V �� Q(E) and C : C �� Q(E) are the
sketch morphisms providing the obvious inclusions of the two views. A state M
of E is determined by a sum diagram:

MSupport Mi �� MDept �� Mj
MProduction

in setf and a state of either V or C by any set. Thus

〈V ∗, C∗〉 : Mod(E) �� Mod(V) × Mod(C)

sends the sum diagram above to the pair 〈MSupport, MProduction〉 of sets. It is
immediate that C is a complement of V . Indeed, here 〈V ∗, C∗〉 is an equivalence.

Notice that any deletion α : R �� �� V ∗M in Mod(V) is propagatable: simply
delete appropriate elements from MSupport and the corresponding elements from
MDept. If we denote the cartesian arrow by α̂ : αM �� M , so α = V ∗α̂ we see
that C∗(α̂) is the identity on MProduction. Thus, α has a C-constant update,
and indeed V has C-constant updates. Note further that α̂ is also opcartesian
for the arrow α : V ∗αM �� MSupport. That is, α is ‘reversible’ in the sense of
Definition 12.

Similarly, β has C-opconstant updates for any insertion β : V ∗M �� �� S in
Mod(V), and β is reversible. �

248 M. Johnson and R. Rosebrugh

The next two theorems show that the constant complement updates are among
the propagatable (universal) updates.

Theorem 1. Let V : V �� Q(E) be a view and let C : C �� Q(E) be a com-
plement and α : R �� �� V ∗M be a deletion in Mod(V). If α has a C-constant
update, then α is propagatable.

Proof. Suppose that α̂ : N �� M satisfies α = V ∗α̂, C∗α̂ is invertible, β̂ :
P �� M and γ : V ∗P �� R satisfy V ∗β̂ = αγ. We need to construct a unique
γ̂ : P �� N satisfying V ∗γ̂ = γ as in:

V ∗P Rγ
��

P

V ∗P
�
�P N

γ̂
�� N

R

�
�P M

β̂

��

R V ∗M��
α

��

N

R

�
�N M��

α̂
�� M

V ∗M
�
�

Since C is α-constant, we have 〈γ, (C∗α̂)−1C∗β̂〉 : 〈V ∗P, C∗P 〉 �� 〈V ∗N, C∗N〉.
Now 〈V ∗, C∗〉 is full by assumption, so there is an arrow γ̂ : P �� N with
V ∗γ̂ = γ and C∗γ̂ = (C∗α̂)−1C∗β̂.

To see that α̂γ̂ = β̂, recall that 〈V ∗, C∗〉 is faithful and note that:

〈V ∗, C∗〉α̂γ̂ = 〈V ∗α̂γ̂, C∗α̂γ̂〉
= 〈αγ, C∗α̂(C∗α)−1C∗β̂〉
= 〈V ∗β̂, C∗β̂〉
= 〈V ∗, C∗〉β̂

To see that γ̂ is unique, just note that α̂ is monic. ��
Theorem 2. Let V : V �� Q(E), let C : C �� Q(E) be a complement and
β : V ∗M �� �� S be an insertion in Mod(V). If β has a C-opconstant update,
then β is propagatable.

Proof. Suppose that β̂ : M �� N satisfies β = V ∗β̂, C∗β̂ is invertible, α̂ :
P �� M and γ : V ∗M �� S satisfy V ∗α̂ = γβ. The construction of γ̂ : N �� P
satisfying V ∗γ̂ = γ is formally dual to that above, indeed C∗γ̂ = C∗α̂(C∗β̂)−1.
To see that γ̂ is unique, suppose that V ∗γ = γ and γβ̂ = α̂. Then C∗(γβ̂) = C∗α̂
so C∗γ = C∗γC∗β̂(C∗β̂)−1 = C∗α̂(C∗β̂)−1 = C∗γ̂. Now by faithfulness of
〈V ∗, C∗〉 we conclude that γ = γ̂. ��
However, a view update may be propagatable for a view with a complement, but
there may not be a constant complement.

Example 6. A complement C1 for the view V1 of the (keyed) assignments database
from Example 3 is provided by the inclusion of the sketch C1 whose graph is:

Person

Name

n

Person Dept
d �� Dept

KD

kD

Proj

KP

kP

Constant Complements, Reversibility and Universal View Updates 249

We saw in Example 4 that the insertion of an assignment with a new project
value in a state of V1 can be propagatable. However, such an insertion α cannot
have a C1-constant update—its value at the entity Proj must change. Further-
more Proj must play a part in any complement, so this example shows not just
that C1 is not constant, but that no complement can be constant. �

Even more, a view may have all of its updates propagatable, but have no constant
complement updates at all.

Example 7. Suppose that an EA sketch E is specified completely by commutative
square with P the vertex of a cone to the right side and bottom edges (a pullback
diagram):

1 Locations
Pisa

��

P

1

P Suppliersb′
�� Suppliers

Locations

basedat

Suppose that V is the EA sketch with one node P , and that V is the obvious
inclusion. No choice of view complement C : C ��Q(E) whose image is contained
in E, but which does not contain P , can provide a complement for V . To see
this notice first that P specifies an inverse image (it is really a simple selection
of Suppliers where based at equals Pisa). Any complement of V must contain at
least the nodes Suppliers and Locations and the edge based at. If any of these
is not present in a view C then 〈V ∗, C∗〉 fails to be injective on objects. On
the other hand, if C contains all of them then 〈V ∗, C∗〉 is injective on objects
and faithful, but it fails to be full. Indeed, for states M and M ′, the only arrows
〈h, k〉 : 〈V ∗M, C∗M〉 ��〈V ∗M ′, C∗M ′〉 in the image of 〈V ∗, C∗〉 are those where
h is the induced map between inverse image values at P . �

This example is important since the view V has been shown [9] to be updatable
universally. Indeed all inserts and deletes are propagatable for V . Even more,
they are all reversible. We will show below in Theorem 3 that if a V has C-
constant updates then it also has (even reversible) universal updatability, but
this example shows that implication has no converse. If we modify the previous
example by requiring that keys exist for P , Suppliers and Location, then the view
which consists of P and its key does have a complement.

A desirable property of view updates is to be “reversible”. For a view deletion
this means that it is propagatable, and that the propagated deletion is also
universal for the view insert which undoes the deletion. Formally,

Definition 12. Let V : V �� Q(E) be a view and α : R �� V ∗M a propa-
gatable deletion in Mod(V). We say that α is reversible if its cartesian arrow
α̂ : αM ��M is also opcartesian. Similarly, a propagatable insertion is reversible
if its opcartesian arrow is also cartesian.

Note the requirement that a deletion must be propagatable to be considered re-
versible. This is because talking about reversibility depends upon having chosen

250 M. Johnson and R. Rosebrugh

an update strategy—we need to know how to propagate view updates in order to
determine whether there is a view update whose propagation will undo a given
update. Since we have already seen that the universal update strategy is more
general than the constant complement update strategy, we base this definition on
the former to provide the greatest generality. First we give an example showing
that universal updatability does not guarantee reversibility.

Example 8. Consider the sketch E consisting of a single edge α : A �� B. For
the two views VA and VB which respectively include the single node A and the
single node B, it is the case that all deletes and inserts are propagatable. This
is easy to see directly since V ∗

A and V ∗
B simply select the domain and codomain

of a function (model), and it also follows from the well known fact that V ∗
A and

V ∗
B are both left and right fibrations.
On the other hand, neither deletes nor inserts are reversible for V ∗

A . Indeed, for
a model, that is a function, say f : X ��Y , let V ∗

Af be the insertion X �� �� X +
X ′. The propagated insertion is given by the model morphism from f to f + X ′

while the propagated deletion for X �� �� X +X ′ = V ∗
A(f +X ′) is the (different)

model morphism from jf to f + X ′ where j : Y �� Y + X ′ is the injection. A
similar argument shows that deletes are not reversible for V ∗

A . For the case of
V ∗

B deletes may or may not be reversible, but it turns out that inserts are. �

Next we show that deletions with updates that are constant in a complement
are also reversible.

Theorem 3. Let V : V �� Q(E) and C : C �� Q(E) be complementary views.
If α : R �� �� V ∗M is a deletion in Mod(V) with a C-constant update, then
it is reversible. Furthermore, if V has C-constant updates , then any deletion
α : R �� �� V ∗M is reversible.

The proof uses techniques very similar to those in Theorem 1. Lechtenbörger
[10] showed that, in the context of [1] a constant complement translator implies
reversibility of view updates. In that context reversibility for a set of updates
means that there is an update that will undo any view update. Our definition
of reversibility concerns a single propagatable update, but is similar to Lecht-
enbörger’s.

4 Related Work and Conclusions

The article of Bancilhon and Spyratos [1] remains influential. They treat a
database as an arbitrary set S, meant to specify its states, and consider a view to
be an arbitrary surjective mapping f : S �� ��V . They obtain a “translator under
constant complement” i.e. a function g : S ��C so that 〈f, g〉 is bijective, corre-
sponding to our complement, and a translation for which gTu = g, corresponding
to our constant. The approach of Bancilhon and Spyratos has been elucidated by
Bohannon et al [4]. They show that the set of translators under constant com-
plement (for a view) corresponds to the set of “very well behaved lenses”. A lens

Constant Complements, Reversibility and Universal View Updates 251

is a (partial) view f : C �� A and a (partial) function p : A×C �� C satisfying
suitable axioms. On a database state and an updated view state the function p
determines a database state—the updated database state for the updated view
state. While it is easy to interpret a surjective mapping as a view substitution
like the V ∗ above, the complements of [1] and [10] are projections to quotient
sets. As Lechtenbörger [10] writes: “it is unexplored how such a view could be
represented in SQL”.

Closer to the spirit of the present work, Hegner [6] considers an ordered set
D of database states. He defines a view to be a surjective monotone mapping
γ : D �� �� V to an ordered set V of view states such that γ reflects the order.
For Hegner a “closed update family” is an order-compatible equivalence relation
on the view poset. This means that related view states may be updated to one
another, symmetry expressing reversibility of view updates and transitivity that
they may be composed. Hegner defines an “update strategy” to be a function
V × D �� D satisfying certain axioms. It is very much like a lens, and an
equivalence relation determined by the update strategy is the lifted closed update
family.

We have seen that the existence of a constant complement view is sufficient to
guarantee well-behaved view updatability (propagatability) and reversibility in
the context of the sketch data model, but that it is by no means necessary. Either
of these desirable properties may hold without complements being possible.

The work presented here has been driven by the need, motivated by industrial
applications, to have definitions of view, complement, propagation, etc, which
better integrate with the actual representations of databases. We have tried
to move away from the idea of database states as an unstructured set, and to
accurately capture the (mathematical) structures that database states bear. In
addition, the theoretical operations which we develop on database states need
to respect those structures.

The difference between the results presented here and those of Lechtenbörger
is worth some reflection. At first sight they may appear contradictory: Lecht-
enbörger showed that reversibility implied the existence of a constant comple-
ment, a very appealing co-occurrence, while we showed that updates can be
reversible even when no constant complement can exist. The difference of course
lies in the definition of constant complement—when one requires views, and
hence complements, to arise as databases with data derived from the original
database (Definition 7), the extra structure limits the available views, eliminating
some of the quotient views that provide some of Lechtenbörger’s complements.
We must emphasize that we see these limitations as positive, limiting us as they
do to properly respect the actual structure of database states. Another notewor-
thy difference is that most earlier work studied complete sets of updates and
single updates that could be applied to every possible database state (they were
endofunctions on the set of database states). In contrast we have been studying
the propagatability of individual insert or delete updates acting on a given state.
This permits a more general treatment since we can study (universal) updates of
particular states. We are currently exploring how individual universal updates

252 M. Johnson and R. Rosebrugh

can be collected into structures corresponding to complete sets of updates so
that we can further compare the new results with earlier work.

References

1. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans.
Database Syst. 6, 557–575 (1981)

2. Barr, M., Wells, C.: Category theory for computing science, 2nd edn. Prentice-Hall,
Englewood Cliffs (1995)

3. Barr, M., Wells, C.: Toposes, Triples and Theories. Grundlehren Math. Wiss. 278
(1985)

4. Bohannon, A., Pierce, B., Vaughan, J.: Relational Lenses: A language for updatable
views. In: Proceedings of ACM PODS 2006 (2006)

5. Dayal, U., Bernstein, P.A.: On the correct translation of update operations on
relational views. ACM TODS 7, 381–416 (1982)

6. Hegner, S.J.: An order-based theory of updates for closed database views. Annals
of Mathematics and Artificial Intelligence 40, 63–125 (2004)

7. Johnson, M., Rosebrugh, R.: View updatability based on the models of a formal
specification. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp.
534–549. Springer, Heidelberg (2001)

8. Johnson, M., Rosebrugh, R., Wood, R.J.: Entity-relationship-attribute designs and
sketches. Theory and Applications of Categories 10, 94–112 (2002)

9. Johnson, M., Rosebrugh, R.: Fibrations and universal view updatability. Theoret-
ical Computer Science (in press, 2007)

10. Lechtenbörger, J.: The impact of the constant complement approach towards view
updating. In: Proceedings of ACM PODS 2003, pp. 49–55 (2003)

11. Rosebrugh, R., Fletcher, R., Ranieri, V., Green, K.: EASIK: An EA-Sketch Imple-
mentation Kit, http://www.mta.ca/∼rrosebru

12. Shipman, D.: The functional data model and the data language DAPLEX. ACM
Trans. Database Syst. 6, 140–173 (1981)

http://www.mta.ca/~rrosebru

	Constant Complements, Reversibility and Universal View Updates
	Introduction
	An Example and the Sketch Data Model
	The Main Results
	Related Work and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

