
Database Interoperability Through State Based Logical Data Independence

Michael Johnson
Department of Computing

Macquarie University
Sydney, Australia

Email: mike@ics.mq.edu.au

Robert Rosebrugh
Department of Computer Science

Mount Allison University
NB, Canada

Email: rrosebru@mta.ca

Abstract

Computer supported cooperative work (CSCW) involv-
ing business-to-business transactions depends more and
more upon database interoperability. The design of inter-
business CSCW when the businesses are already operating
independent systems depends either upon effective reverse
engineering (to properly discover the semantics underlying
each organisation’s systems and through that to develop ap-
propriate matches for interbusiness software), or upon suf-
ficiently rich semantic models and good database manage-
ment system support for logical data independence (to al-
low database updating through a logical view). This paper
takes the second approach presenting a rich semantic data
model that the authors have been developing and have used
successfully in a number of major consultancies, and a new
approach to logical data independence and view updatabil-
ity based on that model. We show how these approaches
support database interoperability for business-to-business
transactions, and, for CSCW within an organisation, how
they support federated databases.
Keywords: Logical data independence, category theory, se-
mantic data modelling

1 Introduction

The design of information systems has long been recog-
nised to be a delicate and difficult task, and it has utilised
a plethora of methodologies ranging from traditional rela-
tional database design [5] and entity relationship (ER) mod-
elling [4], through functional data models [25], knowledge
based systems [3] and UML [22]. This paper addresses the
need to design interactionsbetween information systems
both for business to business transactions, and for com-
puter supported collaborative work within individual organ-
isations.

Recently Myopoulos has argued [19] that interactions
can best be designed when rich semantic models are avail-

able for each of the information systems. But Myopoulos
has also lamented the paucity of successful semantic data
modelling paradigms. A successful semantic data mod-
elling paradigm needs to be simple, clean, and mathemati-
cally well-founded (like the relational data model). It needs
to have the power to make semantically rich specifications
and to model a wide range of real world constraints. And it
should have an easy to understand graphical representation.

Category theory ([2], [18], [28]) is a branch of mathe-
matics renowned for its semantic power, its simple axiom
set, and its use of graphical techniques. It has been widely
used for specification in computer science in, for example,
abstract data types [14], [15], semantics of programming
languages [23], [24], and functional programming [1].

The authors and their coworkers have, over a number of
years, been developing a semantic data modelling paradigm
based on category theory. The categorical specification of
information systems (see for example [16], [17]) has been
motivated by categorical universal algebra (a categorical
specification technique used in mathematics) and has been
successfully utilised in a number of major consultancies [8],
[7], [26]. In fact the technique grew out of the needs of a
very large information system specification consultancy [6].
Other related work includes [20], [21], [12], [13].

Categorical information system specification satisfies the
criteria to be a semantic data modelling paradigm that
would well support information system interactions. This
paper investigates that possibility and explains the requisite
theory of categorical logical data independence.

We argue that information system interaction is best sup-
ported by a strong notion of logical data independence, so
our first task, after reviewing categorical information sys-
tem specification in Section 2 is to develop a treatment of
logical data independence in our category theoretic frame-
work. This is done in Section 3. In Section 4 we explore
the transmission of updates across the data independence
boundary, and in Section 5 we show how the theory devel-
oped in the earlier sections can be used to link interacting
or federated information systems.



2 Category Theoretic Information System
Specification

This section briefly reviews category theoretic informa-
tion system specification. More details can be found in [16].
Definitions and elementary properties of commuting dia-
grams, limits, and coproducts, can be found in most intro-
ductions to category theory, including [2] and [28]. We will
assume familiarity with ER terminology in this section [27].

In outline, an information system is specified in the cat-
egory theoretic data model by giving a schema, that is a
graph, roughly corresponding to an ER graph, and a set of
(categorical) constraints. The constraints take three forms:

1. Commuting diagrams are pairs of paths in the graph
with common origin and destination.

2. Limit constraints specify that a certain node in the
graph is to act as the “limit” of a specified diagram
in the graph.

3. Coproduct constraints specify that a certain node in the
graph is to act as the “coproduct” of specified nodes in
the graph.

A database, sometimes called a database state or in-
stance, is an assignment of, for every node in the schema
a finite set, (the set of instances or values of that entity or
attribute), and for every arrow in the schema a function be-
tween the corresponding sets, (the relationships among the
entity instances, or the attribute values corresponding to the
instances), such that

1. The commuting diagrams do indeed commute as dia-
grams of corresponding functions

2. The sets assigned to limit nodes are indeed the limits
of the corresponding specified diagrams of functions

3. The sets assigned to coproduct nodes are indeed co-
products (disjoint unions) of the sets assigned to the
corresponding specified nodes.

In other words, a database state for a categorical data
model schema is a diagram of sets and functions which
is the same shape as the graph, and which satisfies the
constraints. When the context is clear, we will refer to a
database state E for a category theoretic data model schema
IE as simply a state E of IE.

Figure 1 is an example schema. The graph is a fragment
of an e-business schema. The full schema includes among
its constraints the requirements that the two triangles com-
mute, that the square be a pullback (a kind of limit), and that
the Product node be the coproduct of Physical product
and Virtual product (electronically available software, mu-
sic, etc). The constraints ensure that: Deliveries only take

Virtual
product

isa

���
��

��
��

��
��

��
��

�
Delivery ��

to

���
��

��
��

��
��

��
��

��

according to

��

of

����
��

��
��

��
��

��
��

�
Quantity

Physical
product

isa ��

has

��

Product

has

��

Customer

Physical
Loc’n

�� isa �� Location Order

��������������

��������������

Figure 1. A fragment of an e-commerce cate-
gory theoretic data model schema

place to fill specific Orders (the commuting triangles); All
Products, and only those Products, which have a Physical
location are Physical products (the pullback); All Prod-
ucts are either Physical products or Virtual products (the
coproduct). The Location entity stores both warehouse lo-
cations and URLs. Also shown is a subtype relation: Phys-
ical location is a subtype of Location, and the function be-
tween them is guaranteed to be injective by another limit
specification. It follows from general properties of pull-
backs and coproducts that the functions corresponding to
the other isa arrows are also injective.

Schemata can be interrelated using schema maps. A
schema mapis a graph morphism between the correspond-
ing graphs which maps each of the constraints on the first
schema graph to a constraint (already) specified in the sec-
ond schema graph.

Incidentally, a category has an underlying schema. Its
graph is the underlying graph of the category, and its con-
straints are all of the constraints that happen to be true in the
category: all of the commuting diagrams, all of the limits,
and all of the coproducts. When we refer to a schema map
into a category (as we will in Section 3) we in fact mean a
schema map into the underlying schema of the category.

A schema generates a classifying category. Roughly
speaking it is the smallest category containing the schema,
satisfying the constraints, and closed under finite limits and
finite coproducts. The classifying category has important
technical uses, and, as we are about to see, is important for
logical data independence too.

3 Logical Data Independence

Physical data independence allows a user to work with a
database without needing to concern themselves with how



the data are physically stored in the database. Logical data
independenceallows a user to work with a database without
needing to concern themselves with how the data are logi-
cally arranged in the database — the user is insulated from
the schematic structure of the database. With logical data
independence the user can view and manipulate data in an
arrangement, a logical data structure, which is independent
of the actual logical structure of the database.

Logical data independence is important because it allows
us to modify a database schema, perhaps adding more at-
tributes, or extra entities and relations as a business evolves,
but to continue to use the same applications programs, and
to present staff who do not need to deal with the new data
with the same interface that they were using before the
change.

Many systems include view mechanisms that provide a
degree of logical data independence. Unfortunately view
mechanisms sometimes suffer restrictions, both in what
views can be defined and in how the viewed data can be
manipulated.

True logical data independence should have the follow-
ing properties:

1. A logically independent view should be able to contain
any data that can be derived from the data stored in
the underlying database. We call this the universality
principle. Of course particular views are sometimes
constructed to limit access to data. A view can only
see the data that it is designed to include. The point
of the principle is that in designing a view we should
be able to choose to include in that view any data from
the universe of data available from the database.

2. A logically independent view should be able to be
structured, queried and manipulated as if it were an in-
dependent database. We call this the modularity prin-
ciple. The point of the principle is that as users we
should not be able to distinguish a logically indepen-
dent view from a database, and so we should for ex-
ample be able to define logically independent views of
our view, etc, and as designers we should be able to
structure the data in the view in any manner (compat-
ible with the underlying data) as if we were designing
an independent database.

Notice that detailed interpretation of the two principles
takes place relative to the data model employed. The uni-
verse of data available from a database depends upon the
queries that are available, that is, depends upon the queries
that are supported by the data model in use. Similarly the
modularity principle assures us that we can structure viewed
data as if it were a database, and the range of structures
we have available for our databases depends upon the data
model we are using.

We now present our approach to logical data indepen-
dence in the category theoretic data model.

Definition 1 Let IE be a category theoretic schema and let
Q(IE) be its classifying category. A viewof IE is a schema
IK and a schema morphism k : IK �� Q(IE). For a
given view, we will refer to the database corresponding to
the schema IE as the underlying databaseof the view.

How is this a view of a database? Well, IK is a schema,
so it tells us how the view is structured as a (virtual)
database, and the schema map k indicates for each node in
IK where to find the corresponding data in the underlying
database.

Do views support true logical data independence? Yes.
We consider each principle in turn.

Universality: It was noted in [9] that Q(IE) has objects
(nodes) corresponding to all the queries that can be made on
a database with schema IE. So in designing a view we can
build nodes whose value under k, whose data, is the result
of any query on the underlying database.

Modularity: In the category theoretic data model a
database is presented by giving a schema. Thus IK , the
schema for the view, can be structured, queried, or manipu-
lated, as if it were an ordinary database. (But of course the
data available through IK will, since it has come from the
underlying database, always be subject to the constraints in
IE. The implications of this will be taken up in the next
section.)

Finally, a word of caution about k. A schema map car-
ries constraints to constraints. Thus, IK cannot include con-
straints that have no corresponding constraints in IE. This
is exactly as we would expect — it shouldn’t be possible
to require constraints in the view which are not required in
the underlying database since the data from the underlying
database, which might violate those constraints, is just in-
herited by the view. This doesn’t violate modularity. In fact,
it clarifies the meaning of “compatible with the underlying
data” in the statement of the modularity principle.

It should also be noted that the constraints just mentioned
have nothing to do with the queries used to define the view.
A view of the orders from company X does not include
a constraint that says orders come only from company X .
Instead it takes its values from queries of the form

select ... where COMPANY = X.

4 The Transmission of Updates

Now we begin to consider in earnest issues of database
interoperability. If K is a logically independent view of a
database D, we should be able to insert and delete in K . But
in reality K is a view of some of the data derivable from D,
so an insert or delete in K must transmit some change to the



underlying database D. This change of the data stored in D
must be arranged so that the change of the viewof the data
corresponds to the intended insert or delete.

Unfortunately, not all view inserts and deletes are trans-
missible in this way.

Let’s consider a (simple) example or two. Suppose IK
and IE are the same, except that IE includes an extra con-
straint that is not required in IK (remember that each con-
straint in IK is mapped by k to a constraint in IE, but noth-
ing prohibits extra constraints in IE). Now an insert in the
view which violates the extra constraint is acceptable to the
(virtual) view database, but cannot be transmitted to the un-
derlying database (because it violates the extra constraint).

For another example consider the schema

Age �� Person �� Address

with no constraints. Let IK be Person �� Address (with
k the evident inclusion). An insert into Person in IK re-
quires the specification of the person’s address. But upon
transmission to D we find that we cannot make such an in-
sertion, because we need to specify the person’s age too.

Do these violate the modularity principle? Arguably they
do. But it has also been suggested that the views are still in-
dependent databases, it’s just that they contain extra hidden
constraints including in the first case the “extra” constraint,
and in the second case a constraint prohibiting inserts into
Person.

If we take this point of view, we need to characterise the
hidden constraints. What inserts and deletes are transmissi-
ble from views to underlying databases? This is known as
the view update problem[11, Chapter 8].

There has been considerable confusion over the view up-
date problem because people have sought to answer it in
terms of schemata. We argue that it is really a property of
the current stateof a database, and define transmissible as
follows.

Definition 2 Suppose we have a view k : IK �� Q(IE)
and a current state D for the database corresponding to IE.
A view insert is transmissibleif there is a unique minimal
insert in D (the underlying database) which achieves the
view insert.

This can be cast into mathematical terms, and then gen-
eral transmissibility results for particular schemata can be
proven if desired [10], but that is not the immediate pur-
pose of this paper. Instead we move to how we can use
state-based transmissibility and logical data independence
to support database interoperability and CSCW.

But first, a warning about “unique minimal insert” in the
definition. The phrase is easily misinterpreted. It in fact
means that among all of the inserts D �� �� D′′ which
achieve the view insert, there is one D �� �� D′ which is

initial in the full subcategory of the slice category under D
([2]).

5 Constructing Systems

Suppose we have two or more databases that need to
interoperate. The databases might be used in business-
to-business web-based transactions, or just in collabora-
tive work between two divisions inside one organisation.
Throughout this section we will assume that the databases
have been based on the category theoretic data model. Thus
we have a rich description of the data via schemata which
include constraints.

We seek to design systems of interoperation.
Suppose two databases which need to interoperate have

schemata IE and IF , and current states E and F respec-
tively.

The first problem in supporting interoperability is that
common data stored in the two databases might have dif-
ferent names. Typically designers scan data dictionaries, or
quiz human representatives of each of IE and IF , to try to
discover matches. Our methodology has little to add to this
process. Looking at the structural arrangement of nodes in
each graph, and in constraints, can suggest candidates for
matching, but the added value is small.

A more serious problem usually arises next. Although
the databases do indeed deal with common data, and should
be well positioned to interoperate, there are too few matches
found. This arises because the data can be stored in struc-
turally different ways in each of the databases. For example,
one database might have separate nodes for each of sev-
eral different types of product, while the other has a single
node for all products. Or one database might only store the
products which are at a particular location, while the other
stores in one node the products from all locations and has
an attribute to record their locations. This is where we use
logical data independence.

Recall that a view consists of k : IK �� Q(IE), and
that Q(IE) contains all queries that can be performed on IE.
So we can construct views that see the coproduct of all of
the different types of product, or the subtype of products
at all locations obtained by pulling back over the particular
location, that is, the result of a query of the form

select ... where LOCATION = ...

In this manner we construct a logically independent
structure, a view, which contains matchable nodes from
each of Q(IE) and Q(IF ), and schema maps

Q(IE) �� IK �� Q(IF ).

Next we explore state-based transmissibility across this
structure (called a span) of schema maps. Consider arbi-
trary legal states E and F of IE and IF . An insert or delete



in E affects directly the state K of IK under the view k. We
explore the transmissibility of this change of the state of K
to the state F . Frequently we can prove lemmas that assure
us that all such changes are transmissible. In that case we
have achieved interoperability, and the schema maps, ex-
pressed in SQL terms, together with the construction used
in the proof of the lemmas, provides the “code” for the in-
teroperability mechanism.

In some cases the failure to prove transmissibility iden-
tifies specific cases where interoperability fails, and these
can be the subject of negotiations between the businesses
involved to determine business rules or database changes
that will assure interoperability.

Another interesting use of this methodology arises when
an organisation seeks to construct an enterprise model, and
has individual data models in divisions. The interoperability
approach can be used to construct a diagram, frequently of
the form

IE �� IK �� IE′ �� IK ′ �� IE′′ . . .

The colimit of this diagram forms the enterprise data model
and is an example of a federated database.

6 Conclusion

This paper has developed an approach to CSCW
database support which achieves database interoperability
and database federation through designated views. The
views depend on a new formulation of logical data inde-
pendence, which, unusually, takes a state-based approach
to the transmissibility of updates.

The methodology is founded on a category theoretic data
model which has already been well-tested in industrial con-
sultancies. This foundation provides relatively rich seman-
tics which aid in properly designing interoperable views,
and a well-understood mathematical basis which supports
both constraint definition and the proofs required to guaran-
tee the transmissibility of updates.

7 Acknowledgements

The research reported here has been supported in part
by the Australian Research Council, the Canadian NSERC,
and the Oxford Computing Laboratory.

References

[1] A. Asperti and G. Longon. Categories, Types and
Structures: An introduction to category theory for the
working computer scientist. MIT Press, 1991.

[2] M. Barr and C. Wells. Category theory for computing
science. Prentice-Hall, second edition, 1995.

[3] M. L. Brodie and J. Myopoulos. On Knowledge Base
Management Systems. Springer-Verag, 1986.

[4] P. P. -S. Chen. The Entity-Relationship Model—
Toward a Unified View of Data. ACM Transactions
on Database Systems, 2:9–36, 1976.

[5] E. F. Codd. A Relational Model of Data for Large
Shared Data Banks. Communications of the ACM,
13:377–387, 1970.

[6] C. N. G. Dampney and Michael Johnson. TIME Com-
pliant Corporate Data Model Validation. Consultants’
report to Telecom Australia, 1991.

[7] C. N. G. Dampney and Michael Johnson. Fibrations
and the DoH Data Model. Consultants’ report to NSW
Department of Health, 1999.

[8] C. N. G. Dampney, Michael Johnson and G. M. Mc-
Grath. Audit and Enhancement of the Caltex Informa-
tion Strategy Planning (CISP) Project. Consultants’
report to Caltex Oil Australia, 1993.

[9] C. N. G. Dampney, Michael Johnson, and G. P. Monro.
An illustrated mathematical foundation for ERA. In
The unified computation laboratory, pages 77–84, Ox-
ford University Press, 1992.

[10] C. N. G. Dampney, Michael Johnson, and Robert
Rosebrugh. View Updates in a Semantic Data Model
Paradigm. To appear, ADC2001, IEEE Press, 2001.

[11] C. J. Date. Introduction to Database Systems.
Addison-Wesley, fourth edition, 1986.

[12] Zinovy Diskin and Boris Cadish. Algebraic graph-
based approach to management of multidatabase sys-
tems. In Proceedings of The Second International
Workshop on Next Generation Information Technolo-
gies and Systems (NGITS ’95), 1995.

[13] Zinovy Diskin and Boris Cadish. Variable set seman-
tics for generalised sketches: Why ER is more object
oriented than OO. In Data and Knowledge Engineer-
ing, to appear, 2000.

[14] J. Goguen, J. W. Thatcher and E. G. Wagner. An initial
algebra approach to the specification, correctness and
implementation of abstract data types. In R. Yeh, Cur-
rent Trends in Programming Methodology IV, 80–149,
Prentice-Hall, 1978.

[15] J. Goguen, J. W. Thatcher, E. G. Wagner, and
J. B. Wright. Initial algebra semantics and continu-
ous algebras. JACM, 24:68–95, 1977.



[16] Michael Johnson and C. N. G. Dampney. On the value
of commutative diagrams in information modelling. In
The Unified Computation Laboratory, eds Rattray and
Clarke, Springer Workshops in Computing, Springer-
Verlag, 1994.

[17] Michael Johnson, Robert Rosebrugh, and R. J. Wood.
Entity-relationship models and sketches. Submitted to
Theory and Applications of Categories, 2000.

[18] Saunders Mac Lane. Categories for the Working
Mathematician. Graduate Texts in Mathematics 5,
Springer Verlag, 1971.

[19] John Myopoulos. Next generation database systems
won’t work without semantics! Panel session, SIG-
MOD Record, 27:497, 1998.

[20] F. Piessens and Eric Steegmans. Categorical data spec-
ifications. Theory and Applications of Categories,
1:156–173, 1995.

[21] F. Piessens and Eric Steegmans. Selective At-
tribute Elimination for Categorical Data Specifica-
tions. Proceedings of the 6th International AMAST.
Ed. Michael Johnson. Lecture Notes Computer Sci-
ence, 1349:424-436, 1997.

[22] J. Rumbaugh, I. Jacobson and G. Booch. The Uni-
fied Modeling Language Reference Manual. Addison-
Wesley, 1999.

[23] D. Scott. Continuous lattices. Lecture notes in Math-
ematics, 274:97–136, 1972.

[24] D. Scott. Domains for denotational semantics. Lecture
notes in Computer Science, 140:577–613, 1982.

[25] D. Shipman. The functional data model and the data
language DAPLEX. ACM TODS, 6:140–173 1981.

[26] G. Southon, C. Sauer, and C. N. G. Dampney. Lessons
from a failed information systems initiative: issues for
complex organisations. International Journal of Med-
ical Informatics, Elsevier Science, 1999.

[27] J. D. Ullman. Principles of Database and Knowledge-
Base Systems. Volume 1, Computer Science Press,
1988.

[28] R. F. C. Walters. Categories and Computer Science.
Cambridge University Press, 1991.


