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Abstract

The authors have developed a new approach to database
interoperability using the sketch data model. That tech-
nique has now been used in a number of applications, but
an important question remains: What are the algorithms
that support updates in the sketch data model? The ques-
tion has significant content since the sketch data model
uses EA-sketches to specify data structures, and these in-
clude constraint and other information not normally sup-
ported by relational database management systems. In this
paper we answer the question by using the framework of
EA sketches to give a detailed mathematical treatment of
database updates, providing a formal definition of insert
update together with an algorithm which provably achieves
updates. The algorithm is new as it is the first to treat data
and constraints on an equal categorical footing. We also
note that further exactness properties (limits and colimits)
can aid specification, and we provide algorithms for up-
dates of EA sketched databases with finite limits. These are
the first update algorithms for such databases. The sketch
data model is being used in industry for designing interop-
erations for computer supported cooperative workand com-
puter assisted software engineering (CASE) tools are under
development. The paper is predominantly theoretical, and
provides an important link needed for CASE tool develop-
ment.
Keywords: Category theory, data model, mathematical
specification, database interoperation

1. Introduction

For a number of years the authors, together with oth-
ers, have been developing the theoretical foundations for
a new semantic data modelling technique — the Sketch
Data Model (SDM). Meanwhile, Dampney and Johnson
have been applying the insights gained from the theoreti-
cal work to data modelling problems in consultancies with

major Australian Companies [8], [28], [10], [7].
At CSCWD2000 the authors presented a new technique

for supporting database interoperability based on the sketch
data model [20]. The theoretical underpinnings of that tech-
nique, which depend on the solution of the view update
problem, have since been further developed [22] and [21],
and the technique has been used successfully in industry [9].
Furthermore, the technique was extended to half-duplex in-
teroperations once the need for that extension became ap-
parent in industrial applications [19], and these half-duplex
interoperations are being used now to support interopera-
tions on semi-structured databases used for design.

However, there remains a fundamental question which
has not, until now, been addressed. While it is possible to
use the relational data model to implement database inter-
operations which have been designed using the sketch data
model, what are the update algorithms which would be the
basis of a sketch data model database management system?
This paper provides a first answer to that question, by devel-
oping a formal treatment of updates along with algorithms
that can be proved to be compliant with that treatment.

The sketch data model (defined formally below) can
be viewed as an extension of the widely used Entity-
Relationship (ER) approach [5] to information modelling.
In addition to the graphical advantages of the ER approach,
the SDM incorporates many of the insights of categorical
universal algebra [3] (chapter 4), [24], allowing a much
more detailed specification of constraints, and a commen-
surate improvement in the quality of the specification and
design process. Thus, the principal successes of the SDM
approach have been in the early design stage. If the de-
sign is intended to be implemented, the model is usually
just viewed as an ER model (forgetting the detailed con-
straint specifications) and then it is implemented as a rela-
tional database in the usual way.

The problem addressed by this paper is to develop the
theory to bridge the gap between the SDM based design
phase and implementations, while taking into account the
full set of constraint specifications.

We need not concern ourselves with the details of the



data model used for the implementation, which might be
the common relational model [6], or even more appropri-
ately the functional model [13] (Section 5.4), since for con-
straints the critical issue is the update process. Thus we seek
(and in Section 4 provide) a formal definition of elementary
update in the SDM framework, and algorithms which can
be proven to achieve such updates (Section 5).

Before proceeding we briefly review the early results in
the previous theoretical work on the SDM, and the work of
some other authors who have also proposed sketches as a
basis for the study of semantic data models.

Dampney, Johnson and Monro [11] were the first to note
that the categorical universal algebra approach implied that
the classifying category for a data specification included
objects representing all of the query results for the corre-
sponding database. This important fact gives the SDM a
categorical closure akin to relational completeness: Any of
a class of categorical operations (which includes the stan-
dard relational operations) can be applied to objects in the
classifying category and the results will always be objects
of the classifying category. Dampney et al also recognised
the importance of update algorithms, but their approach to
updating was clumsy and incomplete. Dampney and John-
son [18] demonstrated the importance of commutative di-
agrams in constraint specification (taking advantage of the
query objects), and gave a range of examples indicating the
breadth of the constraints that can be dealt with. Johnson
[16] began the development of the logic for the query ob-
jects and [17] provides a detailed development of the cate-
gorical logic. Johnson, Rosebrugh and Wood [23] provide a
theoretical treatment of updates in terms of the span con-
struction, and prove the important technical result that a
span of SDM models in a lextensive category C is an or-
dinary SDM model in spnC.

Meanwhile, Piessens [26, 27] used sketches as part of his
notion of ‘data specification’. Motivated by the problem of
view integration he has obtained results on the algorithmic
determination of equivalences of model categories for cer-
tain classes of data specifications. Diskin and Cadish [14],
[15] describe enhancements to entity-relationship models
also using sketches. Their perspective differs from ours in
using ‘diagram operations’ on sketches to model queries.

The remainder of this paper is arranged as follows. In
Section 2 we review the category theoretic view we take of
ER models and of semantic data modelling in general. In
Section 3 we present the definition and develop the elemen-
tary properties of EA sketches — the basis of the SDM.
Section 4 introduces the theory of insert updates (delete up-
dates can be analysed in a dual manner). That section, and
Section 5, form the core of the paper as they develop the
mathematical theory of an update in the SDM framework,
and demonstrate the connection between that theory and the
algorithms presented in Section 5.

2. Background

This section contains a brief review of our categorical
view of ER models. For a fuller description see [18] or [20].

An entity is a set about which a database owner has in-
formation. For example a university might include STU-
DENT, UNIT, LECTURER, . . . as entities in its informa-
tion model. Entities have certain attributes or properties —
for example students have a name, address, degree pro-
gram and so on. Among the attributes of an entity there
may be a specified key attribute — a student identification
number would be an example. A relationship among enti-
ties is a (many-many) relation — for example students are
enrolled in units. Typically there are many students in any
one unit, and also any one student is typically enrolled in
several units.

An ER model is a set of entities, together with their at-
tributes, and any relationships among them. Notice that the
model records the structure of the information, but not yet
any instances — no data. In essence such a model is a
structured datatype specification, or in mathematical terms
a specification for a variety of (flat, multi-sorted) algebras.

ER models are generally presented graphically, but with
a range of notations and extensions. We will use a spe-
cific directed multigraph (hereafter such graphs will sim-
ply be called “graphs”) which can be obtained from each
ER model as follows. Given an ER model, the nodes of its
graph G will be the disjoint union of the entities, their at-
tributes, the relationships and a special node denoted �. The
(directed) edges of G will consist of an edge from each en-
tity to each of its attributes; an edge from each relation to
each of the entities that it relates; and for each attribute A
with domain having n elements (that is there are n different
values for that attribute), n distinct edges � �A.

Notice that in this graph entities and relationships are
treated similarly. Henceforward we drop the distinction be-
tween entities and relationships. This point of view is also
espoused by other writers on database theory, for example
C. J. Date, [12]. The name EA sketch emphasises the tech-
nical importance of the distinction between entities and at-
tributes, first noted in [18].

3. EA Sketches

In this section we introduce EA sketches, the fundamen-
tal notion of the sketch data model. To establish our nota-
tion we begin by briefly describing the language of sketches
and their models. For fuller treatment we refer the reader to
[1] or [2].

A cone C � �Cb� Cv� in a directed graph G � �N�E�
consists of a graph I and a graph morphism Cb � I �G
(the base of C), a node Cv of G (the vertex of C) and, for
each node i in I , an edge ei � Cv �Cbi. Cocones are
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dual (that is we reverse all the edges of G which occur in
the definition, so the new definition is the same except that
the last phrase requires edges ei � Cbi �Cv). The edges
ei in a cone (respectively cocone) are called projections (re-
spectively injections).

Definition 1 A sketch IE is a 4-tuple IE � �G�D�L� C�
where G is a directed graph, D is a set of pairs of paths
in G with common source and target (the commutative dia-
grams) andL (respectively C) is a set of cones (respectively
cocones) in G.

Definition 2 A model M of a sketch IE in a category S is a
coherent assignment of nodes and edges of G to objects and
arrows of S so that the images of pairs of paths in D have
equal composites in S and cones (respectively cocones) in
L (respectively in C) have images which are limit cones (re-
spectively colimit cocones).

For a sketch IE we denote the category generated by G
subject to the relationsD by eIE. Using the evident inclusion
G � eIE we will sometimes refer to nodes of G as objects,
edges of G as arrows and (co)cones of IE as (co)cones in
eIE.

A modelM of IE in S extends to a functor fM � eIE � S

which takes every (co)cone in L (C) to a (co)limit (co)cone.
IfM andM � are models a homomorphism � � M �M � is
simply a natural transformation from fM to fM �. Models and
homomorphisms determine a category of models of IE in S
denoted by Mod�IE�S�, a full subcategory of the functor
category � eIE�S�.

We speak of (limit-class, colimit-class) sketches when
L and C are required to contain (co)cones only from the
specified (co)limit-classes. For example, (finite-product, �)
sketches correspond to (multi-sorted) algebraic theories.

Definition 3 An EA sketch IE � �G�D�L� C� is a (finite
limit, finite coproduct) sketch such that

� There is a specified cone with empty base in L. Its ver-
tex will be called �. Arrows with domain � are called
elements.

� Nodes which are vertices of coproduct (discrete) co-
cones whose injections are elements are called at-
tributes. An attribute is not the domain of an arrow.

� The underlying graph of IE is acyclic and finite.

A node which is neither an attribute, nor �, is called an
entity. An EA sketch is keyed if each entityE has a specified
monic arrow kE � E� �AE to some attribute AE . An
entity is called a base entity if it is not the vertex of any
cone nor in the base of any cocone of IE. A finite limit EA
sketch is an EA sketch with empty C.

Remark 4 i) Recall that in general an arrow m is monic
if mf � mg implies f � g, and that in Set such an ar-
row is an injective function. We say that an arrow m in
an EA sketch is monic when its image in every model is
monic. This can be assured in a number of ways. Choosing
one for definiteness, we call m monic in IE, and denote it
m � X� � Y , when there is a cone in Lwhose base has im-
age X� � Y �� X where both arrows are m, and whose
two projections onto X are equal.
ii) The base entities correspond to the strong entities in ERA
models, while an entity with a monic arrow to a base entity
or which is in the base of a cocone with vertex a base en-
tity corresponds to a weak entity. In practice we expect that
when the EA sketch is keyed, the key for a weak entity will
be the composite of the key for its base entity and the inclu-
sion.
iii) Notice that every ER model yields an EA sketch: Let G
be the corresponding graph as described in Section 2, let D
be empty and let L contain only the empty cone with vertex
�. Let C be the set of discrete cocones of elements of each
attribute. If we wish to ensure that the relations can only be
modelled as true relations, add for each relation a product
cone with base the discrete diagram containing the entities
that it relates, and a monic arrow from the relation node into
the vertex of the cone. If the ER model is extended to in-
clude indications of key attributes add cones to L to ensure
that the corresponding arrows to those attributes are monic.
iv) Now the extra power of the sketch data model is clear: D
can be used to record constraints, andL and C can be used to
calculate query results from other objects, and these query
results can in turn be used to add constraints, etc. Further-
more, all this takes place with a firm and well-understood
mathematical foundation developed for universal algebra.

The appropriate receiving categories for models of EA
sketches (and hence for their databases’ states) should have
finite limits and finite coproducts. The coproducts will be
assumed to be disjoint and universal. Such categories are
called lextensive and have already been studied [4]. They
are examples of distributive categories, and they have many
applications in theoretical computer science [29]. For the
record,

Definition 5 A category S is lextensive, if it has finite limits
and finite coproducts which are disjoint and universal.

For the balance of this article, S will be a lextensive cat-
egory. We note that the definition of lextensive in [4] differs
from that above, though the definition there is shown to be
equivalent to Definition 5.

Remark 6 Notice that the definition of EA-sketch does not
rule out the possibility of an inconsistent sketch, i. e. a
sketch with no non-trivial models. For example, the sketch
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might include attributes A� and A� with � and � elements
respectively and then specify that their sum is � which im-
plies that the sketch has no models in S unless S is degen-
erate, that is 	 �� � in S.

Definition 7 A database state D in S for an EA sketch IE
is a model of IE in S. The category of database states of IE
in S is the category of models Mod�IE�S� of IE in S. For
brevity we sometimes denote it by Mod�IE� when S is the
category of finite sets, Set�

4. Insert updates

Under what circumstances can we say, given two
database states for the same EA sketch, that one is an up-
date of the other? The question is important, and requires
a mathematical answer, if we are to prove that update al-
gorithms have properties corresponding to consistency and
completeness.

Of course, in most databases, any state can be obtained
as an update of any other state: We can for example delete
all the data from the first state, and then insert all the data for
the second. So, we restrict our attention here to elementary
updates — those that can be obtained via a single instance
insertion or deletion.

As is common practice, we will not deal theoretically
with updates which modify existing values. Instead, such
modifications are expected to be obtained by (elementary)
deletions and insertions. Furthermore, a formalism for el-
ementary deletions can be obtained from our treatment of
elementary insertions. Thus, we focus our attention on ele-
mentary insertions.

Finally, a few words about cascades. There remains
some controversy in the database community about whether
elementary updates should cascade. (In the following it is
convenient to speak about entities and relations even though
relations are themselves entities in our framework — when-
ever X � Y we can say that X is a relation involving the
entity Y .) Suppose we attempt to delete an instance of an
entity, which is related to another instance of another entity.
Some systems will prohibit this operation, requiring the re-
lation instance to be deleted first, while other systems will
cascade the delete, deleting the relation instance (and any
relation instances that it takes part in etc.) automatically.
Similarly insertions may cascade (an insertion of a relation
instance may automatically lead to the insertion of a new
entity instance to be related by the relation instance, etc.)
or the system may prohibit cascades and require that all in-
stances to be related are inserted before the relation instance
can be inserted.

Now to the formal treatment of insertions. We will insert
a new instance x in a database state D at a given entity E.

Let IE be an EA sketch, and E be an object of IE.
We define IE�xE � to be IE augmented with a new arrow

x � � �E (and no new commutative diagrams, cones or

cocones). Write J for the evident inclusion eIE ��IE�xE �.
Write Mod�IE� for the category of database states. Thus

objects of Mod�IE� are certain functors D � eIE � Set�.
Write, abusing notation, U � J� for the functor

��IE�xE ��Set�� � � eIE�Set�� given by composition with
J , and for its restriction U � Mod�IE�xE �� �Mod�IE�.
Now J� has a left adjoint computed as the left Kan exten-

sion of the functor along the inclusion J � eIE ��IE�xE �
and in the case of finite limit EA sketches, the adjoint re-
stricts to the category of database states. Call the left adjoint
L and let � be the unit of the adjunction.

Definition 8 Suppose D is an IE database state, E an ob-
ject of IE, and D� an IE�xE � database state. Then m �
D� �UD� is an insert update of D at E if there exists an
epi � � LD �D� such that �U���D � m.

Remark 9 i) Intuitively, LD should be thought of as the
universal database state containing D and a new constant x
of type E. The definition requires D� to be “squeezed” be-
tween D and LD, coherently with the way D is included in
both D� and LD.
ii) Our definition permits, but does not mandate, cascades.
The Kan extension, LD, cascades maximally. Requiring
D� to be an epimorphic image of LD means that what in
the Kan extension is a cascaded insert, may in D� be a rela-
tion instance assignment to an already extant entity instance
or attribute value.
iii) In fact, LD will not in general be a database state if
the sketch includes coproduct cocones, and it will certainly
not be a database state if the sketch is keyed. This is easy
to see by using the Kan extension formula [25] (page 236)
to calculate the value of LD�AE�, where AE is the key
attribute for E. The “maximal cascade” mentioned above
corresponds to LD�AE� � D�AE� 
 �, and so LD can’t
be a database state. Nevertheless, D� is a database state,
and � indicates how cascaded inserts which have disrupted
coproducts in LD are replaced by assignments to extant in-
stances or values in D�.
iv) Elementary properties of adjunctions ensure that if �, as
in the definition, exists, then it is unique.

5. The algorithms

We provide pseudocode algorithms for the two most im-
portant cases of insert updates, linear and finite-limit EA
sketches. In each case we remark briefly on some of the
finer points of the algorithms, and in the linear case we
establish in detail the connection between the theory (Sec-
tion 4) and the algorithms.

In the following sections we write A
B for the disjoint
union of A and B when A and B are sets. We remind the
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reader that we compose functions from the right, thus pqa �
p�q�a�� means evaluate q at a, and then apply p to the result.

5.1 The linear case

A sketch is called linear when its sets of cones and co-
cones are both empty. Of course this can never occur with
EA sketches which are required to have a specified cone
(Definition 3). The corresponding notion for an EA sketch
is

Definition 10 An EA sketch IE � �G�D�L� C� is called
linear when C is empty and L contains just a single cone
(which must then have an empty base).

We provide an insert update algorithm (Figure 1) for the
linear case. The algorithm forms the basis for algorithms
which deal with further exactness properties (limits and col-
imits) and is useful for abstract data specifications which
typically record no attributes. Because it is so fundamental,
we will, after a brief discussion of some of its facets, estab-
lish in detail some of its properties, and its relationship with
the theory presented in Section 4

The algorithm deals with a database state D, and con-
structs a new database state D’. It thus requires storage for
sets, which appear in the algorithm as, for example, D’(E),
and for functions, which are presumed to be stored as their
graphs (ordered pairs of (domain, codomain) values). As an
example of a function, the line D’(x E)1 = t says that
the pair ��� t� should be added to the graph of the function
corresponding to xE in the database (partial) state D’.

The algorithm begins by adding the element t and then
prompts the user for all the images of the new t. The user’s
proposed images are checked to ensure that commutative
diagrams are preserved (and this needs to be done carefully,
because at this point many of the functions are only partial
functions). The user is also given an abort option. This is
necessary since it is possible to begin an insert which can
never be completed without violating commutative diagram
constraints.

We now explore some of the mathematical properties of
the algorithm.

Proposition 11 If the procedure INS returns with ins =
TRUE, then D’ is a database state for IE�xE �.

Proof. Suppose INS returns with ins = TRUE.
To show that D� is a database state for IE�xE � we check

explicitly that D� is a graph morphism into the underlying
graph of Set and that the required diagrams commute.

Firstly notice D���� � D��� � �, since E being an
entity is not � (Definition 3). Note the abuse of notation: As
is customary, we write � for the vertex of the empty cone,
for a set with one element, and as the name of that element.

Next notice from statement 3 of INS that t � D��xE�� (and
by acyclicity, this is never modified). ThusD��xE� is a total
function.

The node part of the graph morphism is straightforward:
For all E�, D��E�� is a set, defined by D unless E� � E
whence D��E�� � D�E� 
 ftg.

The arrow part of the graph morphism follows since for
all a � E�� �E�, D��a� is a total function: If E �� is not
E and a is not xE , then D��a� � D�a�. If a � xE ,
D��a� is the total function defined above. The only re-
maining case is a � E �E�. For such a, the required
mapping is defined by D�a� on D�E� by the first state-
ment of INS, so it remains to see that D�a�t is defined.
Since ins returns TRUE, but ins is set FALSE at the
beginning of INTER ASSIGN, either there are no a’s to
check in the loop in INS, so we are done, or D ��a�t
must have been assigned in EXTEND FUNCTION. Indeed,
INTER ASSIGN had to return ins = TRUE on every
loop iteration (otherwise we exit with ins FALSE, con-
trary to assumption). For INTER ASSIGN to return ins
= TRUE, EXTEND FUNCTION returned ins = TRUE
(since ins is initialized to FALSE in INTER ASSIGN).
EXTEND FUNCTION only assigns ins = TRUE after as-
signment of D��a�t.

Finally, all commutative diagrams in IE�xE � are re-
spected by D�: Any commutative diagram not involving E
is unchanged. If a commutative diagram involving E does
not start from E, then in the diagram E is in the codomain
of at least one arrow b not equal to xE , but for each such b,
t is not in the image of D��b� since D��b� � D�b�, so the
diagram still commutes. So suppose we have a commuta-
tive diagram starting atE, say �qb� q�b��, with q, q� (possibly
empty) paths. Suppose the diagram fails to commute in D�.
This can only be because D��qb�t is not equal to D��q�b��t.
Since INS returned ins = TRUE, INTER ASSIGN must
have returned ins = TRUE on each iteration of the main
loop of INS. Thus EXTEND FUNCTIONmust have set ins
= TRUE (for each call to INTER ASSIGN). Hence, CHCD
evaluated to TRUE when called with b and when called with
b� (each as second parameter). But then if b� � b, the first
if in CHCD found D��qb�t not equal to D��q�b�t, and so
set CHCD to FALSE, contradicting the assumption that INS
returned TRUE. On the other hand, if b is not equal to b�,
without loss of generality, suppose the call to CHCD with b
was the latter, then D��b��t was already defined when this
call occurred, so the second if in CHCD found D ��qb�t not
equal to D��q�b��t, and so set CHCD to FALSE, contradict-
ing the assumption that INS returned TRUE.

For the next proposition, we will need an explicit de-
scription of LD.

Lemma 12 For E� not equal to E

LD�E�� � D�E�� 
 f� � E �E�g
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/* INSERT ALGORITHM FOR LINEAR EA SKETCHES

Algorithm INS(t, D, E, ins, D’)
/* pre: D a database state, E an object of D, and t not in D(E).
/* post: if ins is FALSE, D is unchanged, and D’ is garbage;
/* if ins is TRUE t is in D’(E), and D’ is a database state for
/* the extended sketch E[x].

D’ = D /* D’ will be the new database state
D’(E) = D’(E) + { t } /* This is disjoint union
D’(x_E)1 = t /* Abuse notation writing 1 for the element of 1
ins = TRUE
for each a : E --> E’
/* loop completion means D’(a)t is validly defined for each arrow a ie insert successful

INTER_ASSIGN(D’, a, t, ins)
/* Let user choose D’(a)t ’s value. Does not cascade (allow new element creation)
if not ins

exit /* If INTER_ASSIGN is aborted we exit with ins FALSE

/* end of INS

Algorithm INTER_ASSIGN(D’, a, t, ins)
/* Interactively asks user for a valid value of D’(a)t

ins = FALSE
repeat

Output(’type value of D’(a)t in D’(E’) or CTRL-Q to quit’)
Input(t’)
if t’ not in D’(E’)

output( ‘t’ not in D’(E’); try again’)
break

if t’ = CTRL-Q
exit /* Needed since it’s possible to attempt an insert

/* which would never satisfy CD requirements.
EXTEND_FUNCTION(D’, a, t, t’, ins)

until ins = TRUE /* so user must have succeeded
/* end of INTER_ASSIGN

Algorithm EXTEND_FUNCTION(D’,a, t, t’, ins)
/* Checks cd’s and extends D’(a) by t |--> t’ if ok.

if CHCD(D’, a, t, t’)
D’(a)t = t’
ins = TRUE

else
Output(’CD violation, extend function failed’)
ins = FALSE /* assigned for emphasis, ins must be false here

/* end of EXTEND_FUNCTION

Algorithm CHCD(D’, a, t, t’) : Boolean
/* Returns TRUE if the definition D’(a)t = t’ respects commutative diagrams.
/* We check separately CD’s with both paths beginning a, since D’(a)t not yet defined
/* (such paths would be checked twice, but second if is false).

CHCD = TRUE
for each CD = (pa, p’a) /* p, p’ are paths; the cd paths both begin with a

if not ( D’(p)t’ = D’(p’)t’ )
/* Execute if test for comm fails
CHCD = FALSE

for each CD = (pa, p’) or (p’, pa) /* p, p’ are paths
if not ( D’(p’)t = undef ) and not ( D’(p)t’ = D’(p’)t )

/* Execute if we can test for comm and the test fails.
/* If we can’t yet test (D’(p’)t undef) we’ll test this when defining D’(p’)t.
CHCD = FALSE

/* end of CHCD

Figure 1. An insert update algorithm for linear EA sketches
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Proof. LD�E�� � colim�J�E� � eIE � Set�� where
the first arrow is the projection from the comma category,
and the second is the database state D. Since J is bijective
on objects, each object E � of eIE�xE � is of the form JF for
some F . Consider J�JF , whose objects are of the form
�A�� � JA � JF �. Such � are either Ja for a � A � F ,
or �x � J� � JF with � � Jb, some b. Notice that
there are no morphisms in J�JF to or from objects of the
second kind (because there are no commmutative diagrams
in IE�xE � involving x) and that D��� � �. Furthermore,
the identity on JF is terminal among the other objects in
J�JF . Thus the colimit is the sum as claimed.

We write XE� for the set f� � E �E�g when E� is
not E, and let XE = 1. Then for any entity F we have
LD�F � � D�F � 
 XF . The unit of the adjunction has as
components the injections D�F �� �LD�F �.

Proposition 13 If the algorithm INS returns TRUE, then
there exists an epi � � LD �D� in Mod�IE�xe�� such
that in Mod�IE�, with m the evident inclusion,

m � D� �UD�
� ULD � U�

and �U���D � m.

Proof. We will construct � explicitly.
We construct the components ��

E
� DE�
X �

E
�D�E�

in two cases.
Case 1: SupposeE� is not equal toE whenceD�E� � DE�.
Let the first component be the identity on DE �. The second
component,X �

E
�D�E�, is defined by � �� D����t.

Case 2: E� � E whence D�E� � DE 
 ftg. Let the
first component be the inclusion of DE � � DE into DE 

ftg � D�E�. The second component is the constant at t
mapping X �

E
�DE 
 ftg.

As constructed � is a natural transformation. Notice also
that each component is epi (in case 2, X �

E
is non-empty).

Finally, let m � D� �UD� be given by the evident in-
clusions and notice �U���D � m.

Conversely, consider unrestricted insertions in a database
state D — unrestricted in the sense that they may cascade,
and result in further inserts. The next proposition says that
our algorithm is powerful enough to produce all of these —
it just needs to be iterated appropriately. In other words, the
algorithm can be used to effect all insertions (as defined in
Definition 8).

Proposition 14 Suppose D�� is a database state, m �
D� �UD�� a monomorphic natural transformation, and
� � LD �D�� an epimorphic natural transformation,
such that �U���D � m, then D�� can be obtained from D
by finitely iterated application of the algorithm in Figure 1.

Proof. Choose anE such thatD���E� is not equal toD�E�
but from which all arrows a � E �E�, satisfy D���E�� �
D�E�� Choose also a t � D���E��D�E�.

INS(t, D, E, ins, D’)will ask for the values of
D��a�t and we reply with U��ULD�a���U�����t��� (in-
dependent of choice of representative in ��� by naturality
of �). Any diagrams that are required to commute will do
so since they do in D��, so the INS will terminate with ins
= TRUE.

Now repeat from the choice of E and t above. This ter-
minates by finiteness and acyclicity of the sketch and be-
cause the database states are finite set valued, and the re-
sulting D� � D�� as required.

Now, what about an IE state X such that m �
D� �X� ULD � e with e�D � m? In fact, all IE
states thus ‘between’ D and ULD can be obtained by iter-
ated insertions.

Corollary 15 Suppose X is an IE database state, m �
D� �X a monomorphism of database states, and e �
ULD �X an epimorphism of database states such that
e�D � m. Then X can be obtained from D by finitely iter-
ated application of the algorithm in Figure 1.

Proof. X must be of the formUD� since IE�xE � states are
just IE states, together with an extra constant of type E, and
e � ULD �X determines that constant as e�xE����. Fur-
thermore e must then be of the form U� for � � LD �D�

since, with J being bijective on objects, to give a natural
transformation in Mod�IE� is to give a natural transforma-
tions in Mod�IE�xE ��, provided only that it is also natural
with respect to xE . Thus we have satisfied the premises of
the proposition.

5.2 The finite-limit case

We now extend the insert algorithm to deal with finite
limit EA sketches. This case covers most real applications
since, although the full specification requires limits and co-
products, the latter are usually restricted to attribute do-
mains and these are never updated.

The algorithm (Figure 2) presupposes that the initial in-
sert entity E is not the vertex of a limit cone. This is without
loss of generality since inserting into the vertex requires in-
serting into one of the base entities, and (using acyclicity)
the appropriate base insert can be done instead. Further-
more, this is the appropriate way to achieve such inserts in
practice.

The algorithm is closely related to the previous algorithm
(Figure 1). The only significant difference arises when E
is “minimal” in a cone base. Minimal means simply that
there is no arrow in the cone base with E as its codomain.
Inserting into non-minimal cone base entities will not alter
the limit, and so can be dealt with by the previous insert
algorithm. Inserting into minimal cone base entities results
in recursive calls to INS. These calls may insert in the cone
vertex since the relevant base instances are already being

7



/* INSERT ALGORITHM FOR FINITE LIMIT EA SKETCHES

Algorithm INS(t, D, E, ins, D’)
/* pre: D a database state, E an object of D, t not in D(E).
/* post: if ins is FALSE, D is unchanged, and D’ is garbage;
/* if ins is TRUE t is in D’(E), and D’ is a database state for
/* the extended sketch E[x].

D’ = D /* D’ will be the new database state
D’(E) = D’(E) + { t } /* this is sum
D’(x_E)1 = t
ins = TRUE

/* The new element needs to have its image given for each arrow out of E as usual.
/* Then if E is a minimal cone base entity, it will determine
/* new elements for vertex.
/* To get them test for compatibility with every possible other tuple.
/* If compatible define all projection values for new vertex element
/* then call insert to add the element to vertex.

for each a : E --> E’
/* loop completion means all D’(a)t are defined
if D’(a)t is defined

next a
else

INTER_ASSIGN(D’, a, t, ins)
/* Let user choose D’(a)t’s value.
/* Does not allow new element creation

if not ins
exit /* on fail we return previous state and exit

for each cone C
if E = C_h(M) for M minimal in base of cone C
/* C_v, C_h : I --> G are graph homoms, I a finite graph,
/* G the graph of the sketch, C_v constant,
/* p : C_h --> C_v ( a nat transf - the projections)
V = C_v(I) /* the cone vertex
for each x in product over B in I of D’(C_h(B))

with x_{C_h(B)} = t where C_h(B) = E
/* an E’th coordinate of x has value t
if CHECKCOMP(C, D’, x)
for each B in I
D’(p_B)x = x_{C_h(B)}

INS(x, D’, V, ins, D’)
if not ins

exit /* on fail we return previous state and exit

/* end of INS

Algorithm CHECKCOMP(C, D, x) : boolean
/* this checks compatibility for possible new tuple
CHECKCOMP = TRUE
for each B in I

for each B’ in I
for each Y in I
for each path p : B --> Y in I
for each path p’ : B’ --> Y in I
if D’(C_h(p))(x_C_h(B)) <> D’(C_h(p’))(x_C_h(B’)

/* C_h extended to functor
CHECKCOMP = FALSE
exit

/* end of CHECKCOMP

/* The procedures INTER_ASSIGN, EXTEND_FUNCTION, and CHCD are shown in Figure 1.

Figure 2. An insert update algorithm for finite-limit EA sketches
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/* DELETE ALGORITHM FOR FINITE LIMIT EA SKETCHES

Algorithm REMOVE(t, D, E)
/* removes t and all definitions D(a)t = t’
for a : E --> E’

D(a)t = undefined /* means (t,t’) removed from the graph of D(a)
D(E) = D(E) - { t } /* t might already be gone...
/* end of REMOVE

Algorithm DEL(t, D, E)

for each a : E’ --> E, for each t’ with D(a)t’ = t
DEL(t’, D, E’)

for each cone C with vertex E
scan projections p:E-->E’ of C for t’ not in D(E’) with D(p)t = t’
if no such p exists /* can there be more than one such p ?

output(Choose a projection p : E --> E’)
input( p : E --> E’ ) /* factor chosen to delete from
REMOVE(D(p)t, D, E’)
DEL(D(p)t, D, E’)

REMOVE(t, D, E)
/* end of DEL

Figure 3. A delete update algorithm for finite-limit EA sketches

inserted. The required inserts are determined by explicitly
calculating the limit as a collection of tuples.

The delete algorithm for finite-limit EA sketches (Fig-
ure 3) is a recursive cascading delete. This is necessary
since deleting from either a cone vertex or a cone base en-
tity requires deletion from the other, and this in turn may
recur to arbitrary (finite) depth. The order of REMOVE and
DEL and the sequencing of partial functions “scan the
projections...” is delicate and important.

6. Conclusions

One of the most interesting issues to arise from the ap-
plication of categorical universal algebra to database sys-
tems is the nature of update algorithms in the presence of
detailed categorical structure in the form of limits and col-
imits. This has not arisen previously because universal alge-
bras are rarely updated (we rarely add or remove an element
of a given type from an extant algebra), while database up-
dates have only ever been applied to relatively flat systems
(systems with many types, but very few limit types).

This paper provides both a precise definition of insert up-
date and update algorithms for categorical sketches includ-
ing those with finite limits. It makes explicit mathemati-
cally the link between the theory and the algorithms. This
answers the question which motivated this paper and it will
aid in the development of CASE tools needed for quickly
developing interoperating sem-structured databases for de-
sign.

Although the application of the theory of the sketch data
model would seem to depend on the development of the
algorithms for mixed sketches, we can in fact make con-

siderable progress using the algorithms for limit sketches
since the vast majority of database systems can be designed
so that the only colimits are non-updatable (being in fact
attribute types).

Nevertheless, the authors have developed algorithms that
deal with coproduct sketches, and they are investigating the
possibilities for mixed sketches.
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