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ABSTRACT. In 1978, Street and Walters defined a locally small category K to be
totally cocomplete if its Yoneda functor Y has a left adjoint X. Such a K is totally
distributive if X has a left adjoint W . Small powers of the category of small sets are
totally distributive, as are certain sheaf categories. A locally small category K is small
cocomplete if it is a P-algebra, where P is the small-colimit completion monad on
Cat. In 2007, Day and Lack showed that P lifts to R-algebras, where R is the small-
limit completion monad on Cat. It follows that there is a distributive law RP // PR
and we say that K is completely distributive if K is a PR-algebra, meaning that K
is small cocomplete, small complete, and PK // K preserves small limits. Totally
distributive implies completely distributive. We show that there is a further supply of
totally distributive categories provided by categories of interpolative bimodules between
small taxons as introduced by Koslowski in 1997.

1. Introduction

Many notions of classes of limits distributing over classes of colimits have been studied.
To give just two examples, consider the case of finite products distributing over finite
coproducts and that of finite limits distributing over all small colimits. A category that
is distributive in the sense we discuss has: colimits of a given class, limits of a given class,
and the functor which “assigns” the colimits in question preserves the limits in question.
This statement warrants clarification.

First, the class of colimits needs, for our purposes, to be given by a KZ-doctrine.
(We remark that K stands for Kock and Z for Zöberlein, who discovered independently
the important condition on 2-dimensional monads that we recall below. The term “KZ-
doctrine” seems to have been coined by Street in [ST1].) This means that there is a
pseudomonad, say C = (C , µ, η), on a suitable 2-category of categories, say Cat, with
the property that C η a µ a ηC . (Actually, the pseudomonad structure is secondary to
the adjoint string but the details would take us too far afield and we refer the reader to
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[MAR1].) For a K in Cat, we require that C K be the free colimit completion of K
with respect to the colimits in question and then K has such colimits precisely if the unit
component ηK : K // C K has a left adjoint, C K // K , which is seen as assignment of
C -colimits for K .

Next, the class of limits should also be given by a pseudomonad L = (L , µ, η) on
Cat, this with what is known as the coKZ property, meaning that here ηL a µ a L η.
For such monads it follows that K has L -structure, meaning L -limits, if and only if the
unit component ηK : K // L K has a right adjoint L K // K which is then seen as
assignment of L -limits for K .

So, if K has C -colimits and L -limits and we further demand that assignment of
C -colimits for K preserve L -structure, then we need to know that K having L -limits
implies that C K has L -limits too. Stated properly this means that C lifts to the category
of L -algebras and it is standard that liftings of a monad C to the category of L -algebras
for a monad L are in bijective correspondence with distributive laws L C // C L , in
the sense of [BEK]. However, in the case of pseudomonads this well-known basic theory
has to be carefully adjusted, for the equational aspects are then at the level of coherence
of isomorphisms which replace Beck’s equations. Moreover, the heightened complexity of
the general pseudo case is then reduced, in another direction, when the pseudomonads are
KZ or coKZ. Fortunately, the required theory for such distributive laws has been worked
out in [MAR2] and its sequel [M&W].

In the cases at hand, because the structures in question are unique to within isomor-
phism, distributive laws are also essentially unique. One speaks of a category K with
C -colimits and L -limits and C K // K preserving L -limits as being an algebra for the
distributive law L C // C L .

Examples of the monads C mentioned above are provided by the finite families con-
struction, whose algebras are categories with finite coproducts, and by the small-colimit
completion monad P that sends a locally small category K to the full subcategory of
setK op

determined by all small colimits of representables. Examples of the monads L
are finite-product completion and finite-limit completion. It is fairly easy to see that if
a category K has finite products then its finite colimit completion fam(K ) does too
and that

∑
: fam(K ) // K preserves finite products if and only if the canonical arrows

(A×B) + (A× C) //A× (B + C) are invertible.
It is somewhat harder to see that if a category K has finite limits then PK does

too. Fortunately, this and more is made explicit in [D&L] and we will make further use of
their results. In the other example we mentioned at the beginning of this Introduction, a
category K with finite limits and small-colimits has finite limits distributing over small
colimits if and only if assignment of small-colimits PK // K preserves finite limits. It
is known, perhaps not widely, that a category K is a Grothendieck topos if and only if
it is an algebra for this distributive law and has a small set of generators.

Other distributive laws of the kind we speak been given serious attention by other
authors, notably [ALR1] and [ALR2]. The distributive law on which we focus:

lim · colim // colim · lim
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appears fleetingly at the end of [ABLR] but we prefer to establish it here by building on
the work of [D&L]. This is distributivity of all small limits over all small colimits and we
propose that an algebra for it should be called a completely distributive category.

From the two paragraphs above it follows that, modulo generators, a completely
distributive category is a very special Grothendieck topos. It is well known that a
Grothendieck topos K is also lex total, which is to say that the Yoneda functor YK :
K // setK op

has a left exact left adjoint. A lex total category with a small set of gener-
ators is certainly a Grothendieck topos but Peter Freyd has shown, see [ST2], that a lex
total category, with a rather subtle condition on the size of its set of objects, necessarily
has a small set of generators. There is no similar result for categories that are merely total
but it is natural to ask if a total category for which the left adjoint to the Yoneda functor
has itself a left adjoint, subject to no further conditions, has a small set of generators.
Such categories were called totally distributive in [R&W].

We show that totally distributive categories are completely distributive and provide
examples of the former. We do not know of an example of a completely distributive
category that is not totally distributive. We needed to widen the scope of total categories
somewhat to include categories that are not necessarily locally small. We call these
prototal categories and after introducing them in Section 2 find some results that appear
to be of independent interest. In Sections 3 and 4 we study totally distributive categories
and completely distributive categories, respectively. In Section 5 we recall Koslowski’s
notions of taxon and of i-modules between taxons. We show, for small taxons T and
S, that the category i-mod(T,S) of i-modules between them is a totally distributive
category. Along the way to this major result of the paper we find it necessary to relate
taxon functors Top // Iset and i-modules I1 � //T, where I is the interpretation of a
category as a taxon. We establish an equivalence between these which, unlike the situation
for functors C op // set and profunctors 1 � // C , is not a mere isomorphism. We also in
Lemma 5.12 prove a “Yoneda Lemma” for taxons and we think that these results about
taxons are also of independent interest.

2. Total and Prototal Categories

2.1 For a category [bicategory] K , we write |K | for the set of objects of K . If X
and A are objects of K , K (X,A) denotes the set [category] of arrows from X to A. If
K is a category of sets we say that K is a full category of sets if, for all sets X and A
in |K |, K (X,A) is the set of all functions from X to A. We assume the existence of
full categories of sets called set and SET, both toposes, with set contained in SET, and
|set| an object of SET. The sets in set are called small sets. We assume that set has all
sums indexed by objects of set and SET has all sums indexed by objects of SET. We
will write i : set //SET for the inclusion. We write CAT for the 2-category of category
objects in SET and cat for the 2-category of category objects in set. Note that set is an
object of CAT. The objects of cat are called small categories. If a category K in CAT
has all its hom-sets K (A,B) in set, we say that K is locally small and Cat denotes
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the full sub-2-category of CAT determined by the locally small categories. For X and
A in CAT, we write Prof(X ,A ) for CAT(A op ×X , set) and refer to its objects as
small profunctors from X to A . We write P : X � // A for an object of Prof(X ,A ).
Note that Prof is not a bicategory but we also write PROF(X ,A ) for the category of
all functors A op ×X //SET. With the usual compositions, PROF is a bicategory and
we have the usual proarrow equipment (−)∗ :CAT //PROF. (Note that SET is not an
object of any of the bicategories under consideration.)

2.2 A locally small category K has a Yoneda functor YK = Y : K //Cat(K op, set).

Henceforth, we will often write K̂ for CAT(K op, set), for any category K . (It follows

that Prof(X ,A ) = ̂A ×X op.) Note that if K is locally small then K̂ is locally small
if and only if K is small — the “only if” clause being the celebrated result of [F&S] —

but, in any event, K̂ is in CAT. Following [S&W] we say that the locally small K is
totally cocomplete (usually abbreviated to total ) if YK has a left adjoint, which will then
be called X. For a small profunctor P in Prof(X ,A ) and a functor F in CAT(A ,K ),
a P -weighted colimit for F is a functor F • P : X // K and a natural transformation
ι : P (F • P )∗ //F ∗ which exhibits (F • P )∗ as a right lifting of F ∗ through P in PROF
as in

X A�
P

//

K

X

(F•P )∗

���������������
K

A

F ∗

��?????????????

ι //

It follows that, if F • P exists then it is given uniquely, to within isomorphism, by the
requirement that, for all X in X and K in K , we have

K ((F • P )(X), K) ∼=
∫
A

K (FA,K)P (A,X)

where the right hand side is the (possibly large) set of natural transformations

from A op P (−,X) // set i // SET to A op K (F−,K) // SET

which is SETA op

(iP (−, X),K (F−, K)). For any K in CAT (not necessarily locally
small), we say that K is prototal if, for every small P : X � // K , 1K • P exists. From
the description above, it is clear that we can take X = 1 so that K is prototal if and
only if, for every small P : 1 � // K , 1K • P exists. In more primitive terms, this last

means that, for every P in K̂ , there is an object 1K • P in K and, for every K in K ,
for every p ∈ PK, arrows ιp : K // 1K • P , natural in K, such that given any family
〈φp :K //L〉p∈PK,K∈K , natural in K, there is a unique arrow f : 1K • P //L such that,
for all K, for all p ∈ PK, fιp = φp. In other words, the ιp mediate bijections, for every
L in K , between K (1K • P,L) and the the set of natural transformations

from K op P // set i // SET to K op K (−,L) // SET
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2.3. Lemma. For a locally small category K , K is total if and only if K is prototal.

Proof. Trivial, because if K is locally small then each K (−, L) factors through the
full and faithful i : set //SET. For total K , we have X(P ) = 1K • P .

For any K , we will write X(P ) for 1K •P when this particular weighted colimit exists.

In fact it is clear that, for a prototal category K , we have X : K̂ // K left adjoint to
Y : K //SETK op

, relative to iK
op

: setK op //SETK op

, in the sense of [S&W].
It was observed as far back as [S&W] that a locally small category K is total if

and only if every discrete fibration, with small fibres, into K has a colimit. Since this
characterization does not mention local smallness and extends to prototal categories, it
provides another proof of Lemma 2.3.

2.4. Lemma. Full reflective subcategories of [pro]total categories are [pro]total.

Proof. By Lemma 2.3 it suffices to prove the “pro” version. So assume a a j : L // K

with j fully faithful and K prototal. Take P in L̂ . We claim a(X(Paop)) provides the
weighted colimit 1L • P . (We remark that Paop is indeed a small profunctor from 1 to
K .) For L in L we have

L (a(X(Paop)), L) ∼= K (X(Paop), jL) ∼= SETK op

(iPaop,K (−, jL))

∼= SETL op

(iP,K (−, jL)jop) ∼= SETL op

(iP,K (j−, jL)) ∼= SETL op

(iP,L (−, L))

2.5. Theorem. If K is locally small then K̂ is prototal. In fact XK̂ = ŶK .

Proof. Let P : (K̂ )op // set be given. We claim that X(P ) is given by the composite

K op Y op
// (K̂ )op P // set

(which is ŶK (P )). Take F in K̂ . To give a natural transformation α from (K̂ )op iP //SET

to K̂ (−, F ) : (K̂ )op //SET is to give, for each G, components αG : P (G) // K̂ (G,F ).
In SETK op

, G is a colimit with injections ιx : K (−, K) //G for each element x ∈ G(K).

It follows that K̂ (G,F ) is a limit in SET with projections K̂ (G,F ) // K̂ (K (−, K), F )

given by the functions K̂ (ιx, F ). Since α is natural we have, for each x ∈ G(K),

P (K (−, K)) K̂ (K (−, K), F )αK (−,K)

//

P (G)

P (K (−, K))

P (ιx)

��

P (G) K̂ (G,F )
αG // K̂ (G,F )

K̂ (K (−, K), F )

K̂ (ιx,F )

��
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It follows that α is uniquely determined by the components

αK (−,K) :P (K (−, K)) // K̂ (K (−, K), F )

which can equally be seen as the components of a natural tranformation

PY op //F : K op // set

The determination provides a bijection witnessing PY op as the colimit X(P ).

2.6 A category K is cototal if K op is total. In terms of the locally small K this means

that the Yoneda functor Z : K // K̂ opop =
(
setK

)
op has a right adjoint, which will then

be called A. For a small profunctor Q in Prof(A ,X ) and a functor F in CAT(A ,K ),
a Q-weighted limit for F is a functor {Q,F} : X // K and a natural transformation
π : {Q,F}∗Q //F∗ which exhibits {Q,F}∗ as a right extension of F∗ along Q in PROF
as in

A

K

F∗

��?????????????A X�Q // X

K

{Q,F}∗
���������������

oo
π

For any K in CAT, we say that K is procototal if K op is prototal. This is the case if
and only if for every small Q : K � // X , {Q, 1K } exists if and only if, for every small
Q : K � //1, {Q, 1K } exists. This last means that for every K in K ,

K (K, {Q, 1K }) ∼=
∫
L

K (K,L)Q(L)

so that K (K, {Q, 1K }) is isomorphic to the set of natural transformations

from K
Q // set i // SET to K

K (K,−) // SET

For any K , we will write A(Q) for {Q, 1K } when this particular weighted limit exists.
It is now clear that K is procototal if and only if there exists A : (setK )op // K right
adjoint to Z : K // (SETK )op, relative to (iK )op : (setK )op // (SETK )op, and that

2.7. Corollary. For a locally small category K , K is cototal if and only if K is
procototal.

Dualizing Lemma 2.4 we have

2.8. Lemma. Full coreflective subcategories of [pro]cototal categories are [pro]cototal.
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2.9. Lemma. If K is a locally small category then, for all Q : K̂ // set and all K in

K , the set of natural transformations from Q to K̂ (K (−, K),−) is small. In fact, it is

bounded by 2Q(2K (K,−)).

Proof. The functor K̂ (K (−, K),−) is evaluation at K in K so that we have

K̂ (K(−, K),−) = K̂, where we see the object K as the functor K : 1 // K . Since

1 is small and K is locally small, K̂ has both left and right adjoints. Writing K∗
for the right adjoint, the usual argument shows that, for S in set, K∗(S) is given by
K∗(S)(L) = SK (K,L).

Next, recall that the canonical ι : 1set
// // 2set(−,2) : set // set is monic. For any F,G :

C // set, horizontal composition with ι provides a function

ι ◦ − : setC (F,G) // setC (F, 2set(G−,2))

We can write ι ◦ − as the vertical composite ιG.−, which is one to one because ιG is
monic. It follows that if setC (F, 2set(G−,2)) is small then setC (F,G) is small.

Thus to show the statement of the Lemma, that setK̂ (Q, K̂) is small, it suffices to

show that setK̂ (Q, 2set(K̂−,2)) is small. But

Q // 2set(K̂−,2)

Q // 2K̂ (−,K∗(2))

K̂ (−, K∗(2)) // 2Q−

K̂ (−, 2K (K,−)) // 2Q−

• ∈2Q(2K (K,−))

2.10. Theorem. If K is locally small then K̂ is procototal.

Proof. Let Q : K̂ // set be given. We claim that A(Q) : K op // set is given by

A(Q)(K) = setK̂ (Q, K̂ (K (−, K),−)) which by Lemma 2.9 is small, an object of set.

Take F in K̂ and consider

K̂ (F,A(Q)) ∼=
∫
K

set(F (K), A(Q)(K)) ∼=
∫
K

set(F (K), setK̂ (Q, K̂ (K (−, K),−)))

∼=
∫
K

set(F (K),

∫
G

set(Q(G), G(K))) ∼=
∫
K

∫
G

set(F (K), set(Q(G), G(K)))

∼=
∫
G

∫
K

set(Q(G), set(F (K), G(K))) ∼=
∫
G

SET(iQ(G),

∫
K

set(F (K), G(K)))

∼=
∫
G

SET(iQ(G), K̂ (F,G)) ∼= SETK̂ (iQ, K̂ (F,−))
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Theorems 2.5 and 2.10 say, respectively, that locally small powers of set are prototal
and procototal.

3. Totally Distributive Categories

The following definition first appeared in [R&W].

3.1. Definition. A total category is totally distributive if ∃W a X : K̂ // K .

3.2. Proposition. A totally distributive category is total and cototal and X : K̂ // K
preserves all limits.

Proof. By definition K is total and X being a right adjoint preserves all limits. From

the fully faithful adjoint string W a X a Y : K // // K̂ we have W fully faithful so that

the adjunction W a X exhibits K as a full coreflective subcategory of K̂ , which by
Theorem 2.10 is procototal. By Lemma 2.8, K is procototal and, since K is locally
small, it is cototal by Corollary 2.7.

3.3. Remark. By [WD2] Theorem 5, for a totally distributive category K , we have

K̂

K

X

��?????????????̂K (K̂ op)op

(−)+
// (K̂ op)op

K

A

��������������
K̂ (K̂ op)op

oo (−)−

>

where (−)+ a (−)− is the Isbell conjugation adjunction.

A reasonable supply of totally distributive categories is provided by

3.4. Theorem. For small C , Ĉ is totally distributive.

Proof. For small C , Ĉ is locally small so that YC : C // Ĉ has both left and right Kan

extensions, giving the adjoint string (YC )! a ŶC a (YC )∗ : Ĉ // ̂̂C . By [S&W], (YC )∗ = YĈ .

Totally distributive categories are closed under “quotients” and “subobjects” in the
following sense:

3.5. Lemma. If K is totally distributive and either

L K
// k //
⊥L Koo a
⊥L K

//
j

//
or L K

oo a

⊥L K// j //
⊥L K

oo
b

(assuming in the second case the existence of a! a â) then L is totally distributive.
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Proof. In either case, from a a j and using j! = â it is standard that XL
∼= aXK â .

If, further, we have k a a then we also have k̂ a â so that the left adjoint of XL
∼=

aXK â is WL
∼= k̂WK k .

On the other hand, if j a b then j preserves colimits so that XK j!
∼= jXL . In this case

we also have XL
∼= bjXL

∼= bXK j! and now, taking left adjoints, we get WL
∼= a!WK j

(assuming a! a â = j! exists).

This provides a further class of examples of totally distributive categories.

3.6. Corollary. If L is a lex CCD lattice, meaning that ⇓, the defining left adjoint
to the supremum operation, is left exact; then shv(L ) is totally distributive.

Proof. The adjunction ⇓ a
∨

: DL // L , where DL is the lattice of down-closed
subsets of L , in the 2-category of frames corresponds to the adjunction

∨
a ↓ in the

2-category of locales so that we have

shv(L ) shv(DL ) ' L̂
// //

⊥shv(L ) shv(DL ) ' L̂oo shv(
∨

) ⊥shv(L ) shv(DL ) ' L̂
//

shv(↓)
//

The displayed equivalence results from the fact that any sheaf on DL seen as a functor
(DL )op // set is uniquely determined, within isomorphism, by its restriction along ↓ op :

L op // (DL )op. By Theorem 3.4, L̂ is totally distributive so, by Lemma 3.5, shv(L ) is
totally distributive.

3.7. Remark. The term lex CCD lattice was introduced in [R&W] but the concept
had appeared earlier in [B&N] under the name stably supercontinuous frame where it was
shown that such lattices are precisely the regular projectives in the category of frames.
This condition on L is stronger than we need since the left adjoint to shv(

∨
) is left

exact, which is not required for application of Lemma 3.5.

4. Completely Distributive Categories

4.1 Following [D&L] and many others before, we write PK for the full subcategory

of K̂ determined by all small colimits of representables. We recall that if K is locally

small then PK is locally small and that PK = K̂ if and only if K is small. For K
locally small, PK is the free small-colimit completion of K . By left Kan extension,
P becomes a 2-functor P :Cat //Cat which underlies a KZ-(pseudo)monad whose unit

factors the Yoneda functor Y : K // K̂ . We will also write Y : K // PK for the unit of
the monad P. We will write M for the multiplication on P and, by [MAR1], we have
PYK aMK a YPK , for any locally small K . The P-algebras are the small-cocomplete
categories and K is small-cocomplete if and only if Y : K // PK has a left adjoint.

If a small-complete K is total then its P-structure is the restriction of X : K̂ // K so
we will generically use X : PK // K for P-structure functors. It is a formality that
R = (P((−)op))op :Cat //Cat underlies the free small-limit completion (coKZ)-monad.
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4.2 It is well known that K̂ is small-complete and we have seen in Theorem 2.10 that, for

K locally small, K̂ is procototal. By contrast, PK is not necessarily small-complete. A
counterexample is given in [D&L]. We remark that when PK is small-complete and K
is small-cocomplete, K is a full reflective subcategory of a small-complete category and
hence also small-complete. Since small-cocomplete is known to not imply small-complete,
we have another demonstration that PK is not small-complete, in general. The authors
of [D&L] remark that because PK contains all the representables, any limit in PK is
pointwise. Indeed if P : I // PK and lim

←−
P exists then, for any K in K , we have:

(lim
←−
I∈I

PI)(K) ∼= PK (K (−, K), lim
←−
I∈I

PI) ∼= lim
←−
I∈I

PK (K (−, K), P I) ∼= lim
←−
I∈I

(PI(K))

It follows that PK // //K̂ preserves any limits that exist in PK . The following important
theorem of [D&L] was foreshadowed by [PJF]:

4.3. Theorem. If K is small-complete then PK is complete.

Building on this, [D&L] also proved:

4.4. Theorem. For K and L small-complete, PF : PK // PL preserves small
limits if and only if F : K // L preserves small limits.

Of course Yoneda functors preserve any limits that exist. So if K is small complete
then YK : K // PK preserves small limits and the adjunction PYK aMK ensures that,
for small-complete K , MK preserves small limits. These observations of [D&L] together
with their Theorems 4.3 and 4.4 ensure that the monad (P, Y,M) lifts from Cat to
CatR , the 2-category of small-complete categories, small-limit preserving functors, and
natural transformations.

4.5. Corollary. There is a distributive law ρ : RP // PR.

4.6. Definition. A locally small category K is completely distributive if K is a
ρ-algebra, meaning that K is a P-algebra and K is an R-algebra and PK // K is an
R-homomorphism. In other words, K is completely distributive if K is small-cocomplete
and small-complete and assignment of colimits, X : PK // K preserves all small limits.

4.7. Remark. A stronger definition might require that X : PK // K have a left
adjoint, equivalently that (K , X : PK // K ) have a P-coalgebra structure for P seen
as a KZ comonad on CatP .

4.8. Remark. A ρ-algebra K has limits distributing over colimits in the terminology
of Beck. There is also a distributive law λ : PR // RP and a λ-algebra has colimits
distributing over limits. K is a λ-algebra if and only if K op is a ρ-algebra. However, if
both K and K op are ρ-algebras then both K and K op are cartesian closed so that K
is an ordered set.

4.9. Theorem. A totally distributive category is completely distributive.
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Proof. Let K be totally distributive then, as we already remarked, it has P-structure

given by restrictingX (and R structure given by restricting A). Since PK // //K̂ preserves

all limits that exist and so does the right adjoint functor X : K̂ // K , K is completely
distributive.

5. Taxons

5.1 Recall that a category K is a (possibly large) set |K | together with a monad K
on |K | in MAT, the bicategory with objects those of SET and arrows given by SET-
valued matrices. We will make several calculations in MAT so we recall that MAT can
be seen as the full subbicategory of PROF determined by the discrete objects, which are
the objects of SET. We note that, like PROF, MAT has local coequalizers which are
preserved by composition with 1-cells from either side.

A taxon T, as in [KOS] is a (possibly large) set |T|, whose elements are called objects,
together with an interpolad T on |T| in MAT. This means that T is a pair T = (T :
|T| � // |T|, µ :TT //T) in MAT, where

TTT TT
Tµ //

TTT TT
µT

// TT Tµ //

is a coequalizer in MAT(|T|, |T|). To understand the definition, let T and U be objects
of T and, as for categories, write the elements of T(T, U) as arrows f :T //U . From the
definition of matrix multiplication, it follows that TT(T, U) is the set of composable pairs

T
h // M

g // U

from T to U . The value of the (T, U)-component of the 2-cell µ at the pair (h, g) can, and
will, be denoted gh : T //U , and called the composite of (h, g). We will freely use other
categorical vocabulary when it makes sense to do so.

Provisionally, write TTT for the coequalizer of Tµ and µT. It now follows, merely from
our notational conventions, that TTT(T, U) is the set of equivalence classes of composable
pairs of arrows from T to U , for the equivalence relation that identifies

T
h // M

g // U and T
v // N

u // U

if there exists a (finite) path from (h, g) to (v, u) in the sense suggested by:

T U

M

T

??

h

�������������
M

U

g

��????????????

T

N

v

��????????????T UU

N

??

u

������������

M

•
��
•

•

OO

...

T

•77oooooooooo

•

U
''OOOOOOOOOO

T •// • U//
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It is helpful, and natural, to write g⊗h for the equivalence class of the pair (h, g). Because
µ coequalizes Tµ and µT, it follows that there is a unique 2-cell µ̄ : TTT //T such that
the following equation holds:

TT TTT//TT

T

µ

��????????????? TTT

T

µ̄

��

Clearly, we have µ̄(g⊗h) = gh. The requirement that µ be a coequalizer is the requirement
that µ̄ be an isomorphism. In other words, for all f :T //U in T, there is a unique g ⊗ h
such that f = gh. Thus every arrow in a taxon can be factored and any two factorizations
of an arrow are connected.

A category can be interpreted as a taxon. Indeed, the composition data for a category
gives rise to a local coequalizer in MAT which is both reflexive and contractible via the
identity data.

5.2 For T and S taxons, a taxon functor F : T //S consists of an object function F :
|T| // |S| and functions FT,U : T(T, U) //S(FT, FU) which preserve compostion. A nat-
ural transformation τ : F //G : T //S consists of functions τT,U : T(T, U) //S(FT,GU),

with f : T //U | // τf :FT //GU such that, for all T h // M
g // U ,

GM GU
Gg

//

FT

GM

τh

��

FT FM
Fh // FM

GU

τg

��

FT

GU

τgh

?????

��?????

In Exercise 5 of Section 4 of Chapter 1 of [MAC], the reader is asked to show that the
definition of natural transformation given above agrees with the usual one if F and G are
functors between categories. With most composites being the evident ones, taxons, taxon
functors, and natural transformations form a 2-category that we call TAX. Note that if
we have functors F,G,H : T //S between taxons and natural transformations τ : F //G
and σ : G //H, then the vertical composite σ.τ has (σ.τ)f = σgτh for any composable
pair (h, g) with f = gh. That this is well defined follows from the defining coequalizer
condition for taxons.

5.3. Remark. If τ : F //G : T //S and σ : G //F , then τ and σ are inverse
isomorphisms if and only if, for every composable pair (h, g) in T, σg.τh = F (gh) and
τg.σh = G(gh). Note that if τ : F //G is an isomorphism and T is an object of T we
cannot conclude that F (T ) and G(T ) are isomorphic, even if S is a category seen as a
taxon. For that matter, evaluation at T does not necessarily provide a taxon functor.
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5.4. Remark. To give an adjunction η, ε;F a U : X //A in TAX is to give, for all
f :X //Y in X, natural ηf :X //UFY , and, for all h :A //B in A, natural εh :FUA //B,
such that for all composable (f, g) in X and all composable (h, k) in A,

FX FUFY
F (ηf )

//FX

FZ

F (gf)

��????????????????? FUFY

FZ

εF (g)

��

UFUB UAoo ηUh
UFUB

UC

Uεk

��

UA

UC

U(kh)

�������������������

It is interesting to note that without the coequalizer condition it seems difficult to
obtain a meaningful 2-categorical stucture on “categories without identities”.

In addition to TAX there are 2-categories Tax and tax, building on the size conven-
tions of subsection 2.1. For the objects of Tax we require that the hom-sets T(X,A) be
small and we speak of locally small taxons. For the objects of tax we require both |T|
and the T(X,A) to be small and call such objects small taxons.

There is a 2-functor I : CAT //TAX which interprets categories as taxons. Notice
that it is not an inclusion because it is not full — a taxon functor between categories
does not necessarily preserve identities. For a “real” example let C be a category with
non-identity idempotents and consider the underlying object taxon functor from the idem-
potent splitting completion KC to C . It does not preserve identities. In fact, K extends
to taxons and provides a right 2-adjoint, 2-functor to I :CAT //TAX. By contrast, freely
adjoining identities to a taxon provides a functor from the underlying category of TAX
to the underlying category of CAT but it is not a 2-functor, although it is left adjoint
to the underlying functor of I (from the underlying category of CAT to the underlying
category of TAX). The exercise in [MAC] mentioned above shows that I is locally fully
faithful.

5.5 Many of the ideas of subsections 5.1, 5.2, and this one are taken from [KOS]. In
particular, for taxons T and S we have from [KOS] the notions of an i-module from T to
S. These form an appropriate notion of proarrow, in the sense of [WD1], for taxons.

An i-module M :T � //S is a SET-valued matrix M : |T| � // |S| together with mutually
associative actions ρ :MT //M and λ :SM //M for which

SSM SM
µM //

SSM SM
Sλ

// SM Mλ //andMTT MT
Mµ //

MTT MT
ρT

// MT Mρ //

are coequalizers. An i-module is small if its underlying matrix is set-valued. It is some-
times convenient to speak of an associative action with associativity witnessed by a co-
equalizer as an i-action.

For i-modules M,N :T � //S, a 2-cell τ :M //N is a 2-cell in MAT which is equivari-
ant with respect to the actions. Taxons, i-modules, and 2-cells with the obvious compo-
sitions form a bicategory i-MOD. In particular, note that if M :T � //S and N :S � //R
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then the composite module N •M :T � //R is given by the local coequalizer

NSM NM
ρM //

NSM NM
Nλ

// NM N •M//

in MAT. Note that the definition of N •M makes sense for general actions, not just
i-actions. We employ such usage below.

Restricting to small taxons and small i-modules we obtain a bicategory i-mod. We
write i-Mod(T,S) for the category of small i-modules from T to S irrespective of the size
of T and S. i-Mod is not a bicategory for the same reason that Prof is not a bicategory
— a composite of smalls over a large set of objects is not small in general.

If F : T //S is a taxon functor, we get matrices F+ : |T| � // |S| and F+ : |S| � // |T|
defined by F+(S, T ) = S(S, FT ) and F+(T, S) = S(FT, S) respectively, each admitting
actions on both sides. However, the actions of T can fail to be i-actions. We define F∗
and F ∗ by the composites F∗ = F+ •T and F ∗ = T •F+. For future reference, note that
F ∗(T, S) has elements of the form s ⊗ t, for t : T //T ′ in T and s : FT ′ //S in S, where
s⊗ t again denotes the evident equivalence class. Now F∗ and F ∗ are i-modules — small
if F : T //S is in tax — with F∗ a F ∗ in i-MOD (in i-mod if F is in tax). We get
proarrow equipments (−)∗ : TAX // i-MOD and (−)∗ : tax // i-mod. Like PROF and
prof , i-MOD and i-mod have all right liftings and all right extensions. See [KOS] for
details.

Just as a category can be interpreted as a taxon, so a profunctor between categories
can be interpreted as an i-module. The coequalizer requirements are again met by using
the identity data to exhibit the actions as reflexive contractible coequalizers. Thus we
have I : PROF // i-MOD — which also restricts to the small case — but, unlike the
situation for I :CAT //TAX, I :PROF // i-MOD is full and faithful. This observation
will be important for our use of taxons.

5.6. Proposition. If M : C // D is an i-module between categories then M is already
a profunctor so that each IC ,D : PROF(C ,D) // i-MOD(IC , ID) is an isomorphism of
categories. In fact any i-action of a category is unitary.

Proof. Let (C , µ, η) be a category, seen as a monad, and let M be a right C i-module
with i-action ρ so that

MC C MC
Mµ //

MC C MC
ρC

// MC Mρ //
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is a coequalizer. Consider

MC Mρ //

MC C MCρC //

MC Mρ //

MC

MC C

MC η

��

M

MC

Mη

��
MC C

MC

Mµ

��

MC

M

ρ

��

The left hand vertical composite is 1MC . It follows by uniqueness that the right hand
vertical composite is 1M so that ρ is unitary.

5.7. Remark. This argument shows that, for any monad (C , µ, η), on any object,
in any bicategory, that if a putative algebra α : CA //A satisfies associativity by being a
coequalizer of Cα and µA then α is an algebra (and the coequalizer is then contractible
and reflexive).

We want to relate certain i-modules with certain taxon functors. The following propo-
sition is helpful. Note that Top, the opposite of T, is the taxon with the same objects as
T, Top(T, U) = T(U, T ), and the obvious composition.

5.8. Proposition. For a taxon T, the category TAX(Top, Iset) is isomorphic to
the following category: the object are pairs (P : 1 � // |T|, λ :TP //P ) where P is a small
matrix and λ is a matrix 2-cell that provides a merely associative action of T on P ,
meaning that we have the equation

TP P
λ

//

TTP

TP

Tλ

��

TTP TP
µP // TP

P

λ

��

while the arrows (P, λ) // (Q, λ) are matrix 2-cells α :TP //Q which satisfy the equations

TQ Q
λ

//

TTP

TQ

Tα

��

TTP TP
µP // TP

Q

α

��
and TP Qα

//

TTP

TP

µP

��

TTP TPTλ // TP

Q

α

��
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Given α : TP //Q and β : TQ //R, their composite β ? α : TP //R is the unique arrow
satisfying the equation defined by the right hand square below.

TTTP TTP
µTP //

TTTP TTP
TµP

//TTTP

TTQ

TTα

��

TTP

TQ

Tα

��

TP

R

β?α

��

TTP TPµP //

TTQ TQ
µQ //

TTQ TQ
Tλ

// TQ Rβ //

(The top row is of course a coequalizer; one of the serial equations of the left square is
trivial, the other follows using both equations for α; the second equation for β shows that
the second row commutes.) The identity on (P, λ) is λ. A matrix 2-cell τ : P //Q is
equivariant with respect to left actions on P and Q if it satisfies the equation given by the
square

P Qτ
//

TP

P

λ

��

TP TQTτ // TQ

Q

λ

��

TP

Q

α

��?
?

?
?

?
?

?

In this case the common value provided by the diagonal α provides an arrow of the category
at hand.

Proof. Given a taxon functor P : Top // Iset, we regard the values P (T ) as “hom-
sets” with elements p : T � //P , together with an associative composition assigning to

S
g //T

p� //P a “composite” pg :S � //P . Of course, pg is just a convenient way of talking
about P (g)(p) ∈ P (S). Given α : P //Q in TAX(Top, Iset) we have functions α :

T(R, T )× P (T ) //Q(R) sending the pair (f, p) to αf (p) subject to, for R h // S
g // T ,

αg(p)h = αgh(p) = αh(pg)

The equations of the statement are just those above expressed in terms of matrices. We
leave the other verifications as an exercise.

5.9. Theorem. For any small taxon T, there is an equivalence of categories

i-Mod(I1,T) ∼ //Tax(Top, Iset)

and i-Mod(I1,T) is locally small.
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Proof. A unitary action by 1 is trivial, so by Proposition 5.6 the objects of i-Mod(I1,T)
are simply left T i-actions and the arrows are equivariant 2-cells. On the other hand,
Proposition 5.8 allows us to regard the objects of Tax(Top, Iset) as left T actions with
arrows as described therein. Given τ : P //Q in i-Mod(I1,T), Proposition 5.8 shows
that τ.λ = λ.Tτ : TP //Q provides an arrow from P to Q in Tax(Top, Iset). Thus
we have a functor Φ : i-Mod(I1,T) //Tax(Top, Iset). Moreover, if we have any arrow
α :P //Q in Tax(Top, Iset) with P in i-Mod(I1,T) then we claim that α arises from a
unique equivariant τ :P //Q as τ.λ. To establish this claim observe that since λ :TP //P
is the coequalizer of µP and Tλ, the second equation for α in Proposition 5.8 shows that
α = τ.λ for a unique τ : P //Q. Then, since Tλ is also a coequalizer, the first equation
for α in Proposition 5.8 shows that τ is equivariant. This claim shows in particular that
Φ : i-Mod(I1,T) //Tax(Top, Iset) is fully faithful.

We define a functor Γ : Tax(Top, Iset) // i-Mod(I1,T). For Q in Tax(Top, Iset)
with left action λ :TQ //Q, define Q to be the coequalizer of µQ and Tλ and construct
k :Q //Q as below

TTQ TQ
µQ //

TTQ TQ
Tλ

// TQ Q
q //TQ

Q

λ

��?????????????
Q

Q

k

��

The following diagram shows that Q admits an i-module structure. Consider first the
upper left square. The four serial equalities are easy to establish. For example,

left.top = top.left

follows from associativity of µ while the other three are instances of naturality. If one
constructs the four coequalizers of the four parallel pairs of the upper left square then
the left and middle vertical columns are the defining coequalizer (in MAT) for taxon T
applied to TQ and Q respectively. Note that the bottom left hand square shown satisfies
the two serial equalities so that the bottom parallel pair is necessarily the induced pair
and we have defined its coequalizer to be q : TQ //Q. Thus the middle and upper
rows are necessarily coequalizers as displayed. From the 9-Lemma the right column is
the coequalizer of the induced parallel pair arising from the parallel pair in the middle
column. By uniqueness, the right arrow of the induced pair is µQ. For the moment, write
x for the left arrow and λ̄ for their coequalizer. The bottom right square commutes (and
its diagonal is then the colimit of the upper left square). It follows at once that Tλ̄, where
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we have x, gives the other serial commuativity. Thus x = Tλ̄ by uniqueness.

T4Q T3Q
T2µQ //

T4Q T3Q
T3λ

// T
3Q T2Q

T2q //

T3Q T2Q
TµQ //

T3Q T2Q
T2λ

// T
2Q TQTq //

T2Q TQ
µQ //

T2Q TQ
Tλ

// TQ Qq
//

T4Q

T3Q

TµTQ

��

T4Q

T3Q

µT2Q

��

T3Q

T2Q

TµQ

��

T3Q

T2Q

µTQ

��

T2Q

TQ

x

��

T2Q

TQ

µQ

��
T3Q

T2Q

µTQ

��

T2Q

TQ

µQ

��

TQ

Q

λ̄

��

It follows that Q together with λ̄ is an i-module and, as a quotient of a small sum (since
T is small) of smalls, Q is small so that we can define Γ(Q, λ) = (Q, λ̄). Next, we observe
that the arrow k : Q //Q is equivariant (by using that TQ is a coequalizer) and thus
provides an arrow kQ : ΦΓQ //Q in Tax(Top, Iset).

We show that Γ is right adjoint to Φ, with counit given by k : Q //Q. For any P in
i-Mod(I1,T) and any (equivariant) τ : P //Q in Tax(Top, Iset), there is a τ̄ : P //Q
unique with the property that

TQ Qq
//

TP

TQ

Tτ

��

TP Pλ // P

Q

τ̄

��

in MAT. It is obvious that kτ̄ = τ and it is easy to check that τ̄ is equivariant, by using
that Tλ : T2P //TP is a coequalizer. Assume now that t : P //Q is any equivariant
arrow with k.t = τ . An adjunction Φ a Γ with counit k will be established if we can
show that t = τ̄ . It is convenient to show first that λ̄, the i-action for Q, is also given by
λ̄ = q.Tk. From the square defining λ, it suffices to show q.Tk.Tq = q.µQ. But

q.Tk.Tq = q.Tλ = q.µQ

follows easily from the basic definitions (without reference to the hypothesized t). From
the square defining τ̄ it follows that t = τ if t.λ = q.Tτ . But

t.λ = λ̄.Tt = q.Tk.Tt = q.Tτ

using the equation for λ̄ and the hypothesis on t.
To show that Φ a Γ is an equivalence observe first that the unit which follows from our

deduction can, and should, have its P component taken to be 1P. So it suffices to show
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that k : Q //Q is invertible in Tax(Top, Iset). We have kλ̄ : TQ //Q, which using the
description above for λ̄ is more easily given as λ.Tk :TQ //Q, and q :TQ //Q. (Note that
kλ̄ satisfies the ‘α’ equations of Proposition 5.8 because k is equivariant, while q satisfies
the second of those equations as the coequalizer of Tλ and µQ. The first of those equations
for q is the defining square for λ̄.) We consider the composites q ? (λ.Tk) :TQ //Q and
(λ.Tk) ? q :TQ //Q as described in Proposition 5.8.

TTQ TQµQ //

TTQ

TTQ

TTk

��

TTQ TQ
µQ // TQ

TQ

Tk

��

TQ Qq
//

TTQ

TQ

Tλ

��

TTQ TQµQ // TQ

Q

q

��

TQ

Q

λ̄

��
TQ TQ

Tk
//

TTQ

TQ

Tq

��

TTQ

TQ

Tλ

��????????????
TTQ TQ

µQ //

TQ Q
λ

//

TQ

Q

λ

��

The first diagram shows, by uniqueness, that q ? (λ.Tk) = λ̄, which represents 1Q. The
second diagram shows, again by uniqueness, that (λ.Tk) ? q = λ, which represents 1Q.
This completes the proof that k :Q //Q is invertible in Tax(Top, Iset).

Finally, note that i-Mod(I1,T)(P,Q) is a subset of
∏

T∈|T| set(P(T ),Q(T )) which,
being a small product of small sets, is small.

5.10. Remark. It is worth noting that for Q in Tax(Top, Iset) the corresponding
i-module ΓQ is given by ΓQ = Q = T •Q.

5.11 For every T in a locally small taxon T, there is a taxon functor T(−, T ) :
Top // Iset and, for every u :T //U in T, there is a taxon natural transformation T(−, u) :
T(−, T ) //T(−, U). For f : A //B in T, we have T(−, u)f : T(B, T ) //T(A,U), in the
notation of 5.2, given by T(f, u) :T(B, T ) //T(A,U) where, for h :B //T , T(f, u)(h) =
uhf : A //U . It follows that we have a taxon functor yT : T // ITax(Top, Iset). But
the taxon functors T(−, T ) seen as modules are obviously i-modules so that, for T small,
we can consider the assignment T | //T(−, T ) as taking values in the equivalent subtaxon
Ii-Mod(I1,T). We write YT :T // Ii-Mod(I1,T) and refer to both yT and YT as Yoneda
taxon functors.

For T in T, a locally small taxon, and P in Tax(Top, Iset), we have the sets P (T ) and
Tax(Top, Iset)(T(−, T ), P ) but if T is not a category we cannot guarantee that these
sets are isomorphic. However, we have a taxon functor

Tax(Top, Iset)(T(−,2), P ) :Top //SET

whose value at T is Tax(Top, Iset)(T(−, T ), P )
As before, we will write p : T � //P for a typical element of P (T ). We note that

any f : U //T together with an element p : T � //P determine a natural transformation
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τf,p : T(−, U) //P between taxon functors. Explicitly, for g : W //V in T, the g’th
component of τf,p is the function (τf,p)g :T(V, U) //P (W ) whose value at h :V //U is

W
g // V

h // U
f // T

p� // P

The following result should surely be considered a Yoneda lemma for taxons

5.12. Lemma. For T a locally small taxon and P in Tax(Top, Iset), there is an
isomorphism of taxon functors

iP ∼= Tax(Top, Iset)(T(−,2), P ) :Top //SET

Proof. For brevity, write Q = Tax(Top, Iset)(T(−,2), P ) :Top //SET in this proof.
Define α :P //Q so that, for f :U //T in T, αf :P (T ) //Q(U) at p :T � //P is given by

αf (p) = τf,p :T(−, U) //P

where τf,p is as described prior to the statement. Next, define β : Q //P so that for
f :U //T and τ :T(−, T ) //P in Q(T ) we have βf (τ) = τg(h) in P (U), where f = hg is
any factorization of f . We leave as an exercise that βf is well-defined. To show that α
and β are inverse isomorphisms we follow the template provided earlier in Remark 5.3.

Let A
g // B h // C be a composable pair in T and consider

p ∈ P (C)
αh // Q(B)

βg // P (A)

together with some factorization A u // M v // B of g. Assembling the definitions we
have

βg(αh(p)) = βg(τh,p) = (τh,p)u(v) = phvu = phg = P (hg)(p)

Finally, consider also a factorization B
x // N

y // C of h and

σ ∈ Q(C)
βh // P (B)

αg // Q(A)

to get
αg(βh(σ)) = αg(σx(y)) = τg,σx(y) :T(−, A) //P

Since σ :T(−, C) //P we have σx(y) ∈ P (B) and it follows that τg,σx(y), where A
g // B

and B
σx(y)� // P is the natural transformation for which, given W

k // V
l // A, has

(τg,σx(y))k(l) = σx(y).glk = P (glk)σx(y) = σxglk(y), the last equation by naturality. On
the other hand, we note that Q(hg)(σ) is the composite natural transformation

T(−, A)
T(−,hg) // T(−, C) σ // P

For W k // V
l // A, and a factorization k = (W i // X

j // V ) we have

(σ.T(−, hg))k(l) = σi(T(−, hg)j(l) = σi(hglj) = σi(yxglj) = σi(T(xglj, C)(y))

and this last is σxglji(y) by naturality. But σxglk(y) = σxglji(y), thus αg(βh(σ)) = Q(hg)(σ)
as required.
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5.13. Remark. Since the fully faithful Φ : i-Mod(I1,T) //Tax(Top, Iset) is an equiv-
alence that identifies YT and yT the Taxon Yoneda Lemma can be restated in terms of i-
modules. For T a locally small taxon and P in i-Mod(I1,T), i-Mod(I1,T)(T(−, T ),P)
can be regarded as taxon functor in T and hence as a module. It is not in general an
i-module but applying Γ, the left adjoint of Φ, to i-Mod(I1,T)(T(−,2),P) gives us an
i-module T • i-Mod(I1,T)(T(−,2),P) of which a typical T -element is of the form τ ⊗ f
for a pair

(T
f // U,T(−, U) τ // P)

There is an equivariant

ε :T • i-Mod(I1,T)(T(−,2),P) // iP

given by ε(τ ⊗ f) = τT (f) ∈ P(T ). In this form the Taxon Yoneda Lemma says “ε is an
isomorphism”.

5.14. Theorem. For T a locally small taxon, Tax(Top, Iset) is prototal.

Proof. Write T = Tax(Top, Iset). Following the comment after Lemma 2.3, it suffices

to exhibit a functor X : T̂ // T and a natural transformation

T SETT op

Y
//

T̂

T

X

���������������
T̂

SETT op

iT
op

��????????????

ηoo

that exhibits X as an absolute left lifting of iT
op

through Y , in a suitable 2-category of
categories, functors, and natural transformations. Explicitly this means that, for all P

in T̂ and for all F in T , pasting η at X provides a bijection between T (X(P ), F ) and
SETT op

(iP,T (−, F )). We begin by defining X(P ) to be the composite

Top yopT // IT op IP // Iset

To give η : iT
op //Y X is to give, for all P in T̂ , an arrow ηP : iP // T (−, IP.yop

T )
in SETT op

. To give ηP is to give, for each object G in T , a G-component, ηPG :
iP (G) // T (G, IP.yop

T ), natural in G. Let g ∈ iP (G). By the Yoneda Lemma for cat-
egories we can regard such g as a natural transformation

T op SET

T (−,G)

%%
T op SET

iP

::ḡ

��
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Thus to give η is to give, for such g, a natural transformation between taxon arrows

Top Iset

G

%%
Top

IT opyT
op .. IT op

Iset

IP

EEηPG(g)

��

To give such ηPG(g) is to give, for all f :T //U in T,

G(U)
(ηPG(g))f // IP.yTop(T ) = IP (T(−, T ))

To give such (ηPG(g))f is to give, for all u ∈ G(U), (ηPG(g))f (u) ∈ IP (T(−, T )). Again,
by the Yoneda Lemma for categories, such an element, call it σ, can be seen as a natural
transformation σ̄ : T (−,T(−, T )) // iP . From the data f : T //U in T and u ∈ G(U)
under consideration, we have the natural transformation between taxon functors τf,u :
T(−, T ) //G, as described prior to Lemma 5.12. We define the required σ̄ to be the
composite

T op SET

T (−,T(−,T ))

��
T op SETT (−,G) //T op SET

iP

@@

T (−,τf,u)

��

ḡ

��

We now construct, from any α : iP // T (−, F ), a natural transformation between taxon
functors β : X(P ) //F . To give such a β is to give, for all f : T //U in T, a function
βf : X(P )(U) //F (T ) which requires a definition of βf (p) for each p ∈ X(P )(U) =
P (T(−, U)). However, from α we have αT(−,U) : iP (T(−, U)) // T (T(−, U), F ) and hence
a natural transformation between taxon functors αT(−,U)(p) : T(−, U) //F . Factor f :
T //U as

T

V
v ��?????T U

f // U

V

??

w�����

and define βf (p) = (αT(−,U)(p))v(w). It remains to be shown that β is well-defined and
unique with the property that T (−, β).ηP = α.

The first of these is a generality about natural transformations between taxon functors
of the form τ :T(−, U) //F ; namely that for any

T

X
v ��?????

V

T

??
x

�����
V

X

a

��

U

X

??

w�����

V

U

y

��?????V

X

a

��
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τv(w) = τx(y) is a simple consequence of naturality.
To show that T (−, β).ηP = α we must show that, for all G ∈ T , for all g ∈ P (G),

β.ηPG(g) = αG(g) :G //F :Top // Iset

as natural transformations between taxon functors. To do this, we must show that, for
any

S

T
h ��?????S U

k // U

T

??

f�����

in T, for any u ∈ G(U),

βh((ηPG(g))f (u)) = (αG(g))k(u)

To establish this let h = h2h1 and h1 = h12h11 and calculate

βh((ηPG(g))f (u)) = (αT(−,T )((ηPG(g))f (u)))h1(h2)

= (αT(−,T )(ḡ.T (−, τf,u)))h1(h2)

= (αT(−,T )P (τf,u)(g))h1(h2)

= (T (τf,u, F )αG)(g))h1(h2)

= (αG(g).τf,u)h1(h2)

= (αG(g))h11((τf,u)h12(h2))

= (αG(g))h11(ufh2h12)

= (αG(g))fh2h12h11(u)

= (αG(g))k(u)

Since the β we described is of the form B(α) we can establish its required uniqueness
by showing that B(T (−, β).ηP ) = β. So with (B(α))f (p) = (αT(−,U)(p))v(w), f : T //U
in T, p ∈ X(P )(U) = P (T(−, U)), f = wV v (obvious notation), and v = v2Wv1, we
calculate

(B(T (−, β).ηP ))f (p) = ((T (−, β).ηP )T(−,U)(p))v(w)

= (β.ηPT(−,U)(p))v(w)

= βv1((ηPT(−,U)(p))v2(w))

= βv1(p̄.T (−, τv2,w))

= βv1(p̄.T (−, wv2))

= βv1(X(P )(wv2)(p))

= βwv2v1(p)

= βf (p)
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5.15. Theorem. For T a small taxon, i-Mod(I1,T) is totally distributive.

Proof. If T is small then we have the equivalence i-Mod(I1,T) ∼ //Tax(Top, Iset)
provided by Theorem 5.9 and now, since T small implies that T is also locally small,
Theorem 5.14 tell us that i-Mod(I1,T) is prototal. Since i-Mod(I1,T) is locally small,
also by Theorem 5.9, we have i-Mod(I1,T) total by Lemma 2.3.

The taxon functor YT :T // Ii-Mod(I1,T) gives us the adjunction

�YT∗ //
⊥T Ii-Mod(I1,T)

oo �
YT
∗

in i-Mod.
Applying i-Mod(I1,−), sends this adjunction to an adjunction in CAT where the

right adjoint now has a further right adjoint because i-MOD has right liftings and the
lifting in question takes small i-modules to small i-modules because T is small. These
observations account for the adjoint string

i-Mod(I1,T) i-Mod(I1, Ii-Mod(I1,T))

i-Mod(I1,YT∗) //
⊥

i-Mod(I1,T) i-Mod(I1, Ii-Mod(I1,T))oo i-Mod(I1,YT
∗)

⊥
i-Mod(I1,T) i-Mod(I1, Ii-Mod(I1,T))

YT
∗⇒(−)

//

As before, write T = Tax(Top, Iset) and here also write M = i-Mod(I1,T). Now we

have the equivalence Φ : M // T of Theorem 5.9 and the isomorphism T̂ = Prof(1,T ) ∼=
i-Mod(I1, IT ) of Proposition 5.6. Consider the diagram

T T̂ = Prof(1,T ) ∼= i-Mod(I1, IT )oo
X

M

T

Φ

��

M ii-Mod(I1, IM )oo i-Mod(I1,YT
∗)

ii-Mod(I1, IM )

T̂ = Prof(1,T ) ∼= i-Mod(I1, IT )

i-Mod(I1,IΦ)

��

where X witnesses the totality of T as in Theorem 5.14. To show that M is totally
distributive it suffices to show that this diagram commutes to within isomorphism, for if
Φ identifies i-Mod(I1, YT

∗) with X, then by the uniqueness of adjoints it also identifies
YT
∗ ⇒ (−) with the Yoneda functor for T . However, this last requirement is clear because

i-Mod(I1, YT
∗) is essentially given by precomposition with YT

op and X is precisely given
by precomposition with yT

op and Φ identifies YT and yT.

The bicategory i-mod, like prof , is a compact monoidal bicategory with monoidal
structure given by cartesian product and dualization given by (−)op. Thus i-mod(T,S) '
i-mod(1,Top × S) and hence

5.16. Corollary. The hom-categories of both i-mod and prof are totally distributive.
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