
A Database of Categories ∗

Michael Fleming
Department of Computer Science

University of Waterloo
Waterloo, Ont, Canada

Ryan Gunther
Department of Computer Science

University of Waterloo
Waterloo, Ont, Canada

Robert Rosebrugh
Department of Mathematics and Computer Science

Mount Allison University
Sackville, NB, Canada

ABSTRACT

We describe a program which facilitates storage and manipulation of finitely-
presented categories and finite-set valued functors. It allows storage, editing and
recall of finitely-presented categories and functors. Several tools for testing prop-
erties of objects and arrows, and the computation of right and left kan extensions
are included. The program is written in ANSI C and is menu-based. Use of the
program requires a basic knowledge of category theory.

∗Support of the first two authors by the NSERC Canada USRA program is acknowl-
edged.

1



1 Introduction

Computation with categories and functors using digital computers has not
been widely implemented. The authors believe that a system which allows
storage, retrieval, queries and computations on categorical objects will be
valuable for research and instruction. For a recent description of much of the
work which has been done, for example, to implement categories as a data
type, see the posting of D. Rydeheard [4]. Also, R. Brown and collaborators
[1] have recently implemented tools for specification of categories, functors
and natural transformations using the AXIOM computer algebra system.
AXIOM is certainly better adapted to describing categorical algebra than
other computer algebra systems and their work is of considerable interest.

Our project began with a prototype using a small relational database
system (PARADOX). That provided a suitable environment for storage of
categories and functors. We found that all of our queries required program-
ming – the select, project, join and set-theoretic operations of relational
algebra were of little help. Thus, while recognizing that in doing so we gave
up the set-at-a-time navigation tools of relational systems, we have preferred
to implement our queries in a procedural language more adapted to respond-
ing to our more complex queries. An object-oriented database system with
a strong procedural component might provide another suitable environment
for the sort of system we are interested in.

Finitely presented categories, functors between them, and (finite-)set val-
ued functors can be stored in and manipulated by a digital computer. We
have written an interactive menu-based ANSI C program which provides
methods for storage, retrieval and updating of a database of finitely-presented
categories. Tools for queries on properties of the stored categories are also
available. The computation of kan extensions of finite-set valued functors
(and hence of limits and colimits in finite sets) is also part of the package.

The next section provides a description of the mathematical structures
which are implemented and the theoretical tools used. In Section 3 we give
a brief overview of usage of the program, displaying some of the menus and
their usage.

For the User Guide, source code and DOS executables see the project
page available from:
http://www.mta.ca/~rrosebru

2



2 Mathematical structures

We assume that the reader is familiar with the basic definitions of category,
functor and so on as found in, e. g., Mac Lane [3]. In this section we define
the mathematical objects to be stored and manipulated, and briefly describe
the mathematical background for the tools which are available to the user.

The ASCII file format used by our program category for storing cate-
gories and functors, and some of its data structures are adapted from those
of Carmody, Leeming and Walters’ kan program [2]. Thus files created for
use with their program may be used as data files for category.

One of the three sorts of objects dealt with by our system is the finitely-
presented (FP) category.

A finite presentation of a category C is specified by the following data:

• a finite set C0 of objects denoted A, B, C, ...

• a finite set C1 of generating arrows denoted f, g, ... with a domain func-
tion δ0 and codomain function δ1 to C0 (so the objects, generating ar-
rows and δ0, δ1 determine a finite directed graph whose set of paths is
denoted C∗

1)

• a finite set E of relations, or equations, between pairs of paths in the
directed graph of objects and arrows (and such that equated paths both
have both the same domain and codomain objects)

A finitely presented category C is determined by a finite presentation. The
category has objects C0 and arrows given by equivalence classes of C∗

1 under
the equivalence relation on C∗

1 generated by the equations E. For details see
Mac Lane [3]. Of course C has many equivalent finite presentations if it has
one. It should also be noted immediately that a finitely presented category
need not have finitely many arrows. For example, if C0 and C1 each have
one element and there are no equations then C has infinitely many distinct
arrows.

To store a category externally the program category uses a simple ASCII
file format that lists the objects, arrows and equations. Users are able to cre-
ate and store category files, and retrieve stored categories. During creation
or after retrieval a category may be modified interactively by changing some
of its defining data. Data entry is guided by prompts and entries are validat-
ed. For example, domains and codomains of generating arrows are required

3



to be already stored, and the paths in equations are checked to be valid in
the underlying graph.

A functor F : C −→ D between finitely presented categories C and D
is specified by functions F0 : C0 −→ D1 and F1 : C1 −→ D∗

1 where D∗
1

is the set of paths in the graph of D. The function F1 is subject to the
requirements (1) that the domain and codomain of the image of an arrow
must be the image of the domain and codomain of the arrow, and (2) that F1

is compatible with composition. The second property can be finitely checked
by comparing images of the pairs of paths appearing in the equations defining
C.

The data for a functor are stored in an ASCII file. Users are able to
create, store and retrieve functor files. The creation of functors is guided by
prompts to the user and the responses are validated.

Finite-set valued functors from FP categories to the category of finite sets
set0 may be created, stored and retrieved. We represent finite sets by their
finite cardinals e. g. n = {1, 2, ..., n}, so strictly speaking our functors take
values in the finite cardinal skeleton of finite sets. Once again, the creation
of these functors is guided by prompts to the user and the requirements of
functoriality are validated.

The storage and retrieval tools outlined above are intended to provide a
user with the capability of building a database of categories of interest. We
have also developed several demonstration tools for appropriate queries on
the stored categories, and for working with finite-set valued functors. We
describe these now.

One of the simplest questions one might ask about a FP category is
whether two paths in the underlying graph represent equal arrows. To answer
this query it is convenient to have a normal form for paths available and an
algorithm to reduce paths to the normal form. The Knuth-Bendix procedure
(described in detail by Walters in [5]) often provides such an algorithm, and
we give a brief summary.

The objective of the Knuth-Bendix procedure is to replace the equations
for a FP category with a confluent set of reductions which presents the same
category. Reductions are defined with respect to an order specified on paths
in the underlying graph (this can be done by ordering generating arrows and
extending lexicographically.) A reduction is simply an equation viewed as
a replacement rule of a larger path (in the order) by a smaller one. It is
applied to a path which contains the larger path by rewriting it using the
smaller path from the reduction. A path is irreducible with respect to a set

4



of reductions if no reduction is applicable. A set of reductions is confluent if
every path reduces to a unique irreducible normal form.

For an FP category presented with a confluent set of reductions the ques-
tion of equality for paths is settled by comparison of normal forms. Confluent
sets of reductions are characterized by satisfaction of two easily checkable
properties detailed in [5]. The Knuth-Bendix procedure applied to a set of
reductions R halts when R is confluent. If R is not confluent, the failure of
one of the properties mentioned generates an equivalent pair of irreducible
paths. The reduction from the larger to the smaller of these is added to R
and the new set of reductions is checked for confluence. When the procedure
terminates it has produced an equivalent confluent set.

The Knuth-Bendix procedure is implemented in category and replaces
the equations of an FP category with a confluent set of reductions. (The
order used on generating arrows is that of their first entry.) The other tools
available assume that this has been carried out.

The simplest query checks for equivalence of paths, that is equality of the
represented arrows, in the underlying graph. Queries are also implemented
to determine (1) if an object is an initial object of a stored category and
(2) if a cospan of arrows, i. e. a diagram of the form A −→ C ←− B,
in a stored category is a coproduct diagram. The construction of a finite
presentation of the opposite of a FP category from a finite presentation has
been implemented, so the latter two queries mentioned can also determine
whether an object is terminal and whether a span is a product.

There are some points to make about these procedures. The first is that
there is in fact an algorithm to determine whether an object in a FP category
is initial even if the category is infinite. Indeed, it is only necessary to consider
paths in the underlying graph which are loop-free. We have the following.

Proposition 1 Let C be a finitely presented category. The object I is an
initial object of C if and only if all of the following conditions hold:

i) there is a loop-free path from I to each object of C

ii) if π1 and π2 are loop-free paths from I to an object A in the underlying
graph, then π1 is equivalent to π2

iii) whenever there is a loop λ on an object A in the underlying graph such
that λ itself is loop-free, and any loop-free path from I to any object of
λ (except A) passes through A, then λπ ∼ π for any path π from I to
A.

5



Proof. The conditions are all clearly necessary, so we need only demonstrate
sufficiency.

Our objective is to show that there is a unique arrow from I to any object.
If the first condition is satisfied, we need only show that any two paths from I
to the same object are equal. If the second condition is satisfied, we need only
show that any path from I which contains one or more loops represents the
same arrow as a loop-free path from I. We will show that the third condition
accomplishes this under the assumption that the first two are satisfied.

Suppose that π = π2λπ1 is a path from I and λ is loop. If λπ1 ∼ π1,
then π2λπ1 ∼ π2π1. Thus it is sufficient to consider paths from I containing
only a single loop λ which includes the final object on the path. So λ is a
loop-free loop. We can also restrict consideration to paths from I which are
loop-free before they first encounter the final object.

Now suppose that λπ is a path from I to A with λ a loop-free loop and π
loop-free. If the third condition is satisfied by λ then λπ ∼ π. If not, there is
a loop-free path π′ to an object B (6= A) on λ. Thus λ decomposes at B as
λ = λ2λ1 and we have λπ = λ2λ1π ∼ λ2π

′ ∼ π since λ1π and π′ are loop-free
paths from I to B, and λ2π

′ and π are loop-free paths from I to A. In either
case, λπ ∼ π as required.

The proposition allows the construction of a straightforward path traver-
sal algorithm to determine whether an object is initial.

Our second comment concerns coproducts. A cospan i : A −→ C ←−
B : j is a coproduct diagram if there is a bijection between arrows f from
C to an arbitrary object T , and pairs (fi, fj) of composites of f with i and
j. If any of the hom-sets from C is infinite there is no method to determine
whether such a bijection exists. However there is no algorithm to determine
that all of these hom-sets are finite for a general FP category. Nevertheless, if
we know that all of the endomorphisms of an FP category are of finite order
then the FP category is finite. Thus we have provided a program parameter
which restricts consideration to endomorphisms of a fixed finite order, and
the user is responsible to ensure that this order is sufficient to capture all of
the arrows of the FP category under consideration. The tree which results
from ‘unfolding’ paths from a fixed object in a directed graph is the data
structure used in enumerating the hom-sets from the fixed object. This data
structure has proved to be efficient and is also used in our right kan extension
computation as described below.

Kan extensions are a fundamental construction in category theory. Given

6



a functor F : A −→ B, its left and right kan extensions exist along any set
valued functor X : A −→ set (or indeed along any functor from A to a
complete and cocomplete category.) They are the functors L, R : B −→ set
satisfying

L −→ K

X −→ KF

S −→ R

SF −→ X

where the arrows between functors are natural transformations. Thus, corre-
sponding to the identity natural transformation, there are also transforma-
tions λ : X −→ LF and ρ : RF −→ X. On objects B of B, L and R can be
computed by the formulae:

LB = colimf :FA→BX(A) RB = limg:B→FAX(A)

in which the (co)limits are taken over the comma categories F/B and B/F
respectively.

We have implemented computation of both left and right kan extensions
of functors F : A −→ B between FP categories along finite set valued
functors X : A −→ set0. Our implementation of the left kan extension
uses the elegant Todd-Coxeter procedure as described in [2] to provide an
efficient construction of L and λ, so we will not comment further on that
side. However we remind the reader that the left kan extension allows a
computation of all of the arrows of (finite) FP category and of colimits of
finite set valued functors (from FP categories,) and that right kan extensions
allow computation of limits of the same functors.

To compute the right kan extension at an object involves computation
of a limit of finite sets. We represent limits as subsets of products. Since
enumeration of elements of a product is potentially costly, we have adopted
two simple strategies to ameliorate this. First, instead of taking the product
of all objects in B/F , we find an initial subcategory of B/F . This is done
by enumerating objects of B/F (that is arrows of B from B to an object
of the form FA) and adding an object to our initial subcategory only when
there is no arrow (of B/F ) to it from an already listed object. The required
limit is a subset of the product of the values of X at the objects of the initial
subcategory. Second, it is not necessary to enumerate all of the elements of
the resulting product. For example, suppose that x ∈ X(A), y ∈ X(A′) and

B
f−→ FA, B

f ′
−→ FA′ are objects in our initial subcategory. The only tuples

of the form (x, y, . . .) which need be considered are those where X(g)(x) = y
for all g : A −→ A′ satisfying F (g)f = f ′. Finally, we note that the required

7



natural transformation ρ : SR −→ X is specified using projections from the
values of R computed on objects.

This concludes our discussion of the tools implemented by category. We
make some remarks about possible extensions in the Conclusion.

3 System description

The following is an abbreviated description of the interactive implementation
of the capabilities described above. The system is written in ANSI C and a
description of the data structures and algorithms used is available (see the
third author’s Web page noted in the Introduction).

3.1 The Main Menu

When the program category starts the Main Menu is displayed:

Categories Database

(1) Category Menu

(2) Functor Menu

(3) Category Tools

(4) Right Kan Extension

(5) Left Kan Extension

(6) Change maximum order of endomorphisms

(0) Quit

Your choice...

The menu options call up another menu, or prompt the user to enter
input. The first, third and fifth options are discussed below. Note that on
choosing (0) Quit the program will ask the user if they wish to save each cat-
egory or functor currently in memory, and the option (6) Change maximum

number of endomorphisms allows the user to control the maximum number
of times an endomorphism will be traversed by the tools in the program.
The default value is 2. Most of the manipulation tools below require a finite
category.

Selecting option (1) Category Menu from the Main Menu will display:

8



CATEGORY MENU

(1) Create category

(2) Load category

(3) Edit category

(4) Display category

(5) List current categories

(6) Save category

(7) Remove category

(0) Back to main menu

If option (1) Create Category is now chosen the following prompt will
be displayed:
Category name:

After the user types in the name of the new category they will see:
Enter @ to display all objects

Enter object name (type ‘enter’ when finished) :

After object entry is complete, the following will be displayed:
Enter arrow name (type ‘enter’ when finished) :

After the name of an arrow has been entered, the program will ask the user
to input the domain of the arrow and then the codomain. The symbol 1 is
reserved for identity arrows.

Next the user enters the equations of the category starting from the
prompt:
Enter left side of equation:

To enter an equation, the left side of the equation is entered followed by the
right side. If some path of arrows in the category equals the identity, that
path is entered for the left side and 1 for the right side. Once the equa-
tions have been entered, typing Enter for both the left and right sides of the
equation will bring back the Category Menu.

Choosing option (2) Load Category will display the following prompt:
Enter name of category you wish to load>

The name of the file containing the category to load is entered and the
program will load the category, or display an error message.

The option (3) Edit Category calls up a menu which allows changing
objects, arrows or equations for a category stored in memory.

9



The option (4) Display Category will prompt the user to select a cat-
egory from memory to be shown on the screen.

Choosing the menu option (5) List current categories will display
a list of the categories that are currently in memory.

The selection (6) Save Category prompts the user to select a category
to be saved, and asks for a file name in which to store it.

The selection (7)Remove Category will prompt the user to select a cat-
egory to be removed from memory.

3.2 The Category Tools Menu

Choosing option 3 from the Main Menu, Category Tools, will display a
list of the categories currently in memory. After providing the number of a
category the Category Tools Menu is displayed:

CATEGORY TOOLS

(1) Make Confluent

(2) Initial Object?

(3) Equality of Composites

(4) Make Dual

(5) Sum?

(6) Display Category

(0) Exit to Main Menu

Your choice...

The options are:
(1) Make Confluent

Choosing this option will make the set of equations in the current category
confluent by adding new equations if necessary.

(2) Initial Object?

After displaying the current category which must be made confluent, this
option allows either testing all objects in the category, or one specific object.

(3) Equality of Composites

This option will determine if two composable paths are equal. The user is
prompted to enter two paths.

10



(4) Make Dual

This will create the dual (opposite) of the current category and store it.
(5) Sum?

This will determine if an object and two paths, the candidate injections, into
the object are a sum diagram in the category.

(6) Display Category

This displays the active category.

3.3 Left Kan Extension

Option (5) from the Main Menu, Left Kan Extension, will allow the user
to compute a left kan extension.

The user will first see a list of categories, and is asked to select a category
A and a category B for the left kan extension. Next a list of functors is
displayed and the user is asked to select a functor from the category A to
the category B, followed by a functor from A to the category of finite sets.
The user is then asked to enter a file name in which to store the output.

The output of the left kan extension begins with information about the
natural transformation λ : X → LF . For each object A in A, the function
λA : XA → LFA is displayed. Next, the action of the left kan extension L
on the objects and arrows of B is displayed. Each object B in B is displayed
with all of the elements of L(B) listed below it. To the right will appear all
generating arrows out of B with their action under L tabulated.

4 Conclusion

We have described a system for storage and manipulation of FP categories
and computation of kan extensions of finite-set valued functors. Our system is
user-friendly and publicly available. It implements some important features,
but there are many additional desirable features which could be added and
we list a few of them:

• checking that an object is some other (co)limit than those already im-
plemented;

• checking whether a category is actually a preorder;

• checking whether a pair of functors between FP categories are adjoint
or an equivalence;

11



• checking whether a functor between FP categories is full, faithful or
both;

• construction of (co)limits of FP categories

• a graphical display of stored categories and functors;

• a graphical interface for specification and manipulation of categories
and functors.

We believe that the data structures adopted and the tools already implement-
ed demonstrate that these features are feasible and look forward to future
work in this area.
Added Note: A recent Java implementation of similar tools with a graphi-
cal interface is available from the GDCT Project pages (see the third author’s
Web page noted in the Introduction).

References

[1] R. Brown. The AXIOM computer algebra system applied to computa-
tional category theory. Lecture at the 2’nd IMACS Conference, RISC,
Linz, 1996.

[2] S. Carmody, M. Leeming, and R.F.C. Walters. The Todd-Coxeter proce-
dure and left kan extensions. Journal of Symbolic Computation, 19:459–
488, 1995.

[3] S. Mac Lane. Categories for the Working Mathematician. Springer Verlag,
1971.

[4] David Rydeheard. Re: Mechanization of category theory, 1996
http://www.mcs.anl.gov/qed/mail-archive/volume-3/0139.html

[5] R. F. C. Walters. Categories and Computer Science. Cambridge Univer-
sity Press, 1991.

12


