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ROBERT ROSEBRUGH AND R.J. WOOD

ABSTRACT. This article shows that the distributive laws of Beck in the bicategory of
sets and matrices, wherein monads are categories, determine strict factorization systems
on their composite monads. Conversely, it is shown that strict factorization systems
on categories give rise to distributive laws. Moreover, these processes are shown to be
mutually inverse in a precise sense. Strict factorization systems are shown to be the strict

algebras for the 2-monad (—)2 on the 2-category of categories. Further, an extension of
the distributive law concept provides a correspondence with the classical factorization
systems.

1. Introduction

In this paper we understand a factorization system on a category K to mean a pair of
subcategories (£, M), each containing all the isomorphisms of K, satisfying the diagonal
fill-in condition, and further satisfying ‘IC = EM’. Of course the equation is intended
to be understood in the sense of what is called set-multiplication in elementary modern
algebra texts. Part of the goal of this paper is to take that equation more seriously.
To put it another way, factorization in the widest sense should be seen as a section
for multiplication or composition. This raises the question of how categories might be
multiplied or composed.

Categories are monads in a certain bicategory and after Beck [BEK] we know that
monads in the 2-category of categories are composed with the help of distributive laws.
There is much that can be said about distributive laws in any bicategory and, in particular,
Beck’s correspondence between distributive laws and composite monad structures holds
quite generally. We refer the reader to [STR], [L&S], [MRW] and [R&W] for other general
results about distributive laws.

In this article we show the equivalence of three concepts: distributive laws in the
bicategory of set-valued matrices, wherein monads correspond to categories; strict factor-
ization systems on categories; and strict algebras for the 2-monad on CAT given by (—)?
and the structure induced by the cocommutative comonoid 1 +—2—2 x 2.

The important paper [K&T] showed that factorization systems on categories are equiv-
alent to normal pseudo-algebras for the 2-monad (—)2. We extend the notion of distribu-
tive law in the bicategory of set-valued matrices to give a third concept equivalent to that
of factorization system.
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The next Section provides a fairly detailed study of distributive laws in the bicategory
set-mat. In particular, we study the composite category arising from a distributive law
between categories in such a way as to subsequently reveal its factorization structures. We
also identify the isomorphisms in the composite category and it is seen to be a groupoid
precisely when both factors are so. This identifies ‘matched pairs’ of groups in the one-
object case.

Strict factorization systems are defined in Section 3. See also [GRS]. The equivalence
of these with distributive laws in set-mat follows quickly here.

Strict algebras for (—)2, which we call strict factorization algebras are studied in detail
in Section 4. Although this work does not follow directly from [K&T], the section is heavily
influenced by that paper. We conclude with the establishment of a bijection between strict
factorization systems and strict factorization algebras. After this article was written we
became aware of the work of L. Coppey [COP] which also demonstrates this bijection.

In the last section we consider a generalization of the concept of distributive law in
set-mat that allows us to extend the results of Section 3 to a correspondence between such
generalized distributive laws and factorization systems. Finally, we note that ‘pullback’
can be seen as a distributive law in a still wider sense.

We are grateful to the referee for making a number of of suggestions that have improved
this paper.

2. Distributive Laws in set-mat

2.1. The objects of the bicategory set-mat (see [BCSW]) are sets, which will be denoted
by X, A and so on, and in set-mat an arrow (1-cell) M : X— A is a set-valued matriz
which, to fix notation, we decree to have sets M(A, X) as entries, one for each pair
(A, X)in A xX. A transformation (2-cell) t : M—N : X— A is a matrix of functions
t(A, X): M(A, X)—N (A, X). Furthermore, we write

X M ALYy = X &M,

to denote composition in set-mat, with

EM(Y,X) = Z E(Y,A) x M(A, X)
AcA
It is well known that a monad M on an object O in this bicategory is precisely a category
with set of objects O.

2.2. For a suitable monoidal category ), our remarks above and the work which follows
generalize almost immediately if we replace set-mat by V-mat, whose objects are sets
and whose arrows are V-valued matrices, composed with the help of ® rather than x. A
monad in V-mat is a category enriched in V. On the other hand, the bicategory set-mat
is biequivalent to spn(set), the bicategory of spans in the category of sets. If spn(set)
is replaced by spn(€), where £ is a category with pullbacks, then our work generalizes to
category objects in £.
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2.3. Now if M and &£ are both categories with set of objects O then in the spirit of 2.1
we can consider distributive laws p : ME—EM of M over £ and we recall from [BEK]
that the required equations are:

M MEE pE, EME o, EEM

M1 M M- M
ME 5 EM ME 5 EM
1€ &l £ E.

E MM&'/%MEMWSMM

where we have denoted both transformations that provide identities by 1 and both trans-
formations that provide composites by -. To give merely a transformation

p: ME—EM:0—0
in set-mat is to give a function
p(A,C): ME(A,C)—EM(A,C)

for each pair (4,C) in O x O. From the definition of composition of arrows it follows
that to give such p(A, C) is to give families of functions

(M(A,B) x E(B,C)— > E(A, 1) x M(I,C))peo

IeO

If we write m : A= B for an arrow in M and e : B—C' for an arrow in £ then it
is clear that p provides, for each such putatively composable pair, an object e,m and
another putatively composable pair as illustrated by:

m
A B
e.m -~ e
epm e C

where we have also introduced an evident notation for the components of the new pair.
We will call a diagram such as this a p-square.
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2.4. In terms of p-squares the triangular distributive law equations can now be expressed
by

1

A—" . B B—2 .p
14 ~ 1p e ~ e
A—r——B Cr——C

Each of the p-squares expresses an equality of objects, (15),m = A in the first case,
e,(1p) = C in the second case; an equality of £ arrows; and an equality of M arrows:

(1g)em = 14 (1)
(1)ym = m (2)
ee(lB) = € (3)
eu(]-B) = ]-C’ (4)
The top pentagon distributive law equation in terms of p-squares is given by
A m B
eem e
ep,m ~ B’
fe(eum) f
f e, m)r—-—
ﬂ( H ) fu(eum)
which expresses the equality of objects (fe),m = f,(e,m) and the arrow equations
(fe)m = fc(e,m)-em (5)
(fe)um = fuleym) (6)
The lower pentagon of 2.3 is given similarly by
A L B’ & B
(ecn)em - e
(een),m epn o
ecn),m p

expressing the equality of objects e,(nm) = (e.n),m and the arrow equations

ec(nm) = (emn)em (7)

eu(nm) = eun - (en),m (8)
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2.5. Inspection of the eight arrow equations that have arisen in 2.4 shows that (2) and
(6) provide a left action, —,—, of £ on M while (3) and (7) provide a right action, ——,
of M on £. If O is a one-element set, so that M and £ are monoids, then the object
equalities are trivial. In this case pairs of actions satisfying (1) through (8) are called
matched pairs — at least that is the terminology in [TAK] when M and & are groups.
In the case of monoids M and £ we may as well write M for M(x, x), £ for £(*, ) and
EM for the set EM(x,*). In this case EM = € x M. For groups, each matched pair is
known to give rise to a group structure on the underlying set of £ x M that is suitably
compatible with the identities of £ and M. We will have more to say about this but it
suffices here to point out that while equations (5) and (8) appear somewhat bizarre when
given for monoids without reference to the single object, all of the equations are entirely
transparent when displayed diagrammatically with ‘types’ taken into account.

2.6. From the general theory of distributive laws given in [BEK], it follows that a dis-
tributive law p : ME—EM in set-mat gives rise to a category £, M, with set of objects
O, in which an arrow from A to C'is given by specifying a third object, say B, and a pair
A —% B~ (, with e in £ and m in M. Composition in £, M, qua category, is given
by the multiplication formula for £,,M, qua monad, and still following [BEK] we see that
the composite of A —% B »™~ (' and C' % D ~"~ E is given by the following diagram:

A—Ewp—"" .0

fem e Nfem ~ f

fom———D
P f#m

n- fum n

E

In other words, if we denote arrows of £,M as formal composites moze =moe: A—C
then

(nof)-(moe)=(n-fym)o(fom-e).
This composition satisfies the following:

i) Identities are given by the A 4= A ~4- 4

ii) The assignments e—1 o e and m—m o 1 provide identity-on-objects functors
E—E, M and M—E, M respectively;

iii) For every moein E,M, (mol)-(loe) =moe.

Moreover, still appealing to the general theory of distributive laws (see [BEK]), composi-
tions on €M which satisfy i), ii), and iii) are in bijective correspondence with distributive
laws ME—EM. In the case of monoids M and &, it follows from the general theory
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of distributive laws that matched pairs of monoid actions for M and £, are in bijective
correspondence with monoid structures satisfying i), ii), and iii) on & x M.

2.7. For monads on set in the 2-category of categories, the purely syntactic notion of
distributive ‘law’ relating them is really a rewriting rule. It is when we consider the
category of Eilenberg-Moore algebras for the composite monad that the connection with
the ‘distributive laws’ of classical algebra becomes clear. The bicategory set-mat does
not admit the construction of Eilenberg-Moore algebras as a lax limit and in 2.3, in which
we introduced the p-square notation to display the effect of p : ME—EM, there was
no suggestion that the p-square ‘commutes’. In the first instance, such a statement is
meaningless. However, the functors in ii) of 2.6 are faithful and iii) of the same section
suggests that we simply write e for 1 o e and m for m o1 in £,M so that we have
m - e =moe. Also, for a composable quadruple f,e, m,n, with f and e in £ and m and
n in M, composition in £, M simplifies to n- (moe) - f = (n-m)o (e - f).

2.8. LEMMA. With the abbreviation convention of 2.7, p-squares

m
A B

e.m -~ e
epm e C

can be seen as commutative squares in E,M.
Proof. This is a trivial consequence of the definition of composition in £, M given in 2.6.m

The following Lemma, which we will need subsequently, suggests that there is an
interesting calculus for p-squares.

2.9. LEMMA. Given the following configuration of p-squares in E,M (in which it is not
assumed that the square x commutes):

P, P

hy <tk

ST eh| < | fk .
e} * {f1iy e Y
I =g I I—gm—

square x 1S a p-square.

Proof. From the middle diagram we see that I = (fk),p. From (fk),p = f,(k.p), the
object-equality preceding (5) of 2.4, and k,p = n, in the left-most diagram, we conclude
that

I=fmn



7

(This much follows equally from I = g,(rn), which we have in the right-most diagram.)
Also from the middle diagram we see that m = (fk),p. But (fk),p = fu.(k.p) by (6)
of 2.4 so

m = fun
Starting with the right-most diagram, we observe that e = g.(rn) which by (7) of 2.4 is

(ger)en. But gor = f, from the left-most diagram so we also have

e= fn

and the three equations we have displayed show that square x is a p-square. [

In calculations it is sometimes helpful to draw p-squares with other orientations and
suitably redirect the symbol < in the centre.
2.10. In anticipation of Section 4, further notation will be helpful. Writing f : X — A

for a general arrow of £,M we can name its various components as X “af F(f) w) 4,
With this notation a general commutative square in £, M

X—4%—y
f g
A——B
becomes
) py )y
e(/) “|elg)
F(f) —— I Flg
m(f)| e m(g)
EORATO

where the top-left square commutes in £ and the bottom-right square commutes in M.
This follows immediately from the prescription for composition in £,M given in 2.6. For
the moment, we will informally refer to I as the centre object.

Moreover, we will write F'(u,v) for the arrow F'(f)—>I~—F(g) in the diagram above
so that we have an assignment

FU g F(f) " F(g)

2.11. PROPOSITION. The assignment defines a functor F : (E,M)?—E,M.
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Proof. To show that F' preserves identities is easy: specialize the diagrams of 2.10 to the
case ¢ = f, (u,v) = (1x,14) and apply (1) and (4) of 2.4. To show that F preserves
composition, start with f () g @2 in (£,M)? and construct a 4-by-2 array of squares
by pasting to the 2-by-2 array for (u,v) shown in 2.10, the corresponding 2-by-2 array
for (w,x). Label the centre object of the array for (w,z) as J. Compute the composites
wu and xv in primitive terms on the large diagram, using 2.6, and compute the centre

object for f (wu,zv) h, call it K, and supply the connecting arrows. In the middle of the
resulting diagram is the following double cube:

F(wu) — F(w)

The front face of the top cube is a p-square, of the square in the middle ‘horizontal” plane
nothing can be said initially, while the right face of the bottom cube is a p-square. Unfold
these squares so as to configure them as in the first diagram of Lemma 2.9. The top
and back faces of the top cube are p-squares. Unfold them so as to configure them as in
the second diagram of Lemma 2.9 and observe from 2.4 that the composite square is a
p-square. The left and bottom faces of the bottom cube are p-squares. Unfold them so as
to configure them as in the third diagram of Lemma 2.9 and observe, again from 2.4, that
the composite square is a p-square. The remaining faces of the cubes commute and show
that the conditions of Lemma 2.9 are fulfilled. It follows that the square in the middle
‘horizontal’ plane is a p-square and this proves that F(wu,zv) = F(w, z)F(u,v). =

2.12. PROPOSITION. The following diagrams of functors
I
gM Lo (g, M)2 —E— ((6,M)2)?
1 F F?2

£,M

— (E,M)?

in which I = Ig,pq 1s given by identities and C' = Cg,\q 18 given by composition, commute
(strictly).
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Proof. Commutativity of the triangle is easy. For the square, refer to 2.10 and write ¢
for the common value of vf = gu in £, M. It follows from the meaning of composition
in £,M that for the centre object we have I = F(c) (while e(c) is the composite arrow
of the top-left square and m(c) is the composite arrow of the bottom-right square). It
also follows immediately that I = F(F(u,v)). Thus F(¢) = F(F(u,v)) and this shows
that the square above commutes on objects. Elaboration of this argument shows that the
square commutes. ]

We close this section with an examination of the isomorphisms of £, M.

2.13. PROPOSITION. Fore: A—-B in& andm: B—C in M, A —% B~ (C is an
isomorphism in £,M if and only if e : A—B is an isomorphism in € and m : B—C
is an isomorphism in M.

Proof. Suppose first that A —% B ~™~ (' is an isomorphism with inverse '~ D »2»
A. Then from the definition of composition in 2.6 we have

A—Ewp—"" .0 C / D—" 4
1a\fem -~ f 1o\ €en -~ e
N NN

14 n 10 m

A C

From e.n - f = 1¢ (in the top triangle of the large triangle on the right) we have, using
both the pentagon and triangle conditions for p that pertain to the structure of £,

B—" = B—"
fem ~ f
A Fom D 1p - le
n
-] €N
B C B————C

from which it follows that f.m is a split monomorphism in £. But by the top triangle
of the large triangle on the left we also have that f.m is an epimorphism in £ which is
split by e. It follows that e is an isomorphism in £ with e™! = f.m. Similarly, beginning
with each of the other three small triangles in the large triangles we find that m, f, and
n are isomorphisms in their respective categories, with inverses again evident in the large
triangles.
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Conversely, assume now that e : A—=B is an isomorphism in &, with inverse f :
B—= A, and m : B=—C is an isomorphism in M, with inverse n : C'~— B. Consider

c—2—B
fen — |f
I A
fun
We will show that m o e is an isomorphism in £, M with inverse f,n o fen. Consider
n
A—Cp—T e LIy S [
(fen)em ~— | fn ec(fun) — e
J I K B
(fen)um eu(fun) (
fun m
A C
From 15 = (B = C =™ B) in M we have
B Ly B = p—"ot—c—"—pB
f ~ f (fn)em |~ fen — |
A A J A
114 (fen)um fﬂn

which gives J = A and (f.n)em = f so that we have (fon)em-e= f-e =14. Even more
immediately we see that f,n - (fon),m = 14 which together with the previous equation
shows, by examination of the first large ‘triangle’ above, that (f,no fn)-(moe) =14

in £,M. Starting with 15 = (B LA % B)in &, a similar calculation shows that

(moe)-(funo fn)=1¢in E,M. =
2.14. COROLLARY. The composite category £, M is a groupoid if and only if both € and
M are groupoids. n

Taking the case O = 1 we reach the speciality of ‘matched pairs’ of group actions that
we learned from Mastnak [MAS].

2.15. COROLLARY. If O =1 then the monoid structure, E,M, on € x M is a group if
and only if both £ and M are groups. n



11

Thus the general theory of distributive laws explains why matched pairs of group
actions, for groups M and &, are in bijective correspondence with group structures on
& x M that are compatible with the identities of M and £.

3. Factorization Systems

3.1. A factorization system on a category K consists of a pair of subcategories (£, M),
each containing all the isomorphisms of I, satisfying the diagonal fill-in condition, with
the property that, for every arrow f in K, there is a factorization f = my - ey with ey
in £ and my in M. An excellent reference, especially for our purposes, is [K&T]. As in
[GRS], we also say that a strict factorization system on a category K consists of a pair of
subcategories (£, M) of K, each having the same set of objects as K, with the property
that, for every arrow f in IC, there is a unique factorization f = my - es with ey in £
and my in M. The terminology is somewhat unfortunate in that a strict factorization
system need not be a factorization system. However, as pointed out in [GRS], for each
strict factorization system (£, M), there is precisely one factorization system (€, M) with
£ C & and M C M and it is given by

E = {f | my is invertible} M ={f | es is invertible}

3.2. For a strict factorization system & = (£, M) on a category K with objects O, regard
£ and M as monads on O in set-mat and define

ps: ME—EM : 0—0
as a transformation in set-mat by
A" B-LeC = A"

formne Mand f € €.
3.3. PROPOSITION. The transformation ps : ME—EM s a distributive law.

Proof. The unitary conditions are obvious. For A —*~ B in M and B 1, c 4 p
a composable pair in &, consider first the £-M factorization fn = me and next the &-
M factorization gm = m'e’. Since (gf)n = m/(€'e) provides an £-M factorizaton it is
necessarily the £-M factorization. With these observations it is a simple matter to fill
in the notation of 2.3 and get equations (5) and (6) of 2.4 and the equality of objects
preceding them. The set of equations for the other pentagon are derived similarly. [

3.4. For p : ME—EM a distributive law in set-mat, consider the subcategories of
E,M, given by

P ={loelecé&} and M’ ={mol|me M}

Each contains all the identities of £,,M and thus each has all objects of £, M. In 2.7 we
introduced the abbreviation convention of e for 1 0e and m for mo1 in £,M and pointed
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out that moe =m-e. In fact, from the description of composition in 2.6 it is clear that
m - e is the unique factorization of moe as an arrow in £ followed by an arrow in M?” so
that:

3.5. PROPOSITION. The pair ("€, MP) provides a strict factorization system S, for E,M.
]

3.6. It is almost clear that Sy and p_) are ‘inverse constructions’, relating distributive
laws in set-mat with strict factorization systems. One could, and eventually should,
pursue the relevant arrows between the concepts in question — and the relevant transfor-
mations between those — in order to exhibit S_y and p_ as inverse ‘biequivalences’. We
stop short of doing that partly in the interests of brevity, partly because the discussion
of arrows and transformations would distract the reader from the simple ideas presented
here and partly because the relationship is, at the mere object level, very tight.

Still, a word or two on the matter for the reader interested in such things and fa-
miliar with [STR] is warranted. In [STR] Street defined for any 2-category C a 2-
category Mind(C) whose objects are the monads in C. He showed that the objects
of Mind(Mnd(C)) are distributive laws and thus a definition of arrow between distribu-
tive laws and of transformation between those has already been provided. The adaptation
of [STR] to cover bicategories as well as 2-categories is not difficult but the bicategory
set-mat lacks the completeness property — admitting Eilenberg-Moore objects — stud-
ied in [STR] and to which the definition of Mind was clearly aimed. While the objects
of Mnd(set-mat) are categories, the arrows of that bicategory are not functors. This
situation was addressed in [WD] by studying bicategories such as set-mat in the context
of (proarrow) equipments. The forthcoming paper [S&L| will also discuss a variant of
Mnd, namely the free completion with respect to admitting Eilenberg-Moore objects.

However, for monads M, M’ : O—0 in any bicategory it is clear that a transfor-
mation p: M—M': O—0 can be declared to be a homomorphism of monads if the
following diagrams commute:

M —— MM
L/
1

o
I\
M == M'M’

1t i

and, further, an isomorphism of monads if also u : M— M’ is invertible in the ambient
bicategory.

3.7. LEMMA. For categories M and M’ with the same set of objects, identity-on-objects
functors M—M" are precisely homomorphisms of monads M—M' in set-mat. In
particular, for such categories, identity-on-objects isomorphisms of categories M—=~ M’
are precisely isomorphisms of monads in set-mat. [
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3.8. THEOREM. For § = (£, M) a strict factorization system on a category K there is
an identity-on-objects isomorphism of categories

K K—&,M

which identifies S = (€, M) and S,3 = ("€, MPs).

For p: ME—EM a distributive law in set-mat, there are identity-on-objects iso-
morphisms of categories i : M—~M? and € : E—+°E which identify p and ps, in the
sense that

ME L~ em
i€ €Lt

PPE o p p
MPPE Ps, EM
commutes.

Proof. For the first assertion, we define x(f) = ms o es. It is evidently an isomorphism
of categories since, for any moe in £, M, the composite me in K is the unique arrow with
Mme = m and e, = e. For m € M, k(m) =mol and, fore € &, k(e) = 1oe.

For the second assertion we define u(m) = mo 1 and €¢(e) = 1 o e. By the definitions
of € and MP” and ii) of 2.6, these are trivially isomorphisms. Since

ps,(ne(m,e)) = ps,(mol,loe)

= (€(10¢)-(mo1) s M(10e)-(mo1))
= (E(eum)olecm)s M(eum)o(ecm))
= (loemm,e,mol)

= (e(ecm), (e m))

= ep(p(m,e))

the diagram commutes. [

4. Factorization Algebras

4.1. In [K&T] Korostenski and Tholen studied the 2-monad on CAT whose under-
lying 2-functor is (—)?, whose unit Iy is given by identities, and whose multiplica-
tion C(_y is given by composition. Evidently, Proposition 2.12 says that the functor
F : (;,M)2—E,M provides a strict algebra structure for this monad. It is shown in
[K&T] that a normal pseudo-algebra for the monad (—)2 on a category K is precisely a
factorization system on KC. To be clear, a normal pseudo-algebra structure on a category
IC consists of a functor F : K2—C and an isomorphism « : FF2% -+ F(Cy, such that
FI = 1 and « satisfies the coherence conditions

CYI]C2 = 1F
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CY(Ilc)z = 1F
aCiz - a(F?)? = a(Ck)?- Fa?

It follows that a strict algebra for (—)2 is also a normal pseudo-algebra for (—)2.

4.2. Mindful of the inflection terminology of [K&S], we call a normal pseudo-algebra
for the 2-monad (—)2? on CAT a factorization algebra and we call a strict algebra for
the same 2-monad a strict factorization algebra. In this terminology, [K&T] has shown
that factorization systems and factorization algebras are equivalent concepts. We will
show that strict factorization systems and strict factorization algebras are also equivalent
concepts. While this is not altogether surprising, it does not immediately follow from the
result in [K&T]. For one thing, the relating construction in the strict case is not just the
restriction of that in [K&T] because strict factorization algebras are factorization algebras
while, as noted in 3.1, strict factorization systems are not necessarily factorization systems.
It is convenient in this context to call a mere functor F : K2—K a pre-factorization
algebra. In the event that F'Iic = 1 we say that F'is a normal pre-factorization algebra.

4.3. If F is a normal pre-factorization algebra then, as shown in [K&T] or [J&T], F
provides for each commutative square in K,

X —4% vy

f g

A——5— B

considered as an arrow in K2, a commutative diagram

X —4—v
er l ley
F(u,v
r(p) T2 i)
mpy l lmg
A v B
in £ with f = my-ef and g = my - ¢,. In other words, natural transformations
d —~ F - 9, : K*—K are derivable — we have e; = F(lx _xf), f) and
my = F(f Anla), 14) — and the factorization system arising from a normal pseudo-

algebra has classes of arrows given by
Er = {f | my is invertible} Mp = {f | e/ is invertible}

4.4. LEMMA. The strict factorization algebra F : (E,M)?—E,M arising from a dis-
tributive law p : ME—+EM has ey = e(f) and my = m(f), where e(f) and m(f) are as
mn 2.10.
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Proof. Let f: X—A be an arrow in £, M. Then

ef = F(lx, f) = 1pp oe(f) = e(f)

where the second equality follows by 2.10 and the third employs our convention from 2.7.
Similarly, m; = m(f). =

In order to determine the classes gF and MVF which arise from the factorization algebra
coming from a distributive law p : ME—EM, some care is required. For e : X — A
an arrow in &£, we have e = 14 0 e in £,M and m, = 14 is certainly an isomorphism in

E,M. Thus £ C Ep and similarly M C Mp.

4.5. COROLLARY. For a distributive law p : ME—EM we have
Er = {moe | m is invertible in M}

Mp = {moe|eis invertible in £}

Proof. For m o e in £,M, Lemma 4.4 gives my,,c = m o1 and by 2.13 mo 1 is an
isomorphism in £, M if and only if m is an isomorphism in M. This establishes the claim
for £7 and that for Mg is of course similar. N

4.6. In studying strict factorization algebras F : K2— K, it is more important to con-
sider the classes of arrows of IC given by

Er ={f € K| my is an identity} ~ Mp = {f € K | e; is an identity}

We will show at the end of this section that S = (£, M) is a strict factorization system
on .

While these definitions — and for that matter the very notion of strict algebras for a
monad on a 2-category — might at first seem suspect, it is important to point out that
those factorization systems which arise in nature from set-theoretic image, set?—set
where set is the category of sets, do come from strict factorization algebras. It is a simple
matter to check the two requisite equations and to see how these are inherited by other
concrete categories, their powers, and subcategories of those.

Of course this is not a call for the abandonment of classical factorization systems.
It is clear that classes (more precisely 2-categories) of categories which are described by
universal properties and exactness conditions alone require the more general notion. How-
ever, as often observed by G.M. Kelly, it frequently happens that study of a more general
‘correct’ concept is facilitated by study of its strict counterpart and of the relationship
between the two.

It has been said that Mac Lane’s early definition of factorization system — called a
‘bi-category structure’ in [MAC] — suffered from an attempt to axiomatize too closely the
notion of inclusion function, rather than injective function. Probably because inclusions
are closed under composition while decomposition functions are not, it was anticipated
that any attempt to capture inclusions would fail formalization because it would fail
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dualization. (See [BAR].) In this regard it is interesting to note that set-theoretic im-
age F : set?—set gives £r = {surjections} and Mp = {inclusions}. It happens that
one class is closed with respect to composition with isomorphisms and the other is not.
Dualization of this example simply gives an ‘M p-class’ which is closed with respect to
composition with isomorphisms and an ‘€g-class’ which is not. For a general strict fac-
torization algebra F' : K2— K there seems to be no reason to suppose that at least one
of & and Mg be isomorphism-closed. We turn now to a more detailed study of strict
factorization algebras.

4.7. LEMMA. (Janelidze and Tholen see [J&T]) For a normal pre-factorization algebra
F : K2—K, if each Me, 1s an epimorphism and each en, is a monomorphism then, for
each (u,v) : f—g in K2, F(u,v) is uniquely determined by the commutativity conditions
of the second diagram in 4.3. [

4.8. PROPOSITION. If F : K2—K is a strict factorization algebra then, for each arrow
finKC, Fleg) = F(f) = F(my) and me, : F(er)—F(f) and e, : F(f)—F(my) are
identities.

Proof. Let f: X —A be an arrow in /C and consider the following diagram regarded as
a composable pair in (IC2)2

W\\
\*&W
\\R

Applying the functor F'Cx to this composable pair gives
1 1
F(f) =% F(f) =¥ F(f)
Applying the equal FF? to the same pair gives
F(F(lx f)) F(F(x,f),F(1x,l4)) F(F(lx 1A)) F(F(1x,14),F(f,14)) F(F(f 1A))
which invoking the definitions of 4.3 and FI =1 is

mef

Fley) =% F(f) =4 F(my)
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4.9. COROLLARY. If F : K2—K is a strict factorization algebra then, for each arrow
fin K, my € Mg, ey € Ep, and for each (u,v) : f—>g in K2, F(u,v) is uniquely
determined by the commutativity conditions of the second diagram in 4.3. [

4.10. PROPOSITION. If F': K2—K is a strict factorization algebra then £ N Mp is
precisely the class of identity arrows in K.

Proof. For any object X € I, the definitions in 4.3 give m;,, = 1x = e;,, which shows
that each identity belongs to £ N Mp. Conversely, if f = my-ef is in Ep N Mp then it
follows that f is an identity. [

4.11. PROPOSITION. IfF : K2—K is a strict factorization algebra then, for each arrow
fin K, the factorization f = my - es is the unique factorization of f as a composite, me,
with e € Ep and m € Mp.

Proof. Assume that X — I =~ A with e € £ and m € Mp. We will use the
equation FCx = FF? applied to the following composable pair in (K?)?2

Ix

X

X
1x Ixy lxy S
— X X—&%—7
X
G\Wne\
1
I A A—4

m
\IA A

1 1a
A 1 A

X

A

The functor F'Cx applied to this composable pair gives
X “ms F(me) ™ A

Now, for the moment, consider just the centre square and apply F? to get

X—&%—7
el ll]
I I
1]l F(@,m) lm
[ —— A

By the uniqueness clause of Corollary 4.9, F(e,m) = 1;. So FF? applied to the middle
square gives I. Applying FF? to the given composable pair in (K?)? gives

X F(F(1x,e),F(e,me)) I F(F(me,m),F(m,14)) A
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Using uniqueness of F'(—, —) in the same manner as above, four times, simplifies the result
to

X F(e,e) I F(m,m) A

which by FIx = 1x is just
XS T7T -5 A
| |

There is a functor Ry : (K2?)2—(K?)? given by reflection in the diagonal, so that on
objects it is described pictorially by

4.12. LEMMA. If F : K2—K satisfies FCx = FF? then it also satisfies FCx =
FF2Ry.

Proof. Tt is clear that CicRx = C from which the result follows immediately. n

4.13. REMARK. As explained in [K&T] the monad structure on (—)? is completely de-
rived from the canonical comonoid structure on 2. This derivation takes the switch functor
2 x 2—2 x 2 to R and CxRx = C follows from cocommutativity of 2—2 x 2. =

4.14. PROPOSITION. If F : K2—K is a strict factorization algebra then, for each com-
mutative square u,v : f—¢g in K, all regions of the following diagram commute

X F(u) Y
€f €c | €F(f.9) €q
F(f) — I’mF(u,v) F( )

my ME(f.9) Me | My

A & F('v) e B

where we have written ¢ for the common value vf = gu and I for the common value
F(F(u,v)) = F(c) = F(F(f,qg)), the last equation holding by Lemma 4.12.
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Proof. We consider first the top left-most triangular region. Application of FCx to the
(K2)? composite

1
X —X X
IX\IX‘K\
1
X——X X—2 . x
X
1x 1x 1x 0
X A X—4% vy
f
\/\‘U\g
A—5—B

gives e, : X — F'(c), since vf = ¢, while application of FF? gives

X FECO) IO, p gy FEOGGDE@) L oy )

First use F(1x,1x) =1x and F(lx, f) = e to make a preliminary simplification of this
composite and then use the uniqueness clause of Corollary 4.9 to show that F'(1x,e;) = ey
and F(eg, F(u,v)) = epp. Since FCx = FF? we have e, = €p(yy) - €.

An entirely similar calculation shows that the bottom right-most triangle commutes.
For the other two triangles apply the same idea with F'F? replaced by FF2Ry.

For the top-right square, observe first that

F(u) 2 F(ly) - F(g) = F(u) 252 p(1y) 22090 p(g)

(Ux.9), . _(wlp)

which is F'(u,g) by functoriality of F' and which in turn is F(u q9).
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Consider the (K2)? composite

U

X Y
1X\1X‘4y\1y
X—F—VY X —4—vy
\ u\
ly
A—>—B Y Y
v\‘lB\g
BlBB

For the first factor we have
F(lx,9) = F(F(1x,1y), F(f,9)) = F(Lrw, F(f,9)) = erg - Flu)—1
where the first equality uses FCx = FF2Ry. For the second factor we have
F(u,1p) = F(F(u,v), F(ly,1p)) = F(F(u,v), lr(g)) = Mp@w) : I—F(g)

where here the first equality uses FCx = FF2. An similar calculation shows that the
bottom-left square commutes. [

4.15. REMARK. It follows from Proposition 4.11 that for the square regions of Proposi-
tion 4.14 we can add:

€eym, = CF(f.9) and Megmy, = MF(uw)

eev-mf = €F(uw) and mev-mf = MF(f,9)
]

4.16. COROLLARY. If F : K2—K is a strict factorization algebra then the classes of
arrows Eg and Mg are closed under composition and hence by Proposition 4.10 may be
regarded as subcategories of IC whose objects are those of K.
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Proof. Fore: X—A and f: A—Y in £, apply Proposition 4.14 to the commutative
square e, f : e— f to get

e f f

Y 1Y

A Y Y
f

14 1y Mfe| 1y

A Y Y

f Ly
which shows that my, = 1y-. The demonstration for Mp is similar. N

4.17. COROLLARY. If F : K>—K is a strict factorization algebra then Sp = (Ep, MF)
s a strict factorization system on K.

Proof. To Corollary 4.16 add Proposition 4.11. [

4.18. On the other hand, if S = (£, M) is a strict factorization system on a category
KC, then we can write X £~ Fg(f) —% A for the unique £-M factorization of an arrow
f: X—Ain K. Given an arrow u,v : f—g in K2 with Cx(u,v : f—>¢g) = X — B,
consider

X s Fy(u) T
ef Cegma €g
Fi() e T 22 Fi ()
my Me,m myg

AT’FS('U)TU’B

To see that the diagram is meaningfully labelled, examine first the upper right hand
square. We have I = Fgs(e,m,) and since (mgme, m,)(€e,m,€u) is an E-M factorization
for gu = c it is necessarily the - M factorization of ¢ and we have I = Fg(c). Of course
similar conclusions result from examining the lower left hand square and it follows that all
regions of the diagram commute. For u,v : f—g in K? we define Fs(u,v) = Meym, €epmy -

4.19. PROPOSITION. The definitions of 4.18 provide a functor Fs : K2—K and it is a
factorization algebra. Moreover, the derived natural transformations 0y— Fs— 01 have
f-components ey and my, respectively, as provided by £-M factorization.

Proof. All aspects of the statement follow immediately from uniqueness of £-M factor-
izations. The equation F'F'? = FC) on objects, in particular, is effectively displayed by
the diagram above in 4.18 where in addition to I = Fs(c) we have also I = Fs(Fgs(u,v)).m
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4.20. THEOREM. For any category IC, the assignments
F|—>8F and S|—>FS

provide a bijective correspondence between strict factorization algebras on K and strict
factorization systems on K.

Proof. For any strict factorization algebra F' on K and any f: X—A in K, Fs,(f) is
the object that appears in the Sp factorization of f and that object is F(f). It follows
easily that Fs, = F. For any strict factorization system & = (£, M), Sp, is the strict

factorization system (Epg, Mpg). One has (f : X—A) € Ep, if and only if X 1.
A - A is factorization of f as provided by Fs and the derived natural transformations

0y — F's — 01 which is the case if and only if X o A 24 A g the £-M factorization
of f. It follows that &p; = &£, similarly Mp, = M and Sp, = S. N

5. Relaxed Distributive Laws

5.1. Distributive laws in set-mat, strict factorization systems and strict factorization
algebras have now been shown to be equivalent concepts. Since factorization systems and
factorization algebras were shown to be equivalent concepts in [K&T] it is natural to look
for a relaxed version of distributive law in set-mat which enables us to state and prove
a counterpart for Theorem 3.8 with strict factorization systems replaced by factorization
systems. With the basic correspondences at hand one suspects that the distributive law
equations in 2.3 should be replaced by (coherent) specified isomorphisms — after all,
if we start with a factorization system, images satisfy the object equations of 2.3 for
p-squares merely to within isomorphism. However, a distributive law is expressed in
terms of equations between transformations in set-mat, so that in the absence of further
structure we are lacking a higher categorical dimension in which to replace equations
between transformations by isomorphisms.

5.2. Consider, by way of example, equations (5) and (6) of 2.3, the object equation
(fe),m = f,(e,m) and the p-square which immediately precedes them. In a category K
with a factorization system and p understood in terms of factorization we would have
instead a commutative diagram

(fe)em fe(e,m) - ecm

(fe)pm ———5— fole,m)

(fe)um fu(eum)
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with o an isomorphism in K. Moreover, by the diagonal fill-in property, such an « is
unique. These considerations should serve to motivate the next subsection.

5.3. Given categories M and &, both with set of objects O, consider a category Z, also
with set of objects O, and identity-on-objects functors, equivalently homomorphisms of
monads,

—>> >

(=): E~—T—M:(—)

so that £ and M become, in the language of ring theory, Z-algebras. Then the parallel
pair 0y, 01 : EIM T EM defined by

EMM
/ 80\
EIM
—>> al
£ (=) M ‘M
EEM

extends to a category object structure on EM, for purely general reasons. (This category
object structure on EM in the category set-mat(O, O) is quite a different matter from
the monad structure built on EM with a distributive law.) We require of this structure
that

i) The pair (0y, 1) is jointly monic;

ii) The category Z is a groupoid;

— l e

iii) The functors (—): iso(€)+~—ZI —iso(M) :(—) are isomorphisms.

From the first two of these requirements it follows that each EM (X, A) carries the struc-
ture of an equivalence relation and that these equivalence relations are respected by the ac-
tions EEM —EM and EMM —EM provided by E- composition and M-composition
respectively. Explicitly, X — I ~™ A is Z-equivalent to X o I’ S A if and only
if there exists an arrow a : [—1I" in Z such that « -e = ¢’ and m'- @ = m. Such an a,
if it exists, is necessarily unique by our first requirement, above. It is helpful to draw the

following diagram, considering it to be well-defined and commutative without bothering
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to decorate «.

X
e e
1 O I
m m/
A

In particular, the diagram above makes clear our assertion that Z-equivalence is respected
by pre-composition with arrows in £ and by post-composition with arrows in M. Observe
too that e is invertible if and only if €’ is invertible and m is invertible if and only if m’
is invertible. By iii) observe that if e is invertible then X —5 I ~=~ A is Z-equivalent
to X % X 4% A, where we have made an obvious further notational simplification.
Similarly, if m is invertible then X —% I »™= A is T-equivalent to X ™ A -4 A,

5.4. With the additional structure of 5.3 in place it is a simple matter to define a dis-
tributive law of M over £ with respect to T to mean a transformation p : ME—EM
in set-mat with the classical Beck equations replaced by Z-equivalence. For example,
the top pentagon of 2.3 now gives (all instances of) the diagram of 5.2. Moreover, still
thinking of the elements of the EM(A, C') as formal composites, as we did in 2.6, we are
able to follow the prescription of 2.6 to define composites of these. This composition is
readily seen to be unitary and associative to within Z-equivalence and we have a bicate-
gory with set of objects O and hom categories given by the sets EM (A, C') together with
instances of Z-equivalence. We define SPIM to be the category with set of objects O and
EFM(A,C) = EM(A,C)/T. We will now write m o e for an element, of £ M(A, C') and
by the observation concluding 5.3 it is meaningful to speak of those moe in SpI./\/l (A,C)
with m invertible in M or of those m o e in £ M(A, C) with e invertible in £. Note too
that it is unambiguous to write mi o e = m o ie for any isomorphism .

5.5. For p: ME—+EM a distributive law with respect to Z in set-mat we define
P€ = {moe|m is invertible in M} and M? = {moe e is invertible in £}

It is not difficult to see that these classes of arrows in SpIM are closed with respect to
composition and contain all isomorphisms of £ pI./\/l. It is also straightforward to show that

every arrow in & pI./\/l can be factored as a composite with first factor in ?€ and second
factor in M” and that the diagonal fill-in condition is satisfied. In short:

5.6. PROPOSITION. The pair (pg’, /{/lvp) provides a factorization system g’p for SpIM. [

5.7. Of course our definitions in the last three subsections were motivated by the consid-
eration of starting with a classical factorization system & = (£, M) on a category K with
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objects O. Given such we can assume that, for each f in K, a particular factorization
f = my-e; has been named. We regard M and £ as monads on O in set-mat and define

ps: ME—EM : 0—0
as a transformation in set-mat by
A Bt — AT

forn € M and f € £. Of course ps is not a distributive law but taking Z to be the
category of all isomorphisms of K, the structure of 5.3 is provided by the inclusions
Z—& and Z— M. From the well-known properties of factorization systems we have:

5.8. PROPOSITION. The transformation ps : ME—EM is a distributive law of M
over £ with respect to L. n

5.9. THEOREM. For § = (£, M) a factorization system on a category K with isomor-
phisms I there is an identity-on-objects isomorphism of categories

K IC—§>5pIM

which identifies S = (€, M) and 5[78 — (PsE, MPs),

For p: ME—EM a distributive law with respect to T in set-mat, there are identity-
on-objects isomorphisms of categories i M-=-M? and € : €-2-PE which identify p and
~§p in the sense that

ME—L~em
I ep

MPPE = PEMP
Ps,

commutes.

Proof. For the first assertion, we define x(f) to be the equivalence class ms o es. For
an arrow of SpIM represented by m o e we define A\(m oe) = m - e, where the composite
is taken in C. The definition of ) is seen to be sound from the definition of equivalence
in 5.3. Clearly, \(k(f)) = f, while k(A(moe)) = Mmy,.c © €. = m o e, the last equation
holding since factorization is unique up to equivalence. Thus « is an isomorphism which
clearly identifies (£, M) and (?5€, M?s).

For the second assertion we define pu(m) = mo 1 and e(e) = 1 oe. To show that p
is an isomorphism, consider an arrow m o e in M? and define v(moe) = me. Clearly,
v(u(m)) = m, while p(v(moe)) = p(me) = me ol = moe since e is an isomorphism.
Thus p and similarly € are isomorphisms. Commutativity of the square follows from the
same calculation as in the proof of Theorem 3.8 [
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5.10. REMARK. It should be noted that Lack and Street [L&S] have shown that a fac-
torization system gives rise to a ‘wreath’, which provides another generalization of the
notion of distributive law.

5.11. A final comment about the brief appearance of the bicategory EM in 5.4 is in
order. In related examples it will not always be desirable to pass by quotienting to a
mere category. For K a category with pullbacks, we can regard the formation of pullback
as a transformation p : KK — KK in set-mat. Here p-squares are but pullback
squares and in this formulation it is clear that Beck’s equations are satisfied to within Z-
equivalence, Z being the isomorphisms of IC. The elements of the KLPK(A, C') are arrows
of the bicategory of spans in K, and Beck composition of these, as prescribed by 2.6, is the
usual composition of spans via pullback. Here we should keep the bicategorical structure
and the machinery of this paper should be extended further so as provide another way of
analyzing the important categories with factorization (K; €, M) in which &£ is stable with
respect to pullback. These investigations will be continued elsewhere.
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