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Abstract. Information system software productivity can be increased
by improving the maintainability and modifiability of the software pro-
duced. This latter in turn can be achieved by the provision of comprehen-
sive support for views, since view support allows application programs
to continue to operate unchanged when the underlying information sys-
tem is modified. But, supporting views depends upon a solution to the
view update problem, and proposed solutions to date have only had lim-
ited, rather than comprehensive, applicability. This paper presents a new
treatment of view updates for formally specified information systems.
The formal specification technique we use is based on category theory
and has been the basis of a number of successful major information sys-
tem consultancies. We define view updates by a universal property in a
subcategory of models of the formal specification, and explain why this
indeed gives a comprehensive treatment of view updatability, including a
solution to the view update problem. However, a definition of updatabil-
ity which is based on models causes some inconvenience in applications,
so we prove that in a variety of circumstances updatability is guaran-
teed independently of the current model. The paper is predominantly
theoretical, as it develops the theoretical basis of a formal methods tech-
nique, but the methods described here are currently being used in a large
consultancy for a government Department of Health. Because the appli-
cation area, information systems, is rarely treated by formal methods,
we include some detail about the formal methods used. In fact they are
extensions of the usual category theoretic specification techniques, and
the solution to the view update problem can be seen as requiring the
existence of an initial model for a specification.
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1 Introduction

Much of the progress of software engineering has been based on limiting the
ramifications of software modifications. After correctness, and avoiding gross
inefficiencies, producing modifiable code is of prime concern.

In the information systems field, the need for maintainable and easily mod-
ifiable software is becoming consistently more important with the dependency
on legacy code and the growth of the need for systems interoperability, whether
for business-to-business transactions, internet based interfaces, or interdivisional
cooperation within an organisation.

Many information systems attempt to address this issue by providing a view
mechanism. Views allow data derived from the underlying information system
to be structured in an appropriate way. Provided that views are used as the
interface between an information system and other software, the information
system can be modified and, as long as the view mechanism is correspondingly
modified, the external software will continue to work.

Typically, the “appropriate” structure for a view is a database interface,
allowing data to be queried, inserted, or deleted, as if the system were a stand-
alone database. But importantly, not all view inserts and deletes can be per-
mitted since the view data are derived from the underlying information system,
and apparently reasonable changes to the view may be prohibited or ambiguous
when applied to the information system. We will see examples below, but for a
text book treatment the reader is referred to Chapter 8 of [13]. The view update
problem is to determine when and how updates of views can be propagated to
the underlying information system.

Views have been the subject of considerable research, including for example
[22], [23], [29], and [1]. The difficulty of obtaining a comprehensive solution to
the view update problem has led to systems which offer only limited view mech-
anisms. Furthermore, the relatively limited use of formal methods (as opposed
to semi-formal methodologies) in information system specification has resulted
in views being defined either informally, or solely in terms of the underlying in-
formation system’s schema. Both of these hamper the use of the view mechanism
in facilitating program reuse when the underlying information system changes
significantly.

The authors and their coworkers have, over a number of years, been devel-
oping a formal method for information system specification based on category
theory. The impetus for its development came from a very large consultancy
[7] which compelled us to use formal methods to manage the complexity. The
techniques we use, recently called the sketch data model because they are based
upon the category theoretic notion of mixed sketch [3], have since been developed
considerably and tested in other consultancies including [10] and [8].

This paper develops a detailed approach to views and view updatability based
on the sketch data model. After defining the sketch data model in Section 2 we
define views (Section 3) in a manner that is designed to permit a wide range of
data accessible from the underlying information system to be structured in the
view in any manner describable in the sketch data model.



A solution to the view update problem needs to determine when and how
view updates can be propagated to the underlying information system. Typically
the when is determined by definition — certain view updates are defined to
be updatable, and then for those updates the how is given by specifying the
translation of each view update into an update of the underlying information
system. Unfortunately this approach can lead to ad hoc treatments as each
discovery of new hows leads to an adjustment of the defined whens, and naturally
we should not expect such solutions to be complete — they really represent a
list of those view updates that a system is currently able to propagate. Instead,
in Section 4 we define the when and how together using a universal property
[26], and we indicate how the nature of the universal property ensures a certain
completeness.

Interestingly the universal property we use is based upon the models of the
specification when previous solutions have usually defined updatability in terms
of schemata (the signatures of the specifications). This is very important for
the theoretical development. Nevertheless, in Section 5 we prove a number or
propositions that show that, for a range of schemata, view updatability can be
determined independently of the models. Such results considerably simplify the
application of the theory in industry.

After reviewing related work in Section 6, we conclude by enumerating the
limitations and advantages of our approach. We note that it is presumably the
appeal of schemata based view updatability that has drawn previous workers
into defining updatability in terms of schemata. We would argue that it is this
that has led to view updatability being seen as a difficult problem.

2 Category theoretic information system specification

This section provides the mathematical foundation for the sketch data model.
It is based on categorical universal algebra, which is the basis of widely used
formal method specification techniques [16]. We assume some familiarity with
elementary category theory, as might be obtained in [3], [26] or [30]. The graphs
we use will always be what have sometimes been called “directed multi-graphs,
possibly with loops”, see for example [3] page 7. The limits and colimits we will
deal with will all be finite in our applications.

Definition 1 A cone C = (Cb, Cv) in a graph G consists of a graph I and a
graph morphism Cb : I �� G (the base of C), a node Cv of G (the vertex of C)
and, for each node i in I, an edge ei : Cv

�� Cbi. Cocones are dual (that is we
reverse all the edges of G which occur in the definition, so the new definition is
the same except that the last phrase requires edges ei : Cbi �� Cv). The edges
ei in a cone (respectively cocone) are called projections (respectively injections).

Definition 2 A sketch IE = (G,D,L, C) consists of a graph G, a set D of pairs
of directed paths in G with common source and target (called the commutative
diagrams) and sets of cones (L) and cocones (C) in G.



Every category has an underlying sketch: Let G be the underlying graph of
the category, D the set of all commutative diagrams, and L (respectively C) the
set of all limit cones (respectively colimit cocones). Of course underlying sketches
are usually not small. The advantage of the theory of sketches is that we can
frequently use a sketch to give a finite presentation of an infinite category.

Definition 3 Let IE = (G,D,L, C) and IE ′ = (G′,D′,L′, C′) be sketches. A
sketch morphism h : IE �� IE′ is a graph morphism G �� G′ which carries,
by composition, diagrams in D, cones in L and cocones in C to respectively
diagrams in D′, cones in L′ and cocones in C′.

Definition 4 A model M of a sketch IE in a category S is a graph morphism
from G to the underlying graph of the category S such that the images of pairs
of paths in D have equal composites in S and cones (respectively cocones) in
L (respectively in C) have images which are limit cones (respectively colimit
cocones) in S.

Equivalently, a model is a sketch morphism from IE to the underlying sketch
of the category S. We can also express models in terms of functors as follows.

To each sketch IE there is a corresponding theory [3] which we denote by QIE.
The theory corresponding to IE should be thought of as the category presented
by the sketch IE. For our applications this will be the free category with finite
limits and finite colimits generated by the graph G subject to the relations given
by D, L and C, or some subcategory thereof.

Using the evident inclusion G �� QIE we will sometimes refer to nodes of
G as objects, edges of G as arrows and (co)cones of IE as (co)cones in QIE. If S
has finite limits and finite colimits then a model M of IE in S extends uniquely
to a functor QM : QIE �� S which preserves finite limits and finite colimits.

Definition 5 If M and M ′ are models a homomorphism φ : M �� M ′ is a
natural transformation from QM to QM ′. Models and homomorphisms deter-
mine a category of models of IE in S denoted by Mod(IE,S), a full subcategory
of the functor category [QIE,S].

We speak of (limit-class, colimit-class) sketches when L and C are required to
contain (co)cones only from the specified (co)limit-classes. When the specified
classes do not include all finite (co)limits we can restrict the theory correspond-
ing to such a sketch to be closed only under the specified limits and colimits and
the functor QM will only need to preserve the specified limits and colimits. For
example, (finite-product, ∅) sketches correspond to (multi-sorted) algebraic the-
ories, their theories are categories with finite products and their model functors
QM preserve finite products.

Definition 6 An SkDM sketch IE = (G,D,L, C) is a (finite limit, finite coprod-
uct) sketch such that

– There is a specified cone with empty base in L. Its vertex will be called 1.
Arrows with domain 1 are called elements.



– Nodes which are vertices of cocones whose injections are elements are called
attributes. Nodes which are neither attributes, nor 1, are called entities.

– The graph of G is finite.

An SkDM sketch is used for specifying information systems. An SkDM sketch
is sometimes called a sketch data model, while the sketch data model usually
refers to the sketch data modelling formal methodology.
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Fig. 1. A fragment of a graph for an SkDM sketch

Example 7 Figure 1 is part of the graph of an artificial SkDM sketch, derived
from a fragment of a real sketch data model [8]. The other components of this
SkDM sketch are as follows: D contains both triangles; L contains the empty cone
with vertex 1 (not shown), the square (whose diagonal, one of the projections, is
also not shown) and three further cones intended to ensure that the three arrows
indicated �� �� are realised as monics; and C contains the cocone with vertex
Medical practitioner and base Specialist and GP (short for General practitioner),
along with a number of cocones with attributes (not shown) as vertices.

Briefly, we expand on each of these components in turn, indicating what they,
as a specification, correspond to in models.

– The graph is a type diagram. The three monic arrows indicate subtypes.
The other arrows are functions (methods) which given an instance of their
domain type will return an instance of their codomain type.

– The commutativity of the two triangles represents a typical real-world con-
straint: Every in-patient operation conducted at a particular hospital by a
particular medical practitioner must take place under a practice agreement
(a type of contract) between that hospital and that practitioner. If, instead
the left hand triangle were not required to commute (that is, was not in



D) then it would still be the case that every operation took place under
an agreement, but Dr X could operate under Dr Y’s practice agreement. In
many information models, situations like this do not even include the arrow
marked under, and thus they store the contractual information, but do not
specify the constraint — it is expected to be added at implementation time
(this is one example of why information modelling is not usually a formal
specification technique).

– The inclusion of the square in L ensures that in models it will be a pullback.
This ensures that the specialists are precisely those medical practitioners who
are members of a college which occurs in the subtype Specialisation. This is
important because the registration procedures (not shown) for specialists are
different from those for other medical practitioners. Similar pullbacks can be
used to specify other subtypes, for example, the medical practitioners with
a specific specialisation, say otorhinolaryngologists.

– Subtype inclusion arrows, and other arrows that are required to be monic in
models, are so specified using pullbacks. Specifically, requiring that

g ��

g

��
m

��m ��

be a pullback is another way of saying that m must be monic. Incidentally,
we could include just two such cones since elementary properties of pullbacks
ensure that if the square is realised as a pullback and its bottom arrow as
a monic then its top arrow will necessarily be monic. Notice also that the
arrow into Person is not required to be monic. A single person might appear
more than once as a medical practitioner, as for example, when the person
practises both as a GP and as a specialist, or practises in more than one spe-
cialisation. This is a minor point, but the distinction between people and the
roles they play is an important distinction in many real world applications.

– The cocone with vertex Medical practitioner ensures that the collection of
medical practitioners is the disjoint union of the collection of specialists
and the collection of GPs. Specifications which don’t include this constraint
could be used to allow other vocations, say physiotherapists, to be treated
as medical practitioners.

– As is common practice, attributes are not shown in Figure 1, but they are
important. They are usually large fixed value sets, often of type integer
(with specified bounding values), string (of specified maximum length),
date etc. Some examples for this model include the validity period of a
practice agreement, the name and the address of a person, the classification
of a hospital, the date of an operation, the provider number of a medical
practitioner and many more. Strictly, they are all part of the graph, but in
practice they are usually listed separately in a data dictionary.

Definition 8 A database state D for an SkDM sketch IE is a model of IE in
Set0, the category of finite sets. The category of database states of IE is the
category of models Mod(IE,Set0) of IE in Set0.



A database state or model of the SkDM sketch of Example 7 is a collection
of finite sets and functions satisfying the constraints. The set corresponding to,
for example, In-patient operation should be thought of as the collection of all
operations currently stored in the information system.

Sketch data modelling can be viewed as an extension of entity-relationship
(ER) modelling [6],[28]. An ER diagram can be used to generate in a systematic
way a graph for a sketch data model (the details are dealt with in [19]). The
theory corresponding to a sketch data model includes objects representing the
queries (first noted in [11]). The extra “semantic” power of the sketch data model
comes from the non-graph components: D can be used to specify constraints, and
L and C can be used to specify the calculation of query results based on other
objects, and then these query results can be used to specify further constraints,
and so on. It is not surprising that this extra power, by providing a much richer
set of possibilities for specifying constraints, is of benefit in information mod-
elling, and it has been the basis of our successful consultancies which have used
the sketch data model as a formal information system specification technique.

3 Views

Views are important tools in software engineering. In information systems a
view allows a user to manipulate data which are part of, or are derived from,
an underlying database. For example our medical informatics graph (Figure 1)
represents a view of a large health administration database. It in turn might
provide views to an epidemiologist who only needs to deal with the two triangles,
with Operation type, and with their associated attributes; or to an administrator
of a College of Surgeons who needs to deal with data in the inverse image of
that college, and not with any of the data associated only with other colleges.

Views have generally been implemented in very limited ways so as to avoid
difficulties related to the view update problem. For example, allowable views
might be restricted to be just certain row and column subsets of a relational
database. However, we seek to support views which can be derived in any way
from the underlying database, so views might include the result of any query
provided by the database, and we argue that views ought to be able to be
structured in any way acceptable under the data model in use.

For the sketch data model we now provide a definition of view which supports
the generality just described.

Recall from Section 2 that for each sketch IE there is a corresponding theory,
often called the classifying category, denoted QIE. We observed in [11] that the
objects of the classifying category correspond to the queries of the corresponding
information system. This motivates the following definition.

Definition 9 A view of a sketch data model IE is a sketch data model V together
with a sketch morphism V : V �� QIE.

Thus a view is itself a sketch data model V, but its entities are interpreted
via V as query results in the original data model IE. In more formal terms, a



database state D for IE is a finite set valued functor D : QIE �� Set0, and
composing this with V gives a database state D′ for V, the V -view of D.

Remark 10 The operation composing with V is usually written as V ∗. Thus
D′ = V ∗D. In fact, V ∗ is a functor, so for any morphism of database states
α : D �� C we obtain a morphism V ∗α : D′ �� V ∗C.

Following usual practice we will often refer to a database state of the form
V ∗D as a view. Context will determine whether “view” refers to such a state,
or to the sketch morphism V . If there is any ambiguity, V should be referred to
as the view schema.

4 Updatability

We have defined view above so as to ensure that views have the widest possible
applicability. A view is a sketch data model, and so it can appear in any structural
form acceptable to the sketch data model formal specification technique. The use
of a sketch morphism V guarantees that the constraints on the view imposed by
the diagrams, limits and colimits in the view’s sketch data model are compatible
with the constraints on the underlying database. And the fact that V takes values
in QIE permits any data derivable from the model of the underlying database
to appear in the view.

Views support software maintenance — as long as the view mechanism is
maintained, the logical structure (the design) of a database can be changed
without needing to modify applications programs which access it through views.
The only risk is that needed data might actually be removed from the database.
If, on the other hand, the data is there in any form it can be extracted as an
object of Q(IE) and accessed via a view. The breadth of the definition of view
is important to ensure that this support for maintenance can be carried out in
the widest possible range of circumstances.

The view update problem is to determine under what circumstances updates
specified in a view can be propagated to the underlying information system,
and how that propagation should take place. The essence of the problem is that
not all views are updatable, that is, an insert or a delete which seems perfectly
reasonable in the view, may be ill-defined or proscribed when applied to the
underlying information system. For example, a college administrator can alter
the medical practitioner attribute values for a member of the college, but even
though such administrators can see the practice agreements for members of their
college, they cannot insert a new practice agreement for a member because they
cannot see (in the inverse image view) details about hospitals, and every practice
agreement must specify a hospital.

In the sketch data model, view updates can fail in either of two ways [12]:

1. There may be no states of the database which would yield the updated view.
This usually occurs because the update, when carried to the underlying
database, would result in proscribed states. For example, a view schema



might include the product of two entities, but only one of the factors. In the
view, inserting or deleting from the product seems straightforward, after all,
it looks like an ordinary entity with a function to another entity. But in the
underlying database the resulting state of the product might be impossible,
as for instance if the numbers of elements in the product and the factor
become coprime.

2. There may be many states of the database which would yield the updated
view. The simplest example of this occurring is when a view schema in-
cludes an entity, but not one of its attributes. Inserting into the entity seems
straightforward, but in the underlying database there is no way to know what
value the new instance should have on the invisible attribute, and there are
usually many choices.

Thus we define

Definition 11 Let V : V �� QIE be a view of IE. Suppose t : T �� �� T ′

consists of two database states for V and a database state monomorphism, with
T ′ being an insert update of T and with T = V ∗D for some database state
D of IE. We say that the insert t is propagatable when there exists an initial
m : D �� �� D′ among all those database states D′′ with m′ : D �� �� D′′ for
which V ∗D′′ = T ′ and V ∗m′ = t. Initial here means an initial object in the
full subcategory of the slice category under D. The state D′ is then called the
propagated update (sometimes just the update). The definition of propagatable
delete is dual (so we seek a terminal D′ among all those D′′ �� �� D).

Since a view is just a database state, we know how to insert or delete in-
stances. Intuitively a specified view insert/delete is then propagatable if there is
a unique “minimal” insert/delete on the underlying information system whose
restriction to the view (via V ∗) is the given view insert/delete.

Notice that propagatability (view updatability) is in principle dependent on
the database state (the model of the specification) which is being updated — we
have defined when an insert or delete of a view (database state) is propagatable,
rather than trying to determine for which view schemata inserts and deletes can
always be propagated. In fact we can often prove that for given view schemata,
all database states are updatable. Such results are important for designers so that
they can design views that will always be updatable. The next section provides
some propositions analysing this.

It is important to note that by defining updatability in terms of models we
obtain the broadest reasonable class of updatable view inserts and deletes. When-
ever there is a canonical (initial or terminal) model of the underlying information
system among those models that could achieve the update of the view we say
that the view is updatable. The only invalid view updates are those which are in
fact impossible to achieve in the underlying information system, or those which
could be derived from multiple non-isomorphic minimal or maximal models of
the underlying information system.



5 Schema updatability

Definition 12 A view V : V �� QIE is called insert (respectively delete)
updatable at an entity W ∈ V when all inserts (respectively deletes) into (re-
spectively from) W are propagatable, independently of the database state. (Note
that an insert or delete at W changes the database state’s value only at W —
the values in the model of other entities and attributes remain unchanged.)

In this section we establish insert or delete updatability at W ∈ V (sometimes
loosely just called updatability) for a variety of circumstances. As well as being
technically useful in applications, these results help to show that the definitions
above correspond well to our intuitions about what should and should not be
updatable. In most cases we will deal in detail with the insert case as it is the
more interesting and slightly harder case.

To establish notation, assume that V : V �� QIE is a sketch morphism,
that T and T ′ are models of V, that T ′ is an insert or delete update of T at W ,
and that D, D′ and D′′ are models of IE. Suppose further that T = V ∗D and that
T ′ = V ∗D′ = V ∗D′′. When dealing with inserts we will suppose t : T �� �� T ′,
m : D �� �� D′ and m′ : D �� �� D′′ are insert updates. Deletes will be treated
dually (t : T ′ �� �� T etc). In either case we suppose that V ∗m = V ∗m′ = t.

In most of the following propositions we will suppose for simplicity that
IE has no cones except the empty cone with vertex 1, and no cocones except
attribute cocones. With care the propositions can be generalised to sketches IE
which do not meet this restriction, provided that W is not in any of the cones
or cocones except perhaps as specified explicitly in the hypotheses. Similarly we
will assume for simplicity that V is an injective sketch morphism. We begin by
considering cases where V is just a view of a part of IE.

Proposition 13 Suppose V W ∈ IE. If V W is not the initial node in any com-
mutative diagram in IE and all of the arrows out of V W in IE are in the image
of V , then V is insert updatable at W . Conversely, if all of the arrows into V W
in IE are in the image of V , then V is delete updatable at W .

Proof. We prove only the insert case. The delete case is a straightforward dual
argument, except that there is no need to be concerned about commutative dia-
grams (deleting an element cannot spoil commutativity but inserting an element
can).

Let D′ be defined by D′X = DX for X not equal to W and D′W = T ′W ,
and D′f = Df for arrows f not incident at V W , D′f = T ′f for arrows f out of
V W , and D′f = tW Df for arrows f into V W . The natural transformation m
has the evident identities and inclusion as components.

Now D′ is a model since the limits and colimits are the same as in D and
commutativity cannot be spoiled because arrows into D′W factor through DW
and naturality of t ensures that for arrows f and g composed through W ,
D′gD′f = D′gtW Df = DgDf . Furthermore m : D �� �� D′ is initial among
the appropriate m′ : D �� �� D′′ since it is initial at each component.



Proposition 13 says that a view which can “see enough” is updatable. For
example, if the view were to include Medical practitioner, Practice agreement, and
Hospital, along with the two arrows between them (see Figure 1), then the view
is insert updatable, but not delete updatable, at Practice agreement.

In many of the following propositions W is assumed to be the only entity
in the view, and IE will be very simple. This might seem rather restrictive.
In fact, the single entity view is in accord with common practice where views
are frequently required to be the result of a single query, so the view should
be a single object {W} = V with its image in QIE. In our applications we
encourage larger structured V, but the following propositions are nevertheless
useful then because we can search for parts of V which match the premises
of the propositions and either find a counterexample to updatability at W , or
partition V − {W} and argue that updatability for each partition as a view,
whether concurrently or serially, implies the updatability of V at W . Similarly
the propositions can be applied to large complex IE because updatability is a
“local” phenomenon: Inserts or deletes at W will be updatable according as to
whether they are updatable in the restriction of IE to objects “near” W .

Proposition 14 Suppose that V = {W}, and IE has a graph including f :
V W �� A where A is a non-trivial attribute, that is, the vertex of a cocone of
at least two elements. Then V is not insert updatable at W .

Proof. Choose two distinct elements a, b : 1 �� A. If the insert is non-trivial
and atomic then there is an element w : 1 �� T ′W which is not in TW and
T ′W = TW + {w}. Consider D′ and D′′ defined by D′W = D′′W = T ′W , and
of course D′A = D′′A = T ′A = TA (attributes are constant for all models),
with D′fw = a and D′′fw = b and D′f = D′′f = Tf when restricted to TW .
But now D �� D′ and D �� D′′ are incomparable but minimal so there is
no initial object and the view update is not propagatable.

Thus we should require that W has all of its attributes in its view. For
simplicity we will in fact assume that W has no attributes for the remainder of
this section, but the propositions can be generalised to arbitrary W provided all
of the attributes of W do appear in V.

The next proposition is the first in which W is a non-trivial query based on
IE. These are essentially selection queries.

Proposition 15 Suppose that V = {W}, and IE has as graph f : B �� A
where A has an element a : 1 �� A. Let V W be the pullback

V W ��

��

B

f

��
1

a �� A

Then V is insert updatable at W .



Proof. Write T ′W = TW +W0 with t the inclusion of the first summand, which
we can do since T ′ is an insert update of T (writing + for disjoint union in Set0).
Let D′B = DB + W0, and D′A = DA, and define D′f to be the function whose
components on D′B are Df and the constant at a (that is the unique func-
tion W0

�� 1 composed with the element a : 1 �� A). Then D′ is a model,
m : D �� �� D′ is given by the evident inclusion and identity, and, calculating
the pullback in Set, V ∗D′ = T ′ and V ∗m = t. Suppose m′ : D �� �� D′′ is an-
other such model. Then there is a unique natural transformation i : D′ �� D′′

commuting with m and m′ since with D′′1 = 1 and with DA and DB fixed
inside D′′A and D′′B, D′′f must have as fibre over a, (Df)−1(a) + W0 in order
for the pullback to be T ′W , and these fully determine the components on i.
Thus, V is insert updatable.

This is an important proposition. At first it might seem surprising that V
is insert updatable since the arrow V W �� B is rather like that in Proposi-
tion 14. But the fact that V W arises as a pullback determines the values that
the function must take, and that all those values must be fibred over a.

Proposition 15 is also important because it is an example of an update that
many view systems would prohibit [13] despite its practical importance. As an
example which arises naturally consider a view of Figure 1 which arises from
choosing a particular specialisation. This is the view used by an administrator
of a particular college, and it should be updatable.

If the hypotheses of Proposition 15 were generalised to replace 1 by an entity
C the proposition would no longer hold. However, if C is included in the view
along with the pullback V W and the arrow between them then we recover insert
updatability.

Alternatively, the hypotheses can be generalised to allow C in place of 1, but
strengthened to require that the arrows C �� �� A and B �� �� A be monic.
In that case V is again insert updatable.

Proposition 16 Suppose that V = {W}, and IE has two entities A and B. Let
V W be the coproduct of A and B. Then V is not insert updatable.

Proof. (Sketch:) The two models D′ and D′′ obtained by adding the set difference
T ′W − TW to A and B respectively are incomparable and minimal.

Proposition 17 Suppose that V = {A0
�� W}, and IE has two entities A

and B. Let V A0 = A and let V W be the coproduct of A and B. Then V is insert
updatable.

Proof. (Sketch:) In contrast to the proof of the previous proposition, this time
an element of T ′W − TW corresponds to an element of T ′A0 or not. In the
first case we define D′ by adding the element to DA, and in the second case by
adding it to DB. (As noted at the beginning of this section, a strict reading of
“insert at W” would mean that only the second case could arise.) In either case
D′ so constructed is initial, and the view is insert updatable at W .



Proposition 18 Suppose that V = {W}, and IE has two entities A and B. Let
V W be the product of A and B. Then V is not insert updatable.

Proof. As noted in Section 4 if, as is usually the case, adding 1 to TW leads to
its number of elements being coprime to the number of elements in DA and in
DB then there are no models D′ such that V ∗D′ = T ′ and a fortiori no initial
such, in which case the view insert is not propagatable.

There are many more results of similar interest and considerable utility. This
section has provided a sample of results indicating a range of circumstances that
can easily be dealt with.

For the record, the hypotheses of all but the last proposition result in delete
updatability.

6 Related work

In the last decade there has been considerable growth in the use of sketches to
support data modelling. Among this work Piessens has obtained results on the
algorithmic determination of equivalences of model categories [27] which were
intended to support plans for view integration. Meanwhile Diskin and Cadish
have used sketches for a variety of modelling purposes including for example
[14] and [15]. They have been concentrating on developing the diagrammatic
language of “diagram operations”. Others, including Lippe and ter Hofstede
[25], Islam and Phoa [17], and Baklawski et al [4], have been using category
theory for data modelling.

Recent work on updating problems has included work by Atzeni and Torlone
[2] who developed a solution to the problem of updating relational databases
through weak instance interfaces. While they explicitly discuss views, and state
that their approach does not deal with them, the technique for obtaining a solu-
tion is analogous to the technique used here. They consider a range of possible
solutions (as we here consider the range of possible updates D �� �� D′′) and
they construct a partial order on them, and seek a greatest lower bound (analo-
gous with our initial/terminal solution). A similar approach, also to a non-view
problem, appears in [24].

Meanwhile, the authors have recently been futher testing the techniques pre-
sented here. Johnson and Dampney [9] have used the techniques in a case study;
Dampney, Johnson and Rosebrugh [12] explore the implications for semantic
data modelling and present a simplified form of the techniques to the database
community; and Johnson and Rosebrugh [20] show how the techniques can be
used for database interoperability for computer supported cooperative work.
Johnson, Rosebrugh and Wood [21] have developed a new mathematical foun-
dation that unifies the treatment of specifications, updates, and model categories.
And in current work the present authors are exploring the relationship between
our approach to the view update problem and the frame problem in software
engineering [18], [5].



7 Conclusion

After defining the sketch data model in Section 2 we defined views (Section 3)
in a way that ensures that the view structure is itself a sketch data model, and
that offers maximum generality in the sense that the view can be constructed
from any data that can be obtained from queries of the underlying database. In
this framework we have proposed a new solution to the view update problem
(Section 4), and shown in Section 5 how we can still obtain results about the
updatability of schemata.

The work presented here has a number of limitations:

1. Views take values in QIE which contains all structural queries, but no arith-
metic queries that could summarise, rather than extract and manipulate,
data.

2. The updates dealt with are only insert and delete updates. We don’t yet
treat modifications of data in situ.

3. We provide no special treatment of nulls (in agreement with, for example,
Date’s recommendation [13] that systems should not support nulls).

4. We have not given detailed consideration to implementational issues. In par-
ticular the treatment of both the when and the how of view updating by
universal properties does not directly address implementational issues (but
see the remarks below on computational category theory).

Each of these is the subject of ongoing current research.
Despite the limitations, the new approach to views has significant advantages:

1. The sketch data model has been extended to incorporate views, and the ex-
tension is very general allowing data based on any structural query to be
viewed in any sketch data model schema, subject only to the compatibility
with the underlying information system implied by V being a sketch mor-
phism (and this last is as we would expect — we can’t constrain the data in
the view more than it is constrained in the underlying information system
since the former is derived from the latter).

2. View updatability is defined once and for all in a single consistent frame-
work based on a universal property among models. Arguably the universal
property gives the most general reasonable definition to view updatability
possible.

3. The framework presented here links well with computational category theory
work being carried out in Italy, the UK, Canada and Australia. That work
has developed repositories, graphical tools, and elementary algorithms, that
amount to a rapid prototyping tool for systems specified using the sketch
data model.

4. The “closedness” obtained by having a view be itself a sketch data model
allows views of views etc. It also supports well proposals for using views
as the interface for database interoperability and for federated information
systems.



5. The propositions presented in section 5 and similar propositions allow us to
work with schema updatability (rather than model based updatability) in
the usual way, and the proofs of the propositions embody the code required
to carry out the update without resorting to general universal property al-
gorithms.

These developments have depended fundamentally on using a formal methods
framework, rather than the more usual semi-formal methodologies, and this led
to the universal property being based on models rather than the more usual
schema based definitions.
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