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Abstract

Maintainability and modifiability of information system software can be enhanced by the provision
of comprehensive support for views, since view support allows application programs to continue to
operate unchanged when the underlying information system is modified. Supporting views depends
upon a solution to the view update problem. This paper presents a new treatment of view updates
for formally specified semantic data models based on the category theoretic sketch data model.
The sketch data model has been the basis of a number of successful major information system
consultancies. We define view updates by a universal property in models of the formal specification,
and explain why this indeed gives a complete and correct treatment of view updatability, including
a solution to the view update problem. However, a definition of updatability which is based on
models causes some inconvenience in applications, so we prove that in a variety of circumstances
updatability is guaranteed independently of the current model. This is done first with a very general
criterion, and then for some specific cases relevant to applications. We include some detail about
the sketch data model, noting that it involves extensions of algebraic data specification techniques.
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1 Introduction

Views on database schemata and their updates have been the subject of considerable re-
search, but the implementation of view updates, especially within standards such as the
database language SQL, has been largely based on ad hoc and restrictive requirements. One
reason for this is the failure to obtain a comprehensive solution to the problem of determin-
ing what updates should be allowed to a view of a database. Furthermore, the relatively
limited use of formal methods (as opposed to semi-formal methodologies) has often resulted
in views being defined either informally, or solely in terms of the underlying information
system’s base schema. Both of these hamper the use of the view mechanism in facilitating
program reuse when the underlying information system changes.

It is well known that not all updates to a view of a database can be permitted. View
data are derived from an underlying database, and apparently acceptable changes to a view
may be prohibited or ambiguous if applied to the underlying database. The view update
problem is to determine when and how updates of views can be correctly propagated to the
underlying database. We will see many examples below, but for a text book treatment the
reader is referred to Chapter 10 of Date’s text [16].

The authors and coworkers have developed a semantic data model for information systems
based on category theory and sketches. The impetus for this development came from a very
large consultancy [11] which compelled the use of formal methods to manage the complexity.
Dampney and Johnson [25] first showed how data models based on entity-relationship (ER)
diagrams [10] are enhanced by the inclusion of concepts from category theory such as com-
mutative diagrams, finite limits and sums to express constraints and queries. The semantic
data model we are using has recently been called the sketch data model because it is based
upon the category theoretic notion of mixed sketch [5], here specialized for our purposes to
the EA sketch. The sketch data model has been developed considerably and tested in other
consultancies for an Australian department of health [12] and a large corporation [14]. We
believe that these successful applications, together with the theory developed here to provide
a new approach to views and to clarify the view update problem, provide strong support for
this form of semantic data modelling.

In Section 2 we describe a motivating example in some detail, and then define EA sketches
and their models and updates. In Section 3, we consider the query language for an EA sketch
and use it with the notion of sketch morphism to define “view”. This is done in a manner
that is designed to permit the widest possible range of data accessible from the underlying
database to be structured in the view.

A solution to the view update problem needs to determine when and how view updates
can be propagated to the underlying database state. Typically the when has been determined
by definition—certain view updates are defined to be updatable, and then for those updates
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the how is given by specifying the propagation of each view update into an update of the
underlying database. Unfortunately this approach has led to ad hoc treatments as each
discovery of new hows leads to an adjustment of the defined whens, and naturally we should
not expect such solutions to be complete—they really represent a list of those view updates
that a system is currently able to propagate. For an example of the evolution of ideas about
updatability consult successive editions of Date’s text [16]. Instead, in Section 4 we define the
when and how together using a universal property, that is we seek a best possible update of
the underlying database state which restricts to the given view state update. Our universal
criterion for view updatability may be summed up globally with the concepts of fibration
and opfibration. This provides a clear conceptual basis for updatability of views.

The universal property we use is based on the (view) database state. However, view
updatability has usually been treated with criteria based on database schemata. We address
this in two ways. First, in Section 5 we develop general criteria on views that guarantee
universal updatability. They are quite restrictive in the relation the view sketch may have
to the underlying sketch. Thus, in Section 6 we also prove that view updatability can be
determined independently of the database state in a variety of special cases. Such results
considerably simplify the application of the theory.

Preliminary versions of some of the ideas in this article, though not the central definitions
and results of Sections 4 and 5, are found in the articles [15] and [29].

2 EA Sketches and Models

This section provides background on the sketch data model and EA sketches. Some famil-
iarity with the language of categories and functors applied to computer science, as found in
the books [5], [37] or [46], is assumed.

Before providing the definitions we will need, we give extended consideration to a moti-
vating example derived from a fragment of a health administration model. First we describe
the application area, how it might appear in an ER diagram and the resulting relational
database schema. Then we describe an EA sketch whose components include the preceding
information and whose constraints model the application area more precisely.

The main entities in our example are hospitals and medical practitioners. The latter
may be general practitioners (GP’s) or specialists. Relationships between them include
operations by a practitioner at a hospital, and practice agreements (a type of contract)
between practitioners and hospitals. The entities may have attributes such as the name and
address of a hospital, or the licence number of a medical practitioner. Relationships may
also have attributes such as the type of an operation. An entity-relationship-attribute (ER)
diagram capturing some of this information might look like the graph in Figure 1.
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Figure 1: A fragment of an ER diagram

There is no agreed standard for display of nodes and edges in such graphs. We note that
by framing them differently, typical ER diagrams would distinguish entity nodes like Medical
pract’ner or Hospital from relationship nodes like Practice agreem’t, and from attribute nodes
like MPNbr (for practitioner number) and Oper’n type. ER diagrams often use undirected
edges to indicate the entities participating in a relationship and to indicate attributes for an
entity. Attributes may be decorated to indicate that they form a key (or unique identifier)
for their entity. Decorations on the edges for a relationship may indicate “multiplicity”:
whether instances of an entity may appear at most once in a relationship. Other decorations
may indicate subtyping—“is a” in ER terminology. It is perhaps worth noting that the ER
data model dates to 1976 [10], well before object orientation and UML became fashionable
in Computer Science, but they have ideas in common with these later developments.

In the graph above we use directed edges from a relationship to the participating entities,
and a directed edge from an entity or relationship to its attributes. This varies from most ER
diagram conventions. We have shown only some of the many attributes that might be part
of the design. The graph also has three edges with tails labelled is a to indicate subtyping.
For example, a GP is a Medical pract’ner.

In implementations, an ER diagram is translated into a relational database schema: a
set of relation schemes (table specifications) and database constraints. An entity determines
a relation scheme whose attributes (column headings) must be the attributes of that entity,
often specifying a unique identifier attribute. For example, the Medical pract’ner entity
determines a relation scheme Medical practitioner(MPNbr, ...). MPNbr is an attribute. It
may be specified to uniquely determine a medical practitioner. In a model, any medical
practitioner instance has a unique set of values for its other attributes. Such an attribute
is called a (primary) key in the database literature. The relationships each determine a
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relation scheme with an attribute for each participating entity (or better, for its unique
identifier), and for each other attribute. Thus, the Practice agreem’t relationship defines a
relation schema Practice agreement(MPNbr, Hospital Name). To ensure database integrity,
in any instance of the relationship the attributes from participating entities must refer to
extant instances of the entities. Thus, they are examples of “foreign keys” in database terms.
There are several ways of translating subtyping edges; one way is to include the supertype
unique identifier as a subtype attribute which must also be a foreign key, so we might have
a relation scheme GP(..., MPNbr, ...).

There are facts about the modelled environment that an ER diagram misses. For example,
we want to require that a Medical pract’ner is either a GP or a Specialist, but not both. An
In-patient operation should occur under a Practice agreem’t. The agreement might become
an attribute of the operation, but we want the practitioner and hospital involved to be
determined by the relationship. One might suggest making the agreement a participating
entity in the operation relationship, but Practice agreem’t is a relationship, not an entity!

The ER data model certainly aids good design: graphical representation is a powerful
design tool. However, the brief example above suggests that the ER model may fail to
capture quite simple constraints. Modern relational database systems are able to implement
constraints like those described above, but it is reasonable to expect that designing the
constraints should be part of the data model, rather than hoping that they will be noticed,
and implemented, later by application programmers.

We are ready to introduce EA sketches and the sketch data model. An EA sketch is a
special case of mixed sketch and thus has four components.

a) An underlying directed graph G whose nodes specify entities and at-
tributes (similar to an ER diagram).

b) A set of commuting diagrams. A commuting diagram is a pair of paths
in G with common source and target. They are used to specify equality
of functional constraints.

c) A set of finite cones. A cone has three parts: a node v of G called the
vertex; a graph morphism γ : I //G with I finite called the base; and,
for each node i of I, a projection edge pi : v // γ(i) from the vertex
to base (codomain) nodes. They are used to specify monic (is a), and
also select, project, join constraints.

d) A set of finite cocones. Like cones, cocones have a vertex v and base
γ, but they have injection edges ji : γ(i) // v. Only discrete cocones
appear in EA sketches. A cocone is discrete when the domain graph
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Figure 2: A fragment of a graph for an EA sketch

of its base has no edges. They are used in EA sketches both to define
attributes and to specify type hierarchies.

The first component, and some aspects of the third are all that can be expressed with an
ER diagram.

Example 1 Figure 2 shows the interesting part of the underlying graph of a small EA sketch
E. It is a fragment of the data model for a consultancy [12]. It is similar to the ER diagram
in Figure 1, with additional information not expressible there. The other three components
of E are as follows:

b) The set of commuting diagrams of E contains both triangles and the
square.

c) The set of cones contains:

- a cone specified as follows: the vertex is Specialist, the upper left
corner of the square; the base is the graph morphism from the
following graph I:

Med

memb

��
Spec

is a //Coll
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which maps the edges eponymously to the right side and the bot-
tom of the square in Figure 2; the projections are: the top edge
is a of the square, the left side edge has of the square, and the com-
mon value (since the square commutes) of the diagonal composite
memb◦is a (an edge we did not draw);

- three further cones (that we have not drawn) ensure that the three
arrows indicated // // are modelled by monic (injective) map-
pings; as we discuss below, not all edges in the base of these cones
are shown;

- a special cone with vertex denoted 1 (also not shown) and empty
base.

d) The set of discrete cocones contains:

- the cocone with vertex Medical pract’ner and base the vertices
Specialist and GP (short for General Practitioner) (it is a discrete
cocone) and

- a number of cocones whose vertices are attributes (not shown, but
recall MPNbr and Oper’n type above).

Briefly, we expand on each of the components in turn, indicating also how they will be
modelled in database states.

a) The graph may be viewed as a type diagram [44]. The nodes in Fig-
ure 2 are all “entities”—the “E” in EA. The three monic arrows (de-
noted // // ) indicate subtypes. The other arrows are functions (and
can be thought of as methods or, from the database perspective, as
integrity constraints). Given an instance of their source type they re-
turn an instance of their target type. The names on nodes and arrows
have no formal significance but do indicate the real world semantics
being captured in the specification and will be used from now on in our
discussion.

b) The commutativity of the two triangles represents a typical real-world
constraint: Every in-patient operation conducted at a particular hospi-
tal by a particular medical practitioner must take place under a practice
agreement (a type of contract) between that hospital and that practi-
tioner. This constraint is expressed by the requirement that the left
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hand triangle is a commutative diagram. If, instead, the left hand tri-
angle were not required to commute, then it would still be the case
that every operation took place under an agreement, but Dr. X could
operate under Dr. Y’s practice agreement. In many information mod-
els, situations like this do not even include the arrow labelled under.
Such models store the contractual information, but do not specify the
constraint—it is expected to be added at implementation time. This
example shows that information modelling is not usually a complete
formal specification technique.

c) The cone involving the square in Figure 2 ensures that in models the
square will be a pullback (in database terminology this means it is
a join [1]). This constraint ensures that the specialists are precisely
those medical practitioners who are members of a college which occurs
in the subtype Specialization (denoted Spec’n in Figure 2). Pullbacks
can also be used to specify further subtypes, for example, the medical
practitioners with a specific specialization, say obstetricians.

Subtype inclusion arrows, and other arrows that are required to be
monic in models, are specified using cones like the one just considered.
Indeed, to require that a square

g //

g

��
m

��
m

//

defines a cone as above is equivalent to requiring that in models the
square becomes a pullback and m is modelled by a monic. In Figure 2
we drew only the monic is a edges to stand for such cones.

d) The discrete cocone with vertex Medical practitioner ensures that in
models the collection of medical practitioners is the disjoint union (cat-
egorically, the sum or coproduct) of the collection of specialists and the
collection of GPs.

As is usual practice, we did not draw the attributes—the “A” in EA—
in Figure 2, but they are definitely a part of the EA sketch. Attributes
are (usually large) fixed, value sets. Examples in this case are the
name and the address of a person, the validity period of a practice
agreement, the classification of a hospital, the type of an operation, the
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practitioner number of a medical practitioner and so on. An attribute
is the vertex of a cocone whose base is a finite discrete graph, whose
nodes are all specified by the special node 1, and whose injection edges
from 1 are called elements. In models, an attribute’s value is exactly
the sum of its elements. Formally the cocones that define attributes
are expressed using the underlying graph. In practice they are usually
listed separately in a data dictionary.

Examples of attributes as types include integer (with specified bounding value), string
(of specified maximum length), and date etc. In models these types arise as a finite sum of
1’s: 1 + 1 + . . . + 1. Such sums have the important technical property of having constants,
the injections, corresponding to each of their elements. These are usually the only constants
that occur in modelling real world data.

We now proceed with the formal definitions required for EA sketches and their model
categories. Up to Definition 6 these are standard ([5]) and are included only to establish
notation.

Definition 2 A cone C = (v, B, p) in a graph G consists of a node v of G (the vertex of
C), a graph morphism B : I // G (the base diagram of C), and, for each node i in I,
an edge pi : v // Bi. Cocones are dual (that is we reverse all the edges of G which occur
in the definition, so the new definition is the same except that the last phrase requires edges
ji : Bi // v). The edges pi in a cone (respectively ji in a cocone) are called projections
(respectively coprojections or injections).

The general definition of a mixed sketch (i.e. a sketch with both cones and cocones)
follows in the next paragraph. Sketches with a variety of restrictions on the graph, cones or
cocones have been considered. For example, if the cones are finite and there are no cocones
at all we have the widely studied finite limit sketches. Our EA sketches have the restrictions
noted in Definition 7.

Definition 3 A sketch E = (G,D,L, C) consists of a directed graph G, a set D of pairs of
directed paths in G with common source and target (called the commutative diagrams) and
sets of cones L and cocones C in G.

Every category A has an underlying sketch. For this sketch the graph G is the underlying
graph of the category, D is the set of all commutative diagrams, and L (respectively C) is
the set of all limit cones (respectively colimit cocones) in the category. Note that limit
and colimit cones in a category A are required to be both commutative and universal.

Commutativity means that for any edge i e // i′ in I, we have pi′ = B(e)pi (and dually
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for cocones). Commutativity is not required of the cones in a sketch—after all G is merely
a graph. Universality of a cone C in a category A means that there is a natural bijection
between commutative cones C ′ in A with vertex v′ say, and base B, and arrows in A from
v′ to v. Pullbacks, equalizers and products examples of limit cones. Pushouts, coequalizers
and sums are colimits. The underlying sketch of a category often has, for example, infinitely
many commutative diagrams or cones. However, one advantage of sketches is that we can
frequently use a sketch with finite components to give a presentation of an infinite category,
just as we do for groups.

Definition 4 Let E = (G,D,L, C) and E′ = (G′,D′,L′, C ′) be sketches. A sketch morphism
h : E // E′ is a graph morphism G // G′ which carries, by composition, commutative
diagrams in D, cones in L and cocones in C to respectively commutative diagrams in D′,
cones in L′ and cocones in C ′.

For example, a functor is the same thing as a sketch morphism between the underlying
sketches of its domain and codomain categories which also preserves limits (takes limit cones
to limit cones) and colimits. The definition of functor entails that commutative diagrams
are preserved. More important for us are the models of a sketch:

Definition 5 A model M of a sketch E in a category S is a sketch morphism from E to the
underlying sketch of the category S.

Equivalently, we can describe models using functors as follows. Let C(E) be the category
generated by the graph G, subject to the equations given by the commutative diagrams in
D. Thus C(E) has the nodes of G as objects and equivalence classes of paths in G as arrows.
There is evidently an inclusion (of graphs) G // C(E) so we will continue to refer to nodes
of G as objects, edges of G as arrows and so on. A model of E in S is exactly the same thing
as a functor M : C(E) // S such that the cones in L and cocones in C are sent to limit
cones and colimit cocones in S. Thus, the models of E in S are some of the objects of the
category of functors from C(E) to S, denoted [C(E),S].

Definition 6 If M and M ′ are models of E (viewed as functors) a homomorphism φ :
M // M ′ is a natural transformation from M to M ′.

Models and their homomorphisms are the objects and arrows of the category of models
of E in S denoted by Mod(E,S), namely the full subcategory of [C(E),S] determined by the
models.

We speak of (limit-class, colimit-class)-sketches when L and C are required to contain
(co)cones only from the specified (co)limit classes. For example, (finite-discrete, ∅)-sketches
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correspond to (multi-sorted) algebraic theories—there are only finite discrete (product) cones
in L and no cocones in C at all. The model functors M preserve only the specified finite
discrete cones (and of course any commutative diagrams), so the discrete cones are sent to
product cones. As is well known, algebraic theories define precisely the situation in which
category theory applies to the algebraic specification of data structures [19]. Our EA sketches
have finite cones and finite discrete (i.e. sum) cocones.

Definition 7 An EA sketch E = (G,D,L, C) is a (finite cone, finite discrete cocone)-sketch
such that there is a specified cone with empty base in L. Its vertex will be called 1. Arrows with
domain 1 are called elements. Nodes which are vertices of cocones all of whose injections are
elements are called attributes. Nodes which are neither attributes, nor 1, are called entities.

Using Figure 2 as (the main part of the) underlying graph and taking together the
commutativity, cones, cocones and attribute information as described in Example 1 we obtain
an EA sketch. According to Definition 7, attributes are finite sums of elements. Thus, for
models in set0, the category of finite sets, attributes will be modelled as finite sets, for
example strings of some bounded length, rather than infinite sets, for example all strings.

A brief comment on the name: As the reader will have expected, EA stands for Entity-
Attribute. Relationships in an ER diagram can be replaced by their tabulations, that is the
span of arrows from the relationship to its entities. For example, the ER diagram in Figure 1
had Practice agreement as a relationship from Medical practitioner to Hospital. It may initially
appear that we have merely resurrected the functional data model [42]. Of course, the sketch
data model does use functions in its modelling, as the next definition emphasizes. The
difference is the integral role played by encoding constraints using commutative diagrams,
finite limits and sums.

To specify a database state for an EA sketch is to give a collection of finite sets and
functions among them as specified by the nodes and the edges of the graph. These are
required to satisfy the constraints.

For example, the finite set corresponding to In-patient operation in Figure 2 is the col-
lection of all operations currently stored in the database. The satisfaction of the three
monic constraints means that arrows denoted // // in Figure 2 must be realized as injective
functions, and so on.

Our main purpose is to study view updatability. To do so we need to have a clear
definition of database states and updates. We will deal with insert and delete updates
separately here and they are simply defined.

Definition 8 A database state D for an EA sketch E is a model of E in set0, the category
of finite sets. The category of database states of E is the category of models Mod(E, set0) of
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E in set0, abbreviated below as Mod(E). An insert update (respectively delete update) for
a database state D is a monomorphism D // // D′ (respectively D′ // // D) in the category
Mod(E) of models of E.

Since morphisms of database states are natural transformations, to satisfy the definition
of update it is sufficient that at each node of the underlying graph the component of the
morphism is injective. Thus, the definition implements the intuitive idea that an insert
update adds new values at entities. Indeed, an insert update may add values at several
entities. For the case of an update that involves adding instances at only one entity, we have
published algorithms to accomplish this for certain classes of EA sketches [27],[28].

In this article we deal only with delete and insert updates. In practice this is a very small
limitation—all common real-world updates can be expressed as delete-insert pairs. In precise
terms, for an EA sketch in which no entity has an element (in the sense of Definition 7),
all updates can be expressed as a delete, then an insert. Even when entities do have such
elements (constants), most updates can still be expressed as delete-insert pairs. An example
of an update which cannot be so expressed, one which must be carried out in situ is as
follows. Consider the modification of an attribute value for a specified instance of an entity
which is constrained so that, in any model, the value of the entity is always required to have
ten (say) instances. Since there can be no deletes from or inserts into that entity, updating
via a delete-insert pair is not possible here.

The sketch data model could be viewed as an extension of the entity-relationship-attribute
(ER) model. Indeed, any ER diagram will generate the graph for an EA sketch (the details
are dealt with in the article [25]). However, the sketch arising from the ER diagram fails to
include commutativity requirements, finite limit constraints (except for the is a monics), or
sum constraints (except for the attributes). As Example 1 indicates, such constraints add
significantly to the expressivity of an EA sketch.

3 Queries and Views

We begin this section by discussing the query language that is implicitly defined by an EA
sketch.

To each EA sketch E there is a category called the theory of the sketch. We denote this
category QE. The theory QE is, roughly speaking, the category generated from the sketch
E subject to the commutative diagrams in D by closing it under the operations of finite
limit and finite sum subject to the (co)cones in L and C. Thus the theory of the sketch
in Example 1 has infinitely many nodes in its underlying graph including in particular the
product of any two nodes shown Figure 2, the sum of any two nodes shown in Figure 2,
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pullbacks of any cospan shown in Figure 2, etc, and then the products, sums and pullbacks
of all these products, sums and pullbacks, and so on. For details and a precise construction
see Barr and Wells [6], Section 8.2. Thus, QE has all finite limits and finite sums. The
inclusion of the underlying graph of E in that of QE is actually a model E // QE of E
in QE. Moreover, it is the initial model essentially because QE contains exactly E and
expressions for finite limits and finite sums generated by the specifications of E. Indeed, if
a category S has finite limits and finite sums (as set0 does) then every model M of E in S
extends essentially uniquely to a functor QM : QE // S which is moreover a model of (the
underlying sketch of) QE in S. Thus, Mod(E) is equivalent as a category to Mod(QE) (the
extension works on morphisms of the model categories as well). We explore the meaning of
this for the sketch data model next.

The extra semantic power of the sketch data model comes from the non-graph compo-
nents: As seen in Example 1, D can be used to specify constraints defined by paths in the
graph, and L and C can be used to specify constraints that may also be viewed as query
results. The theory of an EA sketch includes objects representing all queries expressible as
finite limits or finite sums in the objects and arrows of the base graph, and then these query
results can be used to specify further queries and constraints, and so on.

Which standard database queries are expressible by objects of QE? The answer is that
all basic select, project, join and (disjoint) union queries are included. That pullbacks
express joins has been mentioned above. Finite sums give disjoint unions. Since finite prod-
ucts are examples of finite limits, the results of project queries arise from their projections.
Finally, basic select queries arise using equalizers. For example, to determine the In-patient
operations performed by a particular Medical practitioner Jones, say, we form the equalizer of
the arrow by and the composite arrow

In-patient operation // 1
Jones //Medical practitioner

The resulting equalizer gives the result for the (pseudo-SQL) query

select * from In-patient operation where by = “Jones”

Since the query category QE is closed under finite limits and finite sums, all such queries as
well as all queries containing such sub-queries are expressible by objects of QE. As noted
above, the objects of QE express all and exactly the queries built from iteration of finite
limits and sums subject to the defining components of E. Thus a single object can express
a query of any complexity.

It is not surprising that the provision of a much richer language for specifying constraints
is of major benefit in information modelling. Indeed, it has been the basis of the successful
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consultancies which have used the sketch data model as a formal information modelling
technique. Despite the richer specification language provided by the sketch data model, its
query language, as noted above, is quite similar in power to SQL.

A view (also known as “external view” [16] or “subscheme” [45]) allows a user of an
information system to manipulate data which are part of, or are derived from, an underlying
database. The example medical informatics sketch (Figure 2) might represent a view of a
large health administration database. In turn it might provide views to an epidemiologist
who only needs to deal with the two triangles, and with their associated attributes; or to an
administrator of a College of Surgeons who needs to deal with data in the inverse image of
that college, and not with any of the data associated only with other colleges.

In relational systems, the formal definition of a view has generally been limited to the
result of a single query (a virtual table), for example in the SQL create view. Moreover,
updatability of views has generally been implemented in very restrictive fashion to avoid the
difficulties of the view update problem. For example, allowable updatable views might be
restricted to be just certain row and column subsets of a relational database. Join views are
usually considered to be not updatable (see [45], Section 6.7).

However, we seek to define views which can be derived more generally from the underlying
database. We argue that views ought to be able to be structured in any way consistent with
the data model in use. Furthermore, the updatability of view states ought to be defined as
widely as possible consistent with unique and correct updating of the underlying database
state.

This motivates a definition of view for the sketch data model which supports the generality
just described. It uses the theory QE constructed from an EA sketch E.

Definition 9 A view of an EA sketch E is an EA sketch V together with a sketch morphism
V : V // QE.

Thus a view of E includes a new EA sketch V with the entities of V interpreted via the
sketch morphism V as query results in the original EA sketch E.

For example, Example 1 may be considered as a view of a much larger EA sketch. Here
the graph part of the sketch morphism might be just an inclusion in the graph part of the
larger sketch. Other examples of views, including views which depend on entities in QE but
not in E, are found in following sections.

A database state D for an EA sketch E is first of all a sketch morphism D : E // set0.
However as noted above, it can also be considered (via its essentially unique extension) as
a model D : QE // set0. The composite of this model with a view V , is a composite DV
of sketch morphisms and so is a sketch morphism which is moreover a database state for V:
the V -view of D. This operation of composing with V is usually written as V ∗. Thus we
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denote DV by V ∗D. Furthermore, V ∗ is a functor (called the substitution functor)

V ∗ : Mod(E) // Mod(V)

(where we are eliding the equivalence of Mod(E) and Mod(QE)) so for any morphism of
database states α : D // D′ there is a morphism V ∗α : V ∗D // V ∗D′.

Following usual practice we will often refer to a database state of the form V ∗D as a
“view” of D. Context will determine whether “view” refers to such a state, or to the sketch
morphism V . If there may be ambiguity, or for emphasis, we will sometimes refer to V ∗D
as a view state, to V as the view sketch and to V as the view schema.

With this definition, views can be composed. For example, in the view V : V // QE of
an EA sketch E, V is itself an EA sketch on which we might define a view W : W // QV.
The operation of forming the theory of an EA sketch is well behaved, so we have QV :
QV // QQE, but since QE was formed by closing under appropriate operations, it is
already closed under the operations and so QQE ' QE. Thus the composite

W // QV // QQE ' QE

is a sketch morphism. It defines the composite of the views W and V as a view of E. This
explains how the epidemiologist above has a (composed) view of the full health administration
database.

4 Universal updatability

We have defined view above so as to ensure that views have the widest possible applicability.
A view has an EA sketch as its domain, and can include any structural form expressible
in the sketch data model. The sketch morphism V defining the view schema guarantees
that the constraints on view states imposed by the diagrams, limits and colimits in the view
sketch are compatible with the constraints on the underlying database. The fact that V
takes values in QE permits any query from the underlying database to appear in the view
sketch.

The view update problem is to determine under what circumstances an update to a view
state can be propagated to an update of the underlying database, and how that propagation
should take place. The source of the problem is that some updates to a view state may
have no, or no unique, propagated update. That is, an insert or a delete which is perfectly
valid for a view state itself, may not arise (under V ∗) from a unique update to a state of
the underlying database, or there may be no such state of the underlying database at all.
For example, a college administrator might wish to alter the medical practitioner attribute
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values for a member of the college, but even though such administrators can see the practice
agreements for members of their college, they cannot insert a new practice agreement for a
member because they cannot see details about hospitals, and every practice agreement must
specify a hospital.

In the sketch data model, view updates can fail in either of two ways:

1. There may be no state of the database which would yield the updated
view. This usually occurs because the update to the view state, when
carried to the underlying database state, would result in a proscribed
situation. For example, a view schema might include the product of
two entities, but only one of the factors. For a view state, inserting or
deleting an instance from the value of the state at the product entity
seems straightforward; after all, in the view schema it looks like an
unconstrained entity with an arrow to another entity (the projection
to the factor that is in the view). But in the underlying database the
resulting value of the state at the product entity might be impossible.
Indeed, the number of instances in the value at the product entity
and the number in the value at the factor entity might have become
coprime.

2. There may be many states of the database which would yield the up-
dated view and among these no canonical choice. The simplest example
of this occurring is when a view schema includes an entity, but not one
of its attributes. Inserting into the entity seems straightforward, but in
the underlying database there is no way to know what value the new
instance should have on the invisible attribute: there are many choices,
but no canonical way to choose among them.

Since a view state is itself a database state, we may (subject to the constraints of the view
sketch) insert items in or delete items from a view state. Intuitively, a specified insert/delete
in the view is propagatable if there is a unique “minimal” insert/delete on the underlying
database whose restriction to the view (via V ∗) is the given view insert/delete. Thus we
have:

Definition 10 Let V : V // QE be a view of E. Suppose that D is a database state for
E. Let T = V ∗D and t : T // // T ′ be a database state monomorphism (so that t is an insert
update of T ). The insert t is propagatable if there exists an insert update (in Mod(E))
m : D // // D′ with the following property: for any database state D′′ and insert update
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m′′ : D // // D′′ such that V ∗m′′ = t′t for some t′ : T ′ // // T ′′, there is a unique insert
m′ : D′ // // D′′ such that V ∗m′ = t′ as in

D // m //**

m′′
**VVVVVVVVVVVVVVVVVVVVVVVV

�
�
�
�
�
�
� D′

##
m′

##G
G

G
G

�
�
�
�
�
�
�

D′′

�
�
�
�
�
�
�

V ∗D // t //**

V ∗m′′
**VVVVVVVVVVVVVVVVVVVVV T ′

##
t′

##G
G

G
G

G

V ∗D′′

where the dashed vertical lines indicate, for example, that V ∗D is the image of D under V ∗.
If every insert update on T is propagatable, we say that the view state T is insert updatable.

The definitions of propagatable delete and delete updatable view state are dual. It should
be remarked immediately that, though propagatability only requires the existence of the
insert update m, if there is any other n : D // // E ′ satisfying the same requirements as m
then there is an isomorphism of models i : D′ // E ′ such that im = n, so m is essentially
unique.

A view schema may be such that all of its view states are insert updatable. For example,
a view schema that consisted only of (the inclusion of) the node Hospital (and its attributes)
in Figure 2 would have this property (see Proposition 21 below). On the other hand, a view
whose only node is Medical practitioner has no propagatable inserts since it is a sum node
(see Proposition 26).

There is a technical point to recall about the preceding definition. That is that we are
silently using the fact that Mod(E) and Mod(QE) are equivalent categories when we write
above, for example T = V ∗D. It should also now be clear just what we meant by “minimal”
before Definition 10. Referring to the diagram above, D′ has the property that any other D′′

which has the appropriate restriction to the view is itself “larger”. Another way of saying
the same thing is that D′ is initial among those D′′ containing D whose image under V ∗

contains T ′. A propagatable delete dually requires a D′ that is maximal (or terminal) among
those which have the appropriate restriction.

Our definition of propagatability for insertion and deletion (view updatability) is depen-
dent on the view state V ∗D (the model of the view sketch) which is being updated. The
definition specifies when an insert or delete of a view state is propagatable, rather than for
which view schemata inserts and deletes can always be propagated. This is similar to the
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recent opinion of C. J. Date referring to his proposal for defining view updatability ([16], p
303, Date’s emphasis):

in fact, [this proposal] treats all views as potentially updatable,
barring integrity constraint violations.

Nevertheless, we can sometimes prove for a given view schema that all database states
are insert or delete updatable. Such results are important for designers who wish to design
views that will always be updatable. Section 6 provides some analysis of this issue.

By defining updatability in terms of models we obtain the broadest reasonable class of
updatable view inserts and deletes. Whenever there is a canonical (initial or terminal) state
of the underlying database among those models that could achieve the update of the view
state, we say that the view state is updatable. The only invalid view state updates are those
which are in fact impossible to achieve in the underlying database, or those which could
be derived from multiple non-isomorphic minimal (or maximal) models of the underlying
database.

Definition 11 The EA sketch E is keyed if for each entity E there is a specified attribute
AE called its key attribute and a chosen monic specification E // // AE from the entity to
the specified attribute.

This is essentially the requirement of entity integrity, for it expresses the presence of
primary keys.

In the case of a keyed EA sketch, all morphisms between database states are actually
monomorphisms ([33], Proposition 4.7) which means precisely that all of the component map-
pings are injective. Even when the sketch is not keyed we may consider the category whose
objects are all models, but whose arrows are restricted to be monomorphisms. For a sketch E,
we denote this category by Mon(E). When the effect of V ∗ on a monic morphism of models
provides another monic morphism of models we have a restriction V ∗ : Mon(E) // Mon(V).
It is often the case that monomorphic components of an arrow in Mod(E) are sent by V ∗

to monomorphic components in Mod(V) (and always so for the components of entities in V
that V sends into E rather than properly into QE). The notation V ∗ is used both for the
functor named above and for its restriction (when defined) to Mon(E).

The situation in which all updates of a view are propagatable is clearly a property of the
functor V ∗, namely that it is a left and right fibration in the sense of the following definitions.

Definition 12 [8] Let P : E // B be a functor, E be an object of E, and b : B // PE
be an arrow of B. An arrow a : E ′ // E in E is called a cartesian arrow for b if P (a) = b
and for any arrow a′ : E ′′ // E such that P (a′) = bb′ for some b′ : P (E ′′) // B, there is
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a unique arrow k : E ′′ // E ′ satisfying ak = a′ and P (k) = b′. An opcartesian arrow for
an arrow d : PE //B is an arrow c : E //E ′′ with the property dual to that for cartesian
arrows.

Thus, provided that we consider only monomorphisms (in the diagram of Definition 10),
our definition of propagatable insert is precisely having an opcartesian arrow (and a propa-
gatable delete has cartesian arrow).

Definition 13 A functor P : E // B is called a left fibration (or just fibration) if there
is a cartesian arrow for every b : B // PE. It is a right fibration (or opfibration) if there
is an opcartesian arrow for every d : PE // B.

The following proposition follows immediately from the definition just given and from
our definition of propagatable updates. Nevertheless, it expresses a significant point of this
article: there is a universal criterion for view updatability, namely that the substitution
functor V ∗ is a left and right fibration.

Proposition 14 Let E and V be EA sketches and V : V // QE a view of E. V ∗ is a left
(respectively, right) fibration (with domain Mod(E) in the keyed case and Mon(E) otherwise)
if and only if every database state T in Mod(V) is delete (respectively, insert) updatable.

5 Cofibrations and updatability

In this section we develop general criteria for a sketch morphism V : V // QE that guar-
antee that V ∗ is a right or left fibration. The criteria are based on the notion of cofibration
for categories and functors developed by Street [43]. The results following hold for general
mixed sketches and models in set, so for this section we abbreviate Mod(E, set) to Mod(E).
The results specialize to EA sketches and their models without change.

We use the standard notation E(A, B) for the set of morphisms from A to B in the
category E. Suppose that I : A // E is a fully faithful functor with image closed under
isomorphism and that for any object E of E not in the image of I it is the case that E(E, IA)
is empty for every A in A, then I is called a left cofibration. A right cofibration J : B // E
is a fully faithful functor with image closed under isomorphism such that for any object E
of E not in the image of J : B // E it is the case that E(IB,E) is empty for every B in B.

The following result is well-known and we just sketch a proof below. For categories A
and B, the category of functors from A to B is denoted by BA.

19



Lemma 15 [43] If I : A //E is a left (respectively right) cofibration, then for any category
X the functor I∗ : XE // XA defined by I∗F = FI is a left (respectively right) fibration.

The interested reader will have no difficulty constructing the required (op)cartesian ar-
rows. We provide some hints in the right fibration case. Suppose that F : E // X and
β : I∗F // K is a morphism in XA. We need an opcartesian arrow β∗ : F // Fβ in
XE. The functor Fβ (an object of XE) is constructed using identities wherever it is not
already determined by the value of K on objects of A. The (op)cartesian arrow β∗ is then
the natural transformation with components given by β on the image of A in E and identity
components elsewhere.

Our interest is to extend the results in Lemma 15 to substitution functors (those called V ∗

above) between categories of models of EA sketches and so we begin with a sketch morphism
V . In this case both the domain and codomain of the fibration are full subcategories of the
functor category XE where E = C(E) and X = set0. We will need an appropriate restriction
on our sketch morphisms:

Definition 16 A sketch morphism V : V = (GV ,DV ,LV , CV ) // E = (GE,DE,LE, CE) is
a sketch embedding if

• the graph morphism V is injective on objects and edges;

• every edge in GE between nodes in the image of V lies in the image of
V ;

• every commutative diagram in DE lying in the image of V is the image
of a commutative diagram in DV ;

• every (co)cone in LE (respectively CE) lying in the image of V is the
image of a (co)cone in LV (respectively CV ).

Remark 17 As a consequence, the functor induced by V from C(V) to C(E) is a full
embedding.

Definition 18 A sketch embedding V : V // E with the property that any (co)cone in LE

(respectively CE) with a node (base or vertex) in the image of GV lies entirely in the image
of GV is called a sketch right cofibration if there is no edge in GE from a node in the image
of V to a node not in the image of V . Such a V is a sketch left cofibration if there is no
edge in GE from a node not in the image of V to a node in the image of V .

The condition on (co)cones guarantees that limits and colimits do not interfere with the
constructions used. The remaining conditions are analogous to those defining cofibrations.
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Proposition 19 If V is a sketch left (respectively right) cofibration then
V ∗ : Mod(E) // Mod(V) is a left (respectively right) fibration.

Proof. Let M be in Mod(E). Recall that we also denote by M the functor from C(E) to
set.

We consider the case of V a right cofibration. Let β : V ∗M //N be a homomorphism in
Mod(V). Construct a functor Mβ : V // set and a natural transformation β∗ : M //Mβ
by the construction suggested after Lemma 15.

We claim that Mβ is in Mod(E). To see this, since we already know that Mβ is a
functor, we have only to verify that Mβ sends any cone in L, respectively cocone in C to a
limit cone, respectively colimit cocone, in set. We consider only cones; cocones are similar.
Let C = (vC , IC : BC

// GE) be a cone in LE. By hypothesis, if vC or any node in the
image of IC is in the image of V then all of C is in the image of V . If this is the case, then
by definition of Mβ, the image of the cone C is a limit cone in set since Mβ is defined by
N on all of C, and N is a model by hypothesis. Similarly, if C has no nodes from the image
of V then Mβ is defined entirely by M which is a model on all of C, so the image of C is a
limit cone.

We conclude that Mβ is in Mod(E) as required.
To complete the proof we have to show that β∗ : M // Mβ satisfies the universal

property. By its definition β∗ certainly does this with respect to functors that are not
necessarily models. Now suppose we have homomorphisms γ : N // V ∗P in Mod(V) and
δ : M // P in Mod(E) such that V ∗δ = γβ. Because Mod(E) is a full subcategory of
the functor category, the natural transformation δ∗ : Mβ // P constructed as required for
Lemma 15 is certainly a homomorphism. It is moreover the unique such with the required
properties.

Notice that in order to use this proposition to ensure both insert and delete updatability
for a view V : V // QE we must have that C(V ) : C(V) // C(QE) is fully faithful and
there are no arrows from the image of C(V ) to or from the rest of C(QE). In the next
section we consider some more particular situations where this restriction may be relaxed.
Furthermore, the conditions in the Proposition are not necessary. Let GE have only two
entities E1 and E2, one edge e : E1

// E2, and no (co)cones. For the view V given by the
inclusion of the entity E2, it is well known that V ∗ is both a left and right fibration, but V
clearly violates the second condition to be a sketch left fibration.
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6 Updatability for schemata

In this section we provide some more particular criteria for updatability of views. In some
cases they will establish that V ∗ is a left and right fibration, while others are more limited.
Notice that only values of entities may be updated since the value 1 and the values of attributes
(as sums of 1) are essentially fixed in any model. By an abuse of language, we will say that
an insert update T // // T ′ is “into (an entity) W” when T (V ) = T ′(V ) for all entities
V 6= W , and similarly for deletes “from W”. Thus an insert into or delete from W changes
the database state’s value only at W—the values in the model of other entities and attributes
remain unchanged.

Definition 20 A view V : V // QE is called insert (respectively delete) updatable at an
entity W in V when all inserts (respectively deletes) into (respectively from) W are propa-
gatable, independently of the database state.

We establish insert or delete updatability at W in V (sometimes loosely just called up-
datability) for a variety of circumstances. As well as being technically useful in applications,
these results help to show that the definitions above correspond well to our intuitions about
what should and should not be updatable. In most cases we will deal in detail with the
insert case as it is the more interesting and slightly harder case.

We need some notation for this section: V : V // QE is a view (= sketch morphism);
T , T ′ and T ′′ are models of V; t′ and t′′ are insert or delete updates of T at W ; D, D′ and
D′′ are models of E such that T = V ∗D and T ′ = V ∗D′, T ′′ = V ∗D′′. When dealing with
inserts we will suppose t : T // // T ′, m : D // // D′ and m′′ : D // // D′′ are insert updates.
Deletes will be treated dually (t : T ′ // // T etc). In either case we suppose that V ∗m = t
and V ∗m′′ = t′′.

We assume that V is a sketch morphism whose underlying graph morphism is injective
on nodes and edges, and that V ∗ carries monomorphisms of models to monomorphisms. We
begin by considering cases where V is just a view of a part of E. In fact, our first result is
closely related to Proposition 19. The explicit construction given below also exemplifies the
proof of Lemma 15.

Proposition 21 Suppose that all of the arrows out of V W in E are in the image of V , and
that V W is not
- the initial node in any commutative diagram in E
- in any cone or cocone of E
then V is insert updatable at W . Further, if all of the arrows into V W in E are in the image
of V , then V is delete updatable at W .

22



Proof. We prove only the insert case. The delete case is a straightforward dual argument,
except that there is no need to be concerned about commutative diagrams (deleting an
element cannot spoil commutativity but inserting an element can).

Let D′ be defined by D′X = DX for X not equal to W and D′W = T ′W , and D′f = Df
for arrows f not incident at V W , D′f = T ′f for arrows f out of V W , and D′f = tW Df for
arrows f into V W . The natural transformation m has the evident identities and inclusion
as components. Consider the following diagram:

DW // mW //,,

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

�
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�
�
�

Df ''NNNNNNNNNNN D′W$$
m′

W
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TW // tW //,,
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Tf ''NNNNNNNNNNN T ′W $$
t′W

$$IIIIIIIIIT ′f
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�

TX = T ′X ,,

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXX T ′′W
T ′′f

$$IIIIIIIII

T ′′X

Now D′ is a model since the limits and colimits are the same as in D and commutativity
cannot be spoiled because arrows into D′W factor through DW and naturality of t ensures
that for arrows f and g composed through W , D′fD′g = D′fmW Dg = DfDg. Furthermore
m : D // // D′ is initial among the appropriate m′ : D // // D′′ since it is initial at each
component.

Notice that if V W has a non-trivial attribute A which is not in the image of V , then
inserts into W are not updatable since there is no canonical way to assign a value in A to
new instances of V W . On the other hand, Proposition 21 says that a view which can “see
enough” is updatable. For example, if the view sketch were to include Medical practitioner,
Practice agreement, and Hospital, along with the two arrows between them (see Figure 2),
then the view is insert updatable, but not delete updatable, at Practice agreement.

For several of the propositions below W is the only entity in the view sketch, and E is
assumed to be very simple. Recall that the “single entity view” is the only meaning of “view”
in SQL, for example. In such cases the view sketch can have only a single entity and no
other data and we write V = {W} with its image V W under V in QE. In our applications
we encourage larger structured V, but the following propositions are nevertheless still useful
then because we can search for parts of V which match the premises of the propositions
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and either find a counterexample to updatability at W , or partition V − {W} and argue
that updatability for each partition as a view, whether concurrently or serially, implies the
updatability of the view V at W . Similarly the propositions can be applied to larger complex
E because updatability is a “local” phenomenon: Inserts or deletes at W will be updatable
according to whether they are updatable in the restriction of E to objects “near” W .

Proposition 22 Suppose that V = {W}, and E has a graph including f : V W // A where
A is a non-trivial attribute, that is, the vertex of a cocone with at least two elements. Then
V is not insert updatable at W .

Proof. Choose two distinct elements a, b : 1 // A. We can make the insert non-trivial and
atomic so there is an element w : 1 // T ′W which is not in TW and T ′W = TW + {w}
(recall T1 = 1). Consider D1 and D2 defined by D1V W = D2V W = T ′W , and of course
D1A = D2A = DA (attributes are constant for all models), with (D1f)w = a and (D2f)w =
b and D1f = D2f = Tf when restricted to TW as in

D1V W

�
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�
�
�
�
�
�
�
�

D1f
++WWWWWWWWWWWWWWWWWWWWWWWWW 1

woo

a

��
DV W

�
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�
�
�
�
�

55

m1

55lllllllllllll
// Df //,,

m2

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY DA

D2V W

m m m m m m m

::

D2f
::uuuuuuuuu
1

b

OO

w
oo

TW //
tW

// T ′W = TW + {w}

Each of D1 and D2 is clearly a minimal candidate for D′ as required by the definition (since
we must have D′V W = T ′W ). But there is neither D1

// D2 nor D2
// D1 (over D as

required). Indeed, suppose there were φ : D1
// D2. Then we would have

a = D1f(w) = D2fφV W (w) = D2f(w) = b

where the second and third equalities follow by naturality and constancy of models on at-
tributes. But this is impossible since a and b are distinct. Moreover, any other minimal
candidate must be incomparable with one of D1 or D2. Thus there is no cocartesian arrow
for tW and the view update is not propagatable.

This proposition apparently implies that for updatability at an entity W , the view must
include all of its attributes. To simplify matters we will rather assume for the remainder of
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this section that W has no attributes. However, as we note in Example 24, the propositions
can be immediately generalized to arbitrary W provided all of the attributes of W do appear
in V.

The next proposition is the first in which W is a non-trivial query based on E. These
are essentially selection queries.

Proposition 23 Suppose that V = {W}, and E has as graph f : B // A and an element
a : 1 // A. Let V W be specified to be the pullback of the arrows f and a as in

V W //

��

B

f

��
1 a

// A

Then V is insert updatable at W .

Proof. Writing + for disjoint union in set0, we define W0 so that T ′W = TW + W0 with
t the inclusion of the first summand. We can do this since T ′ is an insert update of T . Let
D′B = DB + W0, and D′A = DA. Define D′f to be the function whose components on
D′B are Df and the constant at a (that is the unique function W0

// 1 composed with
the element a : 1 // A). Then D′ is a model, m : D // // D′ is given by the evident
inclusion and identity. Calculating the pullback in set0 shows D′V W = DV W + W0, so
V ∗D′W = T ′W and V ∗m = t. That is, in the upper part of the following diagram, the inner
diamond is also a pullback:

DB��

�� Df

��

DB + W0
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DV W
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1
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TW // // T ′W = TW + W0

It should be pointed out here that it is not the case that V W is in E, but it clearly does
lie in QE and this gives meaning to DV W above by the extension of D from E to QE.
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Now suppose m′′ : D // // D′′ where D′′ is another model for E and V ∗m′′ = t′t for some
insert update t′ : T ′ // T ′′. Then there is a unique natural transformation m′ : D′ // D′′

commuting with m and m′′ since with D′′1 = 1 and with DA and DB fixed inside D′′A and
D′′B, it follows that D′′f must have as fiber over a, (Df)−1(a)+W0 in order for the pullback
to be T ′W . These fully determine the components on m′. Thus, V is insert updatable.

Before proceeding, we note that this result (together with the fact the view is also delete
updatable) means that the functor

V ∗ : Mon(E) // Mon(V)

is a left and right fibration in the case above, and so we have found an instance of universal
view updatability. As such, this is an important proposition. At first it might seem surprising
that V is insert updatable since the arrow V W // B is rather like that in Proposition 22.
But the fact that V W arises as a pullback determines the values that the function must take,
and that all those values must be fibered over a. This Proposition is also important because
it is an example of an update that many view implementations would not allow despite its
practical importance. An example which arises naturally is the following.

Example 24 Take the square from Figure 2, and consider it as an EA sketch. Remember
that attributes are not shown in Figure 2. Consider a view consisting of all of the specialists
with a given specialization, say all obstetricians. In formal terms, in this view the view
sketch V has one entity Obstetrician, together perhaps with some attributes, and the view
schema V is just the inclusion of that entity (and those attributes) into the theory QE. The
image of Obstetrician in QE is the limit of

1 // College oo Medical practitioner

where the first arrow picks out the College of Obstetricians, and the second arrow is member.
(This limit is an example of a pullback used to determine a simple join query.)

This view is delete updatable. Further, if all attributes of Medical practitioner appear in
the view (as attributes of Obstetrician) then the view is insert updatable.

Notice that the results are independent of the states and attributes of Specialization
and College. Many systems will not support inserts for this view, since those systems would
require the user to specify the specialization of each newly inserted obstetrician (even though
it is always obstetrics) and this cannot be done in a view which does not include Specialization.

This example also provides a good opportunity to show how to deal with key attributes.
Suppose that Medical Practitioner has a key attribute MPNbr (for practitioner number). The
view just described is not then updatable as it stands, for the view sketch gives no indication
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of how to assign an MPNbr to an inserted obstetrician. However, if in the view sketch we
replace the attribute MPNbr with a new key attribute ObsNbr for Obstetrician we can recover
updatability. To see this we need to specify the relationship between ObsNbr and MPNbr.
We require that the key attribute for obstetricians be a summand of MPNbr i.e. it takes part
in a discrete cocone. Furthermore, we require that that summand be reserved exclusively
for the use of obstetricians (in many actual database examples this is achieved by prefixing
the ObsNbr values with say ‘O’ and other MPNbr values with other letters).

If the hypotheses of Proposition 23 were generalized to replace 1 by an entity C the
proposition would no longer hold. However, if C is included in the view sketch along with
the pullback V W and the arrow between them then we recover insert updatability.

Alternatively, the hypotheses can be generalized to allow C in place of 1, but strengthened
to require that the arrows C // // A and B // // A be monic. In that case V is again insert
updatable. The following example addresses some of these issues.

Example 25 Consider the same EA sketch (the square from Figure 2), and suppose the view
consists of all specialists from possibly several specializations, perhaps obstetrics, pediatrics
and orthopedics. Suppose further that the view sketch includes the subattribute of an
attribute of Specialization determined by the image of the chosen specializations on that
attribute and suppose that in the current state that attribute takes distinct values for each
of the chosen specializations.

The formal definition of the view is little changed: V still has one entity, and associated
attributes including this time the attribute of Specialization. The view schema V is still the
evident inclusion. The image of the entity in the theory QE is now the limit of

[n] // Specialization // College oo Medical practitioner

where n is the number of specializations viewed, the first arrow picks out each of the corre-
sponding colleges, and the last arrow is still member.

This view is delete updatable. If all attributes of Medical practitioner appear in the view
(as attributes of the viewed entity) then inserts are propagatable for the current state. If
the viewed attribute of Specialization is guaranteed to take unique values, for example if it
is a key, then inserts will be propagatable for all view states and so the view will be insert
updatable. Conversely, if in some view state the viewed attribute of Specialization did not
take unique values on the chosen specializations, then inserts would not be propagatable for
that view state.

The next set of results concern updates on disjoint union views.
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Proposition 26 Suppose that V = {W}, and E has only the two entities A and B. Let
V W be the sum of A and B. Then V is not insert updatable.

Proof. The technique we use is similar to that of Proposition 22. We suppose that the
insert consists of a single instance {w} so that T ′W = TW + {w}. Now we define D1A =
DA+{w} and D1B = DB so that D1A+D1B = D1V W = T ′W . (Notice that we implicitly
extended D1 from E to QE, giving meaning to D1V W .) We define D2 similarly, but with
D2B = DB + {w}, and giving D2V W = T ′W . Suppressing the “B-side” and most arrow
labels we have the following picture:
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But now both D1 and D2 are clearly minimal with the property that DiV W = T ′W , and
so there should, for example, be D1

// // D2, but this would require D1A // // D2A which is
impossible (both are finite sets, but D1A has smaller cardinality). There is no difficulty to
extend this argument to inserts of multiple instances into T ′W , and the result follows.

Proposition 27 Suppose that V has underlying graph A0
// W and no other data, and

that E has only the two entities A and B. Let V A0 = A and let V W be the sum of A and
B. Then V is insert updatable (at W ).

Proof. Unlike the previous proposition, in this case an element of T ′W that is not in TW
either corresponds to an element of T ′A0 or it does not. In the first case we define D′ by
adding the element to DA, and in the second case by adding it to DB. (As it was described
at the beginning of this section, a strict reading of “insert at W” would mean that only the
second case could arise.) In either case it is now easy to see that the D′ so constructed is
initial, and the view is insert updatable at W .
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Again this (with the similarly proved delete updatability) means that the functor

V ∗ : Mon(E) // Mon(V)

is a left and right fibration.

Example 28 Here we consider the effect of having Medical practitioner specified to be the
sum of GP and Specialist.

If only the two triangles are taken as the EA sketch, then Medical practitioner is just an
ordinary entity, so a view with Medical practitioner as its only entity is both insert and delete
updatable (at the unique entity).

If the two triangles plus GP and Specialist, together with the sum specification, are taken
as the EA sketch, then a view sketch with Medical practitioner as its only entity defines a
view that is delete updatable, but not insert updatable. If the view sketch includes both
Medical practitioner and at least one of GP or Specialist then the view is both insert and delete
updatable

Proposition 29 Suppose that V = {W}, and E has two entities A and B. Let V W be the
product of A and B. Then V is not insert updatable.

Proof. As noted in Section 4 if, as is usually the case, adding 1 to TW leads to its number
of elements being coprime to the number of elements in DA and in DB then there are no
models D′ such that V ∗D′ = T ′ and a fortiori no initial such, and hence the view insert is
not propagatable.

For the record, the hypotheses of all but the last proposition result in delete updatability.
We are now in position to explain our position on universal view updatability for the

parts of the query language QE on an EA sketch which are similar to the main operations of
relational algebra. Proposition 23 and the comments following it concern join views. With
the restrictions noted, join views should be universally insert updatable. The select views
are usually considered to be updatable and we also find them to be universally insert updat-
able. Of course, product views are not updatable (Proposition 29), and similar arguments
quickly show that project views cannot be updatable. We treat the case of union via sum
views, that is disjoint union, and here the results of Propositions 26 and 27 show that while
a disjoint union view is not universally updatable, a disjoint union plus injection view is
updatable.

Thus, in the sketch data model we have shown universal updatability for a class of views
which is larger than that allowed under languages such as SQL. On the other hand we do

29



not find universal updatability for some of the views which would be considered updatable
in recent editions of Date’s text (see [16]). For example, he would often allow insertion in a
union view (without injections) by prescribing insertion in both of the summands whereas
such an insertion is not minimal (insertion into either summand would suffice) and so there
is no canonical choice of underlying database update. We emphasize that this difference is
not a failure of the theory presented here. Rather, it recognizes that Date’s proposal is ad
hoc. Indeed, as Date himself notes ([16] page 308) his “solution” sometimes gives “slightly
surprising results”. He goes on to justify these by claiming that “such surprises can occur
only if the database is badly designed”. We have chosen instead to develop a theory of
updates which by virtue of their universal properties will never be surprising.

7 Related Work

In this section we begin by briefly noting some work that has applied category theory to
data modelling and then we turn to more traditional database work which has inherent in
it some category theoretic ideas. After that we describe related view update research before
considering the connections between that research and the present paper. Finally we note
some other developments in this programme of research.

In the last decade there has been considerable use of sketches to support semantic
data modelling. Piessens and Steegmans developed a notion of data specification includ-
ing sketches. They have obtained results on the algorithmic determination of equivalences of
model categories [38, 39] which were intended to support plans for view integration. Diskin
and Kadish ([18] and other articles) have used sketches for a variety of modelling purposes.
They have concentrated on developing a diagrammatic language of “diagram operations”.
Several others, including Lippe and ter Hofstede [36], Islam and Phoa [24], Tuijn and Gyssens
[44], Rosebrugh and Wood [41] and Baclawski et al. [3], have also applied category theory
to data modelling.

Work on updating problems includes the paper of Atzeni and Torlone [2] who developed
a solution to the problem of updating relational databases through weak instance interfaces.
While they explicitly discuss views, and state that their approach does not deal with them,
the technique for obtaining a solution is analogous to the technique used here. They consider
a range of possible solutions, (as we here consider the range of possible updates) and they
construct a partial order on them, and seek a greatest lower bound (analogously with our
universal solution). A similar approach, also to a non-view problem, appears in Lecluse and
Spyratos [35].

The article of Bancilhon and Spyratos [4] remains influential. They treat a database as an
arbitrary set C, meant to specify its states and consider a view to be an arbitrary surjective
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mapping f : C // A. They consider a “complete set of updates”, a set U of endo-mappings
of A, which is one that is closed under composition and contains a left inverse for every endo-
mapping. The idea is that the view updates must be composable and reversible. They look
for a “translator” which is an assignment of a lift tu to C for each u in U , so ftu = uf .
They obtain a “translator under constant complement” the complement being a function
g : C // B so that 〈f, g〉 is monic.

Gottlob, Paolini and Zicari [22] extend the work of Bancilhon and Spyratos to a class
of views which they call consistent. They distinguish static views (mere views) from what
they call dynamic views for which a view definition comes equipped with a specific choice of
update policy.

Recently Lechtenbörger [34] has revisited Bancilhon and Spyratos’ “constant comple-
ment” approach to view updating and related it to the reversibility of updates.

The approach of Bancilhon and Spyratos has now been elucidated by Bohannon et al [7].
They show that the set of translators under constant complement (for a view) corresponds to
the set of “very well behaved lenses”. A lens is a (partial) view f : C // A and a (partial)
function A× C // C satisfying suitable axioms. The idea is that a database state and an
updated view state determine a database state—the updated database state for the updated
view state. More recently Foster et al [20] have developed the lens approach to apply it to
tree structured data and also include a valuable review of the view updating literature.

Dayal and Bernstein [17] work in detail in the relational model and introduce monotonic-
ity as a criterion for update translation. Monotonicity simply requires that when a view is
updated by for example an insertion, the view update should be carried out on the underlying
database by an insertion too. Similarly for deletions. Furthermore, and more interestingly
in the light of the present article, they advocate considering unique and minimal update
translations as the solutions to view update problems, but they argue that this is in fact too
restrictive in their context and weaken the uniqueness requirement.

Hegner [23] treats the states of a database as an ordered set D and then defines a view to
be a surjective monotone mapping γ : D // V such that γ reflects the order (he calls these
“open surjections”). For Hegner a “closed update family” is an order-compatible equivalence
relation on the ordered set of database states. The idea is that related states may be updated
to one another, symmetry expressing reversibility of updates and transitivity that updates
may be composed. Hegner defines an “update strategy” to be a function V × D // D
satisfying certain axioms. It is very much like a lens.

We now turn to how the cited previous work compares with the techniques presented in
this paper. First we note that many of the authors have treated the states of a database
as an abstract set. This group includes Bancilhon and Spyratos [4], Lechtenbörger [34] and
Bohannon et al [7]. In contrast, Dayal and Bernstein [17] and Hegner [23] consider ordered
sets of states and operations that respect the order. This is in the same spirit as the work
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presented here which carries the idea further to consider the category of database states. The
fact that Dayal and Bernstein [17] considered using unique and minimal translations for view
updating is a very early example of a proposed universal property. Also, their restriction to
monotonic updating is carried through in the work presented here—we only search among
possible insert updates for the universal insert update. The work of Gottlob, Paoli and Zicari
[22], like ours (as shown in [32]), provides more general solutions than the constant comple-
ment approach of Bancilhon and Spyratos. They do so by weakening constant complements
to ≤-shrinking complements. An exploration of the precise relationships between constant
complements, ≤-shrinking complements and universal updates is part of ongoing work [32].
One of the particular novelties of the work presented here is the fact that in the category
theoretic setting solutions to view update problems can arise from universal properties, and
queries themselves arise from universal properties. The interplay between these two leads to
a more coherent treatment permitting results like those given in Section 6.

In other work related to this article the authors and collaborators have further tested
the techniques presented here. Johnson and Dampney [13] have used the techniques in a
case study. Johnson, Rosebrugh and Wood [33] developed a mathematical foundation that
unifies the treatment of the categories of database states, the query language and updates as
instances of modelling sketches in 2-categories. They first defined EA sketches and studied
the categories of models of EA sketches in a lextensive category. In addition they showed
that both the updates of the models of an EA sketch and the query language of an EA sketch
are models of the EA sketch in other 2-categories. The current authors [26] show how the
techniques can be used for database interoperability. They have also developed algorithms
implementing updates for certain classes of EA sketches, reported in the articles [27] and
[28], and they have studied how to deal with missing information, finding that three possible
methodologies are equivalent under suitable restrictions [31].

8 Conclusion

After introducing the sketch data model in Section 2, we defined views in Section 3. We
start with a view sketch. A view schema is then a morphism of EA sketches from the view
sketch to the (sketch of queries on the) underlying database schema. This offers maximum
generality because the view schema can refer to any data that can be obtained from queries
on the underlying database. Using these ideas we defined a solution to the view update
problem in Section 4 in terms of a universally defined update. We showed in Sections 5
and 6 that we can also obtain results about the updatability of schemata. We emphasize
that the viewpoint adopted here led to the universal property for view updatability being
based initially on models, rather than the usual schema based definitions.
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The work presented here has some limitations:

1. Views take values in QE which contains all structural queries, but no
arithmetic or collection queries that could summarize, rather than ex-
tract and manipulate, data.

2. The updates dealt with are only insert and delete updates. We do not
treat modifications of data in situ.

3. There is no special treatment of nulls (in agreement with, for example,
Date’s recommendation [16] that systems should not support nulls).

4. We have not presented detailed consideration of implementation issues.
In particular the treatment of both the when and the how of view up-
dating by universal properties does not directly address implementation
issues. But see below.

5. We have not considered here how to translate an EA sketch into a
relational schema with constraints. Preliminary work on this and the
relation of our sketch data model with that of Piessens and Steegmans
is in the article [30].

Each of these is the subject of ongoing research. In particular, implementations are in
progress (see for example [40], an EA-sketch compiler which supports graphical manipulation
of EA-sketches and automatic conversion into Oracle and MySQL databases). It should be
noted however that implementations of universal view updates are not proposed at this time
to include algorithms for finding universal solutions (and so are not subject to results like
Buneman’s [9] NP-hardness results). Instead, the technique that we have used in industrial
consultancies has been to analyze mathematically each view to determine whether or not
there is a universal solution. The result of the analysis is either a counterexample, in which
case the consultant negotiates with the client to improve the database design, or a theorem
in the style of Section 6. The proof of the universal view update theorem encodes the
implementation information that can be used in the particular system to calculate updates
as required.

The new approach to views has significant advantages:

1. The sketch data model is seen to incorporate views very naturally. This
allows data based on any structural query to be viewed in a sketch
data model schema, subject only to compatibility with the underlying
information system as implied by the view V being a sketch morphism.
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As expected, we cannot constrain the data in the view more than it is
constrained in the underlying database since the former is derived from
the latter.

2. View updatability is defined in a consistent framework based on a uni-
versal property. We believe that this gives the most general reasonable
definition of view updatability.

3. The closure obtained by having a view be itself a (morphism of) sketch
data model(s) intrinsically allows views of views (composite views) etc.
It also supports proposals for using views as the interface for database
interoperability and for federated information systems (see [26]) .

4. The propositions presented in Sections 5 and 6 allow us to work with
schema updatability (rather than model based updatability) in the
usual way, and as noted above the proofs of the propositions provide
the code required to carry out the update.

Finally, we note that it is presumably the appeal of schema based view updatability that
has drawn previous workers into defining updatability in terms of schemata. We would argue
that it is this that has led to view updatability being seen as particularly problematic.
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