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Abstract

The context of this article is the program to develop monoidal bicategories with a feedback
operation as an algebra of processes, with applications to concurrency theory. The objective here
is to study reachability, minimization and minimal realization in these bicategories. In this set-
ting the automata are l-cells in contrast with previous studies where they appeared as objects.
As a consequence we are able to study the relation of minimization and minimal realization to
serial composition of automata using (co)lax (co)monads. We are led to define suitable behaviour
categories and prove minimal realization theorems which extend classical results.

*This work has been supported by NSERC Canada, Italian MURST and the Australian
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1 Introduction

Katis, Sabadini, Walters, and Weld have described bicategories equipped with operations of
serial and parallel composition, and feedback modelled as, respectively, composition of 1-
cells, a tensor product and an operation called feedback [KSW,SWW]. The bicategories are
constructed from a base category C with a symmetric monoidal tensor @. Objects are those
of C and arrows (or processess) from X to Y are pairs (U, ) where o : X @ U — U @Y.
As mentioned above, composition models serial composition of circuits, there is a tensor
product on circuits, and circuits from X @ @) to Q @ Y have a feedback operation whose
result is a circuit from X to Y. In this article we concentrate on serial composition. In the
case that the tensor is cartesian product the 1-cells were called circuits and used to study
physical devices. In the case that the tensor is sum they were called Elgot automata and
used as a model of algorithm. In [KSW] behaviour functors for these bicategories are also
considered.

In this article our objective is to study three bicategories of automata: the bicategory
of Mealy automata A which adds an initial state to the circuit model; the bicategory of
Elgot automata &; and the bicategory of Y-automata F which generalizes Elgot automata
by labelling transitions from an alphabet Y. The corresponding behaviours are, respective-
ly, certain functions between input and output monoids, partial functions with duration,
and certain matrices of languages. In each case we study reachability and minimization,
and prove a minimal realization theorem. Reachability and minimization are described by
idempotent (co)monads. Since the automata are arrows rather than objects, we are able to
extend classical results to relate serial composition of automata with the reachability and
minimization (co)monads found.

In Section 2 we define the bicategory A whose 1-cells are circuits with an initial state.
Except for the lack of a finiteness condition, these are the classical Mealy automata [HU]
and we use that name. This provides a setting in which both reachability and minimization
can be considered. Reachability is described by a comonad (as has already been noted by
Adamek and Trnkova [AT]) on each hom category and the coalgebras are the reachable
automata. Minimization is a described by monads on the hom categories, and the algebras
are minimal automata. With an appropriate definition of the behaviour of Mealy automata,
we are able to prove a minimal realization theorem which extends Nerode’s theorem [Ner].
It provides a variant of Goguen’s minimal realization theory [Gog] and we extend this to
include serial composition. The local situation, i. e. in a single hom category, is summarized
in the following diagram. The reachable automata from X to Y are denoted Ar(X,Y); the
subcategory of minimized automata is AY (X,Y") and behaviours from X to Y are denoted
BA(X,Y). In the diagram F'is minimization, £ is behaviour and N is minimal realization.



Ar(X,Y)
7N
E/
(AR)M(Xv Y)<27 BA(Xv Y)
N/

In Section 3 we consider the bicategory &£ of Elgot automata which model algorithms and
whose natural semantics is a partial function with duration. We again find a local comonad
for reachability, and a local monad for minimization. We prove a minimal realization theorem
here as well.

In Section 4 we generalize to allow labelled transitions, defining the bicategory F of X-
automata. Here the behaviour category has considerable interest—the arrows are matrices
of languages with an ‘anti-prefix’ property.

To extend the results to the full process bicategories, i. e. to take account of serial
composition, requires the (co)lax (co)monads introduced by Carboni and Rosebrugh [CR].
Reachability, minimization and our minimal realizations are idempotent (co)lax (co)monads.
In Section 5 we recall results on lax monads and consider the idempotent case which concerns
us.

Finally, in Section 6 we complete the picture above by showing that the minimization-
minimal realization theory is compatible with serial composition. That is, the diagram above
is valid in each case without the local restriction.

Throughout this article we are using the category set of sets as base category. In each
section we use various algebraic properies of set. For the definition of the bicategory of Mealy
automata we use only products. Elgot automata require only sums, and ¥-automata require
the fact that set is a distributive category.

The authors wish to ackowledge discussions with Stephen Bloom.

2 Mealy Automata

We begin by defining a bicategory of circuits with initial state which we call Mealy automata.
The initial state allows us to define the behaviour of a Mealy automaton as a function between
free monoids. We define a category of behaviours so that behaviour is a homomorphism of
bicategories. For Mealy automata reachability is a useful concept and we find local comonad
structures compatible with serial composition. Our main result in this section, Theorem



17, involves a realization of behaviours of reachable Mealy automata using a Nerode-type
construction.

Definition 1 The bicategory A of Mealy automata in set has
o Objects: the objects X,Y, ... of set

o Arrows: from X toY are triples (U, o, ug) where U is an object of set,
a: X xU—UXxY and ug: 1 — U (the input set is X, the output
set is Y and the state set is U.)

o [dentity arrow: on X is (1,t,11) wheret: X x1 — 1 x X

o 2-Cells: from (U,a,ug) to (U',d' up) are arrows 6 : U — U’ of set
such that Qug = uf and (0 xY)-a=ao - (X x0)

e Composition of arrows: if (U,a,ug) : X — Y and (V,B,v0): Y — 7
then (V, 3,v0)(U, a,up) = (U x V, (U x B)(ax x V'), (g, vg))

o Vertical composition of 2-cells: if 0 : (U ,a,ug) — (U, up) and
0 (U, o up) — (U", 0", ug) then their vertical composite 0 -8 is the
arrow 0'0 of set

o Horizontal composition of 2-cells: if 8 and ¥ are horizontally compos-
able their composite, denoted 1) o0 is 6 x ¢ in set

Remark 2 If all references to initial state are removed from the preceding definition we
obtain precisely the bicategory of circuits Cire as introduced in [KSW]. There is an evident
forgetful homomorphism of bicategories A — Circ.

For further work, we first need to extend the domain of & to words in X*, the free monoid

on X.

Definition 3 Let (U, a,ug) : X — Y be a Mealy automaton and write « = < oy, ay > .
Define af; : X*xU — U inductively by: af;(e,u) = u and forw € X*, v € X: of(wz,u) =
ay(x, of (w,w)). Similarly, o} + X* x U — Y™ is defined inductively by o} (e,u) = € and
forw e X*, o € X: oy (wa,u) = ay (w, u)ay (z, aj;(w, u)).

Note that o (wv,u) = af (v, af(w,u)) and o} (wv,u) = of (w, u)ad (v, o (w,u)). Both
equations are easily proved by induction on the length of v and are needed below.
We say that f : X* — Y™ preserves initial subwords if whenever w = wywy; we have

flw) = f(wy)v for some v in Y*.



Definition 4 The category, B4, of behaviours has the same objects as set. For objects X
and Y the set of behaviours from X to'Y, B4(X,Y), is the set of functions f: X* — Y™

for which f preserves initial subwords and length. Composition in B 4 is inherited from set.

This notion of behaviour is derived from that of complete sequential machine mapping
[Gin]. Under the condition of length preservation, the preservation of initial subwords implies
that if w = w'a for x in X then f(w) = f(w")y for some y in Y.

Definition 5 Let (U, o, ug) : X — Y be in A and o =< ay,ay > . The behaviour of
(U, a,ug) is the arrow E(U,a,ug) : X — Y in B4(X,Y) defined by E(U, a,up)(w) =
oy (w, ug) forw € X*.

That the conditions for F(U, o, ug) to be in B4(X,Y) are satisfied is easily proved by
induction. So are the following.

Lemma 6 [f there is a 2-cell ¢ : (U, o,ug) —> (V,3,v0) then for w € X* and u € U we
have $(ag (w0, u)) = By (w, ¢(u)).

Proof. We procede by induction on the length of w. If w = €, we have ¢(af;(e,u)) = p(u) =
By (€, d(u)). Next suppose o(aj;(w,u)) = fBy(w, ¢(u)) and = € X. We have o(aj;(wz,u)) =
dlae,ap (1)) = Bz, 6(0" (w.u)) = B(z. B (e, 6(u)) = B (we, é(u)). where the second
equality is the definition of ¢. The result follows. |

Lemma 7 [f there is a 2-cell ¢ : (U, a,ug) — (V, 3,v0) then E(U,a,ug) = E(V, 3, v0).

Proof. Again, we procede by induction on the length of w € X*. Suppose w = e. Then
E(U,a,up)(€) = ay(e,up) = € = Oy (e,v0) = E(V, 3,v0)(€). Next suppose E(U, a,ug)(w) =
E(V,3,v9)(w) and x € X. Then we get

E(U, a,up)(wx) = aj(we,up)
= oy (w,up)ay(x, off(w, ug))
= B3 (w,vo)By (a @b(aU(w Uo)))
= By(w,vo)By (, By (w, ¢(uo)))
= By (w,vo)By (x (5?/(10 vo)))
B3 (wa,vo) = E(V, 8, v0)(wx)



where the third equality is by the inductive assumption and the fourth uses the previous
Lemma. 1

Recall that the category B 4 may be viewed as a bicategory with discrete hom categories.

Proposition 8 Behaviour, IV, extends to homomorphism of bicategories from A to B 4.

Proof. First, F is locally functorial by Lemma 7. A straightforward calculation using
the equations after Definition 5 applied to a composite automaton shows that E preserves
composition of 1-cells up to isomorphism. |

Minimization of automata classically proceeds in two steps: first non-reachable states
are discarded, and then states with equivalent behaviour are identified. We consider local
versions of these steps in the bicategory of Mealy automata beginning with reachability.

Definition 9 For an automaton (U,a,ug) : X — Y, the reachable states are Up =
{u € U | Jw € X* ofj(w,up) = u}. The reachable kernel of (U, a,ug) is R(U,a,ug) =

(Ur, apr,ug), where ap is the restriction of a.

We note immediately that R : A(X,Y) — A(X,Y) is functorial: the function § : U —
U’ defining a 2-cell (U, o, ug) — (U', o/, uy) clearly restricts to g : U — Up. R is also
evidently idempotent and there is an inclusion of (Ug, ag, ug) in (U, e, ug). These inclusions
are components of a natural transformation p : R — 14(X,Y"). Thus,

Proposition 10 R is an idempotent comonad on A(X,Y) with counit p. |
Coalgebras for R(= R(X,Y")) are called reachable automata, and they define a full sub-
category Ar(X,Y) of A(X,Y). In Section 6 we will need the following.

Proposition 11 Let (U,a,ug) : X — Y and (V,3,v0) : Y — Z be Mealy automata. The
assignment ryy (u,v) = (u,v) defines a morphism of Mealy automata:

rov 2 R((V, B,v0)(U, o, ug)) — R(V, B,00) R(U, a,up) : X — Z.



Proof. The underlying function of the comparison is an inclusion which is compatible
with the actions. Indeed, let (u,v) € (U x V)g. We claim that (u,v) € Ur x Vi. To see
this recall that (U x 8)(a x V)(z,u,v) = (ap(z,u), By (ay(z,u),v), Bz(ay(x,u),v)) and
consequently (U x B)(a x V)i (w, (u,v)) = (af(w,u), By (aj (w,u),v)). Thus, if (U x
B)(e % V)i (1, (05 00)) = (a6 ) then (e (10, i) 57 (aF (1, o), 00)) = (16,0). '

Next we consider state minimization for Mealy automata. As in classical automata theory,
we define an equivalence relation on states and use the quotient set as states in constructing
a ‘minimal’ automaton with the same behaviour.

The appropriate equivalence relation on states of (U, a,ug) is defined by u ~, o' iff
Yw € X* we have of (w,u) = of (w,u’). Thus states are declared equivalent if they have the
same output for all of X* under a*. The quotient automaton is M (U, a, ug) = (Ups, anr, [o))
where Uy = U/ ~, and a)y is defined on classes in Ups by ap(z, [u]) = ([av(z, v)], ay(z,u)),
where o =< ap, ay >. This construction is well-defined. We give an example.

Example 12 Consider the Mealy automaton from X = {a,b} to ¥ = {0,1} whose states
are U = {ug, ur, us}, start state is ug and action « is indicated in the following picture, where

e. g ala,ug) = (ug, 1)
b/l
\ /

To determine ~, note that ay (ug,a) =1TWw 116 ozy(ul, a) = 0, so ugp is not equivalent to
u1. On the other hand an easy induction shows that aj (ui,w) = of (uz, w) for all w € X*
SO Uy ~, uz. Thus the minimized automaton has the following state diagram:

a/l Qa/()

[uo]a T [UIQ b/l

The behaviour of both the original and minimized automata is given by f : X* — Y~
where for w in X™:

€ Hfw=c¢
flw) =< 1v if w = aw'
Ov if w = bw'



and v is the image of w’ under the homomorphism from X* to Y* mapping a to 0 and b to

1. 1

M is functorial on A(X,Y) and idempotent. The quotient mapping defines a 2-cell
NW,anuo) * (U ayuo) — M(U, o, ug). The 1r,q,4,) are components of a natural transformation
from 1 4x,y) to M.

Proposition 13 The functor M is an idempotent monad on A(X,Y) with unit 7. |

Algebras for M (= M(X,Y)) are called minimal automata, and define a full subcategory
AM(XY) of A(X,Y). For use in Section 6 we note the following.

Proposition 14 Let (U,a,ug) : X — Y and (V,3,v}) : Y — Z be Mealy automata. The
assignment myv([u], [v]) = [(u,v)] defines a 1-cell of Mealy automata:

muy = M(V, 8,v0) MU, a,ug) — M((V; B, 00)(U; @, u0)) : X — 7

Proof. The underlying function of the comparison is easily described. Indeed, for ([u],[v]) €
Unr x Vi we define myvy ([u], [v]) = [(u,v)] € (U x V)p. To see that this is well-defined,
recall that (U x B)(a x V)(z,u,v) = (av(x,u), fv(ay(x,u),v), Bz(ay(x,u),v)). Suppose
that u ~ u’ and v ~ v’. Denote the action of the composite automaton (V, 3, vy)(U, a, ug)
by v, so for any © € X we have vz(x,(u,v)) = Bz(ay(z,u),v) = Oz(ay(z,u'),v) =
Bz(ay(x,u'),v") = vz(x, (u',v")). Consequently, for any w € X* we have v5(w, (u,v)) =
vz(w, (v, v")) so [(u,v)] = [(v,v")]. Similar arguments show that myy is a morphism of A. I

We observe that taking the reachable kernel and the minimization for Mealy automata are
processes which commute up to isomorphism, i. e. the minimization of the reachable kernel
of (U, o, ug) is isomorphic to the reachable kernel of its minimization. These are simply seen
from the definitions above. Consequently, the minimization monad restricts to a monad M’
on Ar(X,Y) and the reachability comonad restricts to a comonad R on AM(X,Y). The
category of algebras for the restriction of M is isomorphic to the coalgebras for the restriction
of R. The situation we have been describing is summed up in the following diagram. The



pairs of functors are adjoint and both the inner and outer squares commute. The [I’s (resp.
J’s) are inclusions adjoint to the reflectors F' and F’ (resp. coreflectors (¢ and G.)

A(X,Y) G Ar(X,Y)

J

F |1 '\ | F’

Jl

AM(X,Y) (AR (X V)= (AR)M (X, Y)

Our next objective is the adjunction between minimal realization and behaviour. Though
we have defined behaviour for an arbitrary automaton, the realization of a behaviour con-
structed below is necessarily reachable, so our adjunction refers to Ag(X,Y). We begin
construction of the minimal realization of a behaviour by defining a crucial equivalence re-
lation. Let f: X — Y be a behaviour from X to Y. For w,w’ € X*, we define w ~; w’
iff

Yo e X" f(wy) = f(w)y and f(w'v) = f(w)y =y =1y
It is easy to check that ~ is indeed an equivalence relation and we denote equivalence classes
by [w]y.

Definition 15 The Nerode automaton of a behaviour f: X — Y is the Mealy automaton
Nf = (X ~papdy) with ap(z,[w]y) = ([wels,y) where w € X* 2 € X,y € Y and
flwz) = f(w)y.

We first have to ensure that oy is well-defined i.e. if w ~¢ w’ then wx ~; w'z and y = ¢/
where f(w'z) = f(w')y. For any v € X* we have f(wav) = f(wz)z = f(w)yz for some
y €Y and z € Y*. Similarly, f(w'zv) = f(w'a)z" = f(w')y'z". Since w ~; w', we conclude
that yz = y'2’ whence y = ¢/, 2 = 2’ and so also wx ~; w'z, as required.

We also note that N f is reachable by its definition. As an example we construct the
Nerode automaton for the behaviour found in in Example 12 above.

Example 16 Recall that f in B4(X,Y) was defined (as a function from X* to Y*) by the
formula:
€ ifw=c¢e
flw)y=2 1lu ifw=aw

Ou if w=>bw



and u is the image of w’ under the homomorphism from X* to Y* mapping a to 0 and b to
1. We need to determine the equivalence relation ~; and its classes. This is straightforward
since it is easy to show that (i) a ~f b ~; aw ~¢ bw for any w € X* and (ii) € % a. To see
the relations (i), note that if v is arbitrary in X* then for any w € {a, b, aw’,bw’} we have
flwv) = f(w)u where u is the image of v under the homomorphism above, independent of
f(w). For (ii) it is enough to observe that f(eb) = f(€)0 while f(ab) = f(a)l and 0 # 1
whence € s a. Now the action on Nf and the isomorphism of Nf with the minimized
automaton displayed in Exercise 12 are obvious. |

The following result is a variant of Goguen’s adjunction between minimal realization and
behaviour. He considered machines which emitted a single output letter after reading the
entire input. His behaviours were arbitrary functions from X*toY. We have taken account of
the entire output sequence and consequently need the more complete definition of behaviours
found above. In case Y = {0,1} and all objects are finite sets, the result is a version of

Nerode’s Theorem [Ner].

Theorem 17 The behaviour of the Nerode automaton of f is f, i.e. ENf = f. Moreover,
we have

EAN:B4(X,Y) — Ap(X,Y).

Proof. We prove the first statement by induction. First, E(Nf)(¢) = € = f(¢). Now let
w e X* and @ € X. Assuming E(N f)(w) = f(w), we have

E(N[)(wz) = ENf)(w)(as)y(z,(as)y(w,[]s))
i

The desired equality of behaviours follows.

For the stated adjunction, we need to show that 2-cells (in B4(X,Y)) from E(U, a, uo)
to f are in natural bijection with 2-cells (in Ar(X,Y")) from (U, o, ug) to N f. Since By is
locally discrete, this amounts to showing that E(U, o, ug) = f if and only if there is a unique

2-cell from (U, v, ug) to N f.

10



For sufficiency we observe that if there is (U, o, ug) — N f, then E(U, o, ug) = ENf = f,
by Lemma 7 and the result of the previous paragraph.

For necessity, suppose F(U, a, ug) = f and we define a unique 2-cell ¢ : (U, o, ug) —> N f.
We begin by recalling that (U, a,ug) is reachable and define ¢ : U — Uy by é(u) = [w];
for some w € X* such that aj;(w,ug) = u. We need to show that ¢ is well-defined, that it
defines an 2-cell in Apg, and that it is the only such 2-cell.

We show first that ¢(u) does not depend on the choice of w € X* such that o} (w, ug) = u.
Indeed, suppose that aj;(w,ug) = u = af(w', ug). For v € X*, let f(wv) = f(w)y and
fw'v) = f(w')y'. For brevity denote F(U,a,ug) by E and recall that £ = f, so f(w)y =
flwv) = E(wv) = E(w)ay(v,u) = f(w)oy (v,u) and we conclude y = aj (v, u). Similarly,
[y = f(w)ay (v, u). Thus y = o (v,u) = y'.

Next, ¢(ug) = [¢];, the initial state of Nf and to see that a;(X x ¢) = (é x Y)a, let
(x,u) € X x U. Suppose a3 (w, ug) = u since (U, o, ug) is reachable. Now a (X x ¢)(z,u) =

sl 3(u)) = (e, B (w,u)) = agle,lwly) = (waly,y) and flwe) = f(w)y. On the
other hand,

(5 X Y)oz(:z;,u) = ( aU(xvu))vaY(xvu))

= ozU(:L’,ozf](w,uo)),ay(x,ozf](w,uo)))

N

where a3 (wz,ug) = E(U, o, up)(wz) = f(wz) = f(w)y'

I
2
=2
g
=
<

o

= ([wx]fv y)
Finally, we show ¢ is the unique 2-cell from (U, o, ug) to N f. If 1 is another such 2-cell
then ¥ (ug) = [¢] = é(uo) is necessary, so ¢ = ¢ on all states reachable from ug by words of

length 0. Now assume ¢ = ¢ on all states reachable from ug by words of length | w | or less.
For any = € X if u = off(wx, up), letting v’ = af;(w, ug), we have
Y(u) = Y(ap(z,u')) by definition of u’

ap)p(z,¥(u')) since ¢ in Ag
as)u(z, (u')) by hypothesis
(av(x, u'))
(u)
So ¢ = ¢. |

|

We consider the equivalence of reachable minimized automata and behaviours in Section
6. With that exception, the theorem above completes the description of reachability, min-

11



imization and minimal realization for Mealy automata summarized in the diagram in the
Introduction.

3 Elgot Automata

This section studies a bicategory of automata which can be used to model algorithms. The
name arises from Elgot’s work on sequential algorithms. Elgot automata have been used by
Sabadini, Walters and Vigna [SWV] to define partial recursive functions, and by Vigna [Vig]
to define the Blum-Shub-Smale computable functions [BSS].

Definition 18 [KSW] The bicategory € of Flgot automata in set has
o Objects: the objects X,Y, ... of set

o Arrows: from X toY are pairs (U o) where U is an object of set
(called the internal states of (U,«)) and o : X + U — U +Y (the

transition morphism)
o [dentity arrow: on X is (0,1x)

o 2-Cells: from (U,a) to (U',a') are functions § : U — U’ of set such
that (04+Y) - a=a - (X +6)

e Composition of arrows: if (U,a): X — Y and (V,3):Y — Z then
(V.B)(U,0) = (U + V(U + B)(a+V))

o Vertical composition of 2-cells: if 0 : (U,ja) — (U',d') and 0" :
(U, o) — (U",a") then their vertical composite ' -0 is the function
0'0 of set

o Horizontal composition of 2-cells: if 8 and ¥ are horizontally compos-
able their composite, denoted 1 o 8 is § + 1 in set

The semantics of an Elgot automaton might be viewed simply as the partial function
from X to Y given, where defined, by the unique value in Y resulting from iterating o one
or more times. To obtain our minimal realization theorems we will need to record also the
“duration” of the process. We use the notation “—” to denote a partial function.

12



Definition 19 Let (U, ) : X — Y be an Elgot automaton. The behaviour of (U, &) is the
partial function E(U,a) : X =Y x IN defined by E(U,a)(z) = (y,n) if a"T(z) =y €Y
(and undefined otherwise.)

Motivated by the preceding definition, we define a category of behaviours B¢ to have the
same objects as set, and as arrows from X to Y, the partial functions from X to Y x IN.
In B¢ the composite of f: X — Y and ¢ : Y — 7 is defined by gf(z) = (2, m +n) when
both f(z) = (y,n) and g(y) = (z,m) are defined, and undefined otherwise. As we observed
for Mealy automata:

Lemma 20 [f there is a 2-cell ¢ : (U, o) — (U', ') in € then E(U,a) = E(U', o).

Proof. This follows by induction from the fact that an 2-cell of automata is a function
between state objects which commutes with the action. |

Viewing B¢ as a bicategory with discrete hom categories we get:

Proposition 21 Behaviour, E, extends to homomorphism of bicategories from & to Bg.

Proof. First, F is locally functorial by Lemma 20. It is easy to see that the behaviour of a
serial composite of Elgot automata is the composition in B¢ of their behaviours. |

Definition 22 Let (U, o) : X — Y be an Elgot automaton. The object of reachable states
of (U, ) is
Up={uvelU|dze X InelNa"(x)=u}.

The reachable kernel of (U,«) is the automaton R(U,a) = (Up,ar) : X — Y where
ar: X +Ur — Ur+Y is the restriction of a.

The first thing to observe is that R : £(X,Y) — &(X,Y) is functorial, idempotent
and that there is a 2-cell p) @ R(U,a) — (U, a) which is the component of a natural
transformation from R to lg(xy). Each of these facts follows after a short diagram chase.
Moreover, it is easy to see that Rp = pR, since each amounts to a transformation with
identity components. We summarize:

13



Proposition 23 The functor R is an idempotent comonad on E(X,Y') with counit p. 1

Corollary 24 The behaviour of the reachable kernel, R(U, ), of an Elgot automaton, (U, «)
is the same as that of (U, «). |

Coalgebras for the local reachability comonads are ‘reachable’ Elgot automata, i.e. au-
tomata all of whose internal states are visited under the iterated action of « on at least one
x € X. We note, for later use, a comparison between the reachable kernel of a composite
and the composite of reachable kernels.

Proposition 25 If (U,a): X — Y and (V,3): Y — Z, then there is a canonical 2-cell
TUv - R((Uv O‘)(Vvﬁ)) — R(Uv Q)R(Vvﬁ)

Proof. To see this, we observe that if w € (U 4+ V)g, then w € Ur + Vg, and that the
appropriate restrictions of a and 3 are defined. |

We have a minimization theory for Elgot automata which will lead to a particularly
simple description of minimized automata. We begin with an equivalence relation on states
of (Uya): u ~, v iff for all n > 0, for all y € YV, o"(u) = y iff o"(v') = y. Thus states
are declared equivalent if they reach the same point in Y after the same duration, or if they
both never reach Y. We can construct a ‘quotient” automaton M(U,«a) = (Unr, anr). We
define Upyy = U/ ~, and ayy is defined on X + Uy by

][] ifa(z)=uelU ] ] if a(u)=u" €U
ou () { y ifa(z)=yeY o ([u]) = { Yy if a(u) =y €Y.

Proposition 26 The quotient arrow n : U — Uy underlies a 2-cell in € denoted 1y :
(U,a) — MU, ). Applying M to it gives an isomorphism, and M is an idempotent monad
on £(X,Y). |

Any algebra for M is a reachable automaton isomorphic to one of the following. States
are (some of) the pairs consisting of an element of y in ¥ and a positive integral ‘duration
to Y’ (plus possibly a ‘non-terminating’ state). The action on input x is direct transition
from X to Y or direct transition from X to an internal state. On state (y,n) the action is
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‘reduction of duration’ to (y,n—1) when n > 2, and (y, 1) to y. The picture below illustrates
the idea, and guides the proof of the preceding proposition.

T

\

:1:1—>(y,n)—>(y,n—1)—>--- (yvl)—’y

/

vy () ——(y',n' = 1) == (¢, 1) —y

"
T3 Y

X Unm Y

Our next objective is a minimal realization of any behaviour in Be¢. The idea is simply
to construct an automaton like that pictured above for a specified behaviour. Let f: X —
Y x IN be a behaviour from X to Y. The state set for the minimal realization automaton

Nf is:

U, — { {lyym)|In>m>1 JzeX f[f(z)=(y,n)} if fis fully defined
/ {lyym)|In>m>1 Fe e X f(x)=(y,n)}U{*} otherwise

The action for the minimal automaton is defined on X by:

f(z) if py(f(x)) >
as(z) = pu(f(z)) i pa(f(z)) =
* if f(«) not deﬁned

where the p; are projections from Y x IV. On Uy we define:

{ (y,n—1) ifu=(y,n)and n > 1
(y,1

a(u) = Z %fu: y,1)
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This makes oy : X + Uy — Uy + Y, and we note that the automaton Nf = (Uy, ay) is
reachable.

Proposition 27 The behaviour of Nf = (Us, o) is f. Furthermore, we have F is left
adjoint to N : Be(X,Y) — Er(X,Y).

Proof. The diagram above indicates why the first statement holds: the constructed au-
tomaton simply has states which provide transitions of correct duration for elements of X
where f is defined and a loop elsewhere.

For the adjunction, we show that 2-cells (in B¢(X,Y)) from E(U, ) to f correspond to
2-cells (in Er(X,Y)) from (U,«a) to Nf. Since B¢ is locally discrete, that is to show that
E(U,a) = f if and only if there is a unique 2-cell from (U, o) to N f.

For sufficiency observe that if there is (U,a) — Nf, then F(U,a) = ENf = f, by
Lemma 20 and the previous paragraph.

For necessity, we suppose E(U,a) = f and seek to define a unique 2-cell ¢ : (U, a) —
N f. Recalling that (U, «) is reachable we define ¢ : U — Uy by:

b(u) = { gy,n) %f oz”(u).: y for some n > 0
if there is no such y
We need to show that ¢ is well-defined, that it defines a 2-cell in g, and that it is the only
such 2-cell. The first two follow immediately from E(U,«) = f. For the last simply observe

that (y,n) is the only state of U for which as(y,n)" = y, while * is the only ‘looping’ state.
Hence, the requirement that ¢ be a morphism leaves no choice in the definition of ¢(u). |1

4 Y-Automata and Matrices of Languages

Let ¥ be an alphabet which we fix for this section. The model in the preceding section is here
generalized to allow deterministic state transitions labeled by elements of . The resulting
behaviours are certain matrices of languages. Non-deterministic automata whose behaviours
are also matrices have been considered by Bloom, Sabadini and Walters [BSW].

Definition 28 The bicategory F of Y-automata in set has

o Objects: the objects X, Y, ... of set
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o Arrows: from X toY are pairs (U o) where U is an object of set
(called the internal states of (U,a)) and o : X + (U x ¥) — U+ Y
the transition morphism, with components ax : X — U +Y and
ap: U xY —U+Y

o [dentity arrow: on X is (0,1x)

o 2-Cells: from (U,a) to (U',a') are functions § : U — U’ of set such
that (0 4+Y) - a=a" - (X + (0 x X))

e Composition of arrows: if (U,a) : X — Y and (V,3) : Y — 7
then (V,8)(U,a) = (U + V,(U + B)(a+ (V x L))(X +6)) where § :
(U4+V)x¥—UxX+V xX is the distributive law

o Vertical composition of 2-cells: if 0 : (U,ja) — (U',d') and 0" :
(U, o) — (U",a") then their vertical composite ' -0 is the function
0'0 of set

o Horizontal composition of 2-cells: if 8 and ¥ are horizontally compos-
able their composite, denoted 1 o 8 is § + 1 in set

The idea here is that transitions among states of a ¥-automaton are labelled by elements
of ¥. An Elgot automaton is essentially the special case where ¥ has one element. We write
Y+ for the free semi-group on ¥ (or the words of length one or more in ¥*.)

Definition 29 Let (U,a) : X — Y be a S-automaton. Define a partial function af; :
Ux Yt =~U+Y as follows. Fora € ¥ and w € ¥F

ap(at(u,w),a if ofi(u,w) el
air(u,a) = ay(u,a)  afi(u,wa) = { ugc(leﬁéed ogheZwise. 3 )

Define a partial function o : X x ¥* = U +Y by a*(z,¢) = ax(z) and for w € ¥F,

y | at(a(z),w) if ax(x) e U
o (z,w) = { undefined otherwise.
This extension of o to ¥* allows us to define the behaviour of a ¥-automaton. For each
x € X and each y € Y we have a language over X which is the set of labels of paths under
the action of o from X to Y. Together we obtain an X x Y matrix of languages. More
precisely,
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Definition 30 Let (U,a) : X — Y be a Y-automaton. The behaviour of (U, «) is the
X xY matriz of L-languages E(U, o), where E(U, a),, = {w € ¥*|a*(x,w) = y}.

Notice that this definition can be interpreted as generalizing that of behaviour for an
Elgot automaton. If we have an Elgot automaton (U,a) : X — Y we can define a ¥-
automaton for ¥, = {a} asa@: X + (U x ¥,) — U + Y where @x(z) = ax(x) for z € X
and @y (u,a) = ap(u). Then observe that @*(z, ¢") = o"™'(z) and both sides of the equation
are either are either defined or undefined. Thus F(U,a)(x) = (y,n) ifft E(U,@),, = {a"}
(and E(U,a)(z) is undefined iff £(U,@),, =0 for all y.)

We note some important properties of behaviours. First, since our automata are de-
terministic, for a fixed « the E(U, «),, are pairwise disjoint. Moreover, if w € E(U,a);,
and v € ¥t then wv ¢ E(U,a),, for any y' (including y). This motivates the following
definitions.

Definition 31 A language L C ¥* is anti-prefix if for all w,v € ¥*(w € L and wv € L
imply v = €). Languages Ly and Ly are anti-prefix-disjoint if for all w,v € ¥*(w € Ly implies
wv & Lg), and vice versa.

Note that we may take v = € in the second definition, so anti-prefix-disjoint languages
are disjoint.

Proposition 32 Let L and M be X XY and Y xZ matrices of languages such that the entries
of L and M are anti-prefiz languages and the entries in each row of L and M are pairwise
anti-prefiz-disjoint. The X x 7 matriz K = LM with entries defined by K, . = Uyey LoyM,y -
has anti-prefix entries and entries in each row are pairwise anti-prefiz-disjoint.

Proof. We first show that the entries of LM are anti-prefix. Let w € LM, , so there are
y € Yyw, € Ly, wy € M, . such that w = wyw,. Now suppose wv € LM, , so there are
y' €Y,vy € Lyy,v9 € My . such that w = vyvy. We distinguish 3 cases:

Case 1: |v1]| < |wq|. In this case w; = vyvz for some vz with |vz| > 0. If y = 3’ this contradicts
the prefix property of L, ,. Otherwise, since entries in a row of L are pairwise anti-prefix-
disjoint vy € L, implies wy = vjv3 € L, ,, a contradiction.

Case 2: |v1| = |wy|. In this case v; = wy so y = y since the entries in a row of L are
anti-prefix disjoint. Then wy € M, ., and wyv = vy, € M, , imply that v = e.

Case 3: |v1]| > |wy]|. In this case vy = wyv; for some vz and a contradiction similar to Case 1
ensues.

We conclude that v = «.
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Next we show that the entries in a row of K are pairwise anti-prefix disjoint. Let w € K, .
so there are y € Y,wy € L, ,,wy € M, . such that w = wyjw,. Let v € ¥*. We must show
that wv € K, . for 2’ # z. Again we have 3 cases:

Case 1: |v1| < |wq]. In this case w; = vyv3 for some vy with |vs| > 0. As above this contradicts
the properties of L.

Case 2: |v1] = |wi]. In this case vy = wy so y = y’ since the row entries of L are anti-prefix
disjoint. Then wy € M, . implies wyv = vy &€ M, . since the row entries of M are anti-prefix-
disjoint.

Case 3: |vg| > |wi]. Again this is similar to Case 1. We conclude that wov € K, ... |

The preceding Proposition allows the definition of a suitable receiving category for the
behaviours of Y-automata. The category Br has objects sets, arrows from X to Y given by
X x Y matrices of anti-prefix languages over ¥ with entries in each row pairwise anti-prefix-
disjoint. Composition is defined using the matrix multiplication of the preceding proposition.
We define the matrix of the composite of L: X — Y and M : Y — Z to be the matrix
K = LM, with the product taken in the diagrammatic order. Thus the composite is an
arrow of Bz by Proposition 32.

Lemma 33 [f there is a 2-cell ¢ : (U,a) — (U', /) in F then E(U,a) = E(U', o). |

Viewing Br as a bicategory with discrete hom categories we get:

Proposition 34 Behaviour, I, extends to homomorphism of bicategories from F to Br.

Proof. First, £ is locally functorial by the remarks after Definition 30 and Lemma 33. The
behaviour of a serial composite of ¥-automata is the composite in B of their behaviours.
To see this note that the concatenation of a ¥* word from the first behaviour with one from
the second simply describes a path through the composite automaton. |

Definition 35 Let (U,a) : X — Y be a Y-automaton. The object of reachable states of
(U,a) is

Up={uvelU|dze X JweX a(r,w)=u}l.
The reachable kernel of (U,«) is the automaton R(U,a) = (Up,ar) : X — Y where
ar: X +Ur — Ur+Y is the restriction of a.
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We again observe that R : F(X,Y) — F(X,Y) is functorial, idempotent and that there
is a 2-cell p,a) @ R(U, o) — (U, ) which is the component of a natural transformation
from R to lr(xy). Moreover, p = pRR. We have the following analogues of results for Elgot
automata:

Proposition 36 1) The functor R is an idempotent comonad on F(X,Y) with counit p.
2) The behaviour of the reachable kernel, R(U, ), of a Y-automaton, (U, «) is the same
as that of (U, ).
3) If (Uye) : X — Y and (V,3) : Y — Z, then there is a canonical 2-cell ryy :
R(U,a)(V,3)) — RU,a)R(V, 3). |

The coalgebras for the local reachability comonads are the reachable ¥-automata.

The minimization theory we obtain in the case of - automata is also similar to that of
the preceding section. We begin with an equivalence relation on states of (U, a): u ~, u’ iff
for all w € ¥* and for all y € Y we have of;(u,w) = y iff afi(v',w) = y.

Again, we can construct a ‘quotient’ automaton denoted M (U, o) = (Uns, cpr). We define

Uy = U/ ~, and ayy is defined on X + Uy by

] ifa(r)=wu
aM(x)_{y ifa(z)=yeY

Proposition 37 1) The quotient function n : U — Uy underlies a 2-cell in F denoted
Nue @ (U,a) — M(U,a). Applying M to il gives an isomorphism, and (M,n) is an
idempotent monad on F(X,Y).

2) The behaviour of M(U, ) is the same as that of (U, «).

3)If (U,a) : X — Y and (V,3) : Y — Z in F, then there is a canonical function
myy : M(U,a)M(V,3) — M((U,a)(V,3)). |

[W] if a(u,a)=u" €U

and fOI’CLEZ aM([u]7a): { Yy lfa(u7a):yey

The algebras for M have a unique state associated with each path to an element of YV
which actually occurs in the behaviour of (U, o).

Our next objective is a minimal realization of any behaviour in Bx. Let L = (L,,) be
a behaviour from X to Y. For ,2’ € X and w,w’ € ¥*, we write (z,w) ~ (2, w’) if and
only if forall v e ¥* forally € Y wv € L., <= w'v € L, . The state set for the minimal
realization automaton is Uy, = (X x ¥*)/ ~p . The action for the minimal realization is

defined on X + Uy, by:

an(z) = { y if Ly ={e} and ar([(z,w)], a) = { y if wa € L,

[(z,€¢)] otherwise [(#,wa)] otherwise.
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With the observation that «y, is well-defined, we have ay : X + (Up x ¥) — U, + Y, and
we note that the automaton NL = (U, ay) is reachable.

Proposition 38 The behaviour of NL is L. Furthermore, we have E is left adjoint to
N:Bs(X,Y) — Fr(X,Y).

Proof. The situation is similar to that for Elgot automata: the constructed automaton
has states which correspond to equivalent deterministic transitions to an output state, plus
possibly a loop state. Thus the first statement follows immediately.

For the adjunction, we show that 2-cells (in Bz(X,Y)) from E(U, «) to L correspond to
2-cells (in Fr(X,Y)) from (U, ) to NL. Since Bz is locally discrete, that is to show that
E(U,a) = L if and only if there is a unique 2-cell from (U, o) to NL.

First observe that if there is (U, o) — NL, then E(U,a) = ENL = L, by Lemma 33
and the first paragraph.

For necessity, we suppose E(U,«) = L and seek to define a unique 2-cell ¢ : (U, a) —
NL. Recalling that (U, «) is reachable we define ¢ : U — Up, by:

o(u) = (e, w)] i a*(e,w) = u

We need to show that ¢ is well-defined, that it defines a 2-cell in Fg, and that it is the
only such 2-cell. The first two follow immediately from FE(U,«) = L. For the last simply
observe that [(xz,w)] satisfies of (@, w) = [(z,w)], so ¢(a*(x,w)) = af (x,w) = [(x,w)] and
the requirement that ¢ be a morphism determines the definition of ¢(u). |

5 Lax Monads

We first recall some definitions for bicategory morphisms and lax monads. In particular, we
consider morphisms of bicategories which are identity on objects and which have the structure
of a monad on each hom category, and then we give conditions sufficient to guarantee that
the hom-category monads define a monoid in a suitable category of bicategory morphisms.

To establish notation, we recall that a morphism of bicategories from B to C is a pair
(F,®) in which: F maps objects and l-cells of B to objects and 1-cells of C; for every
object B of B, there is a 2-cell ¢p : lpp — F(lp); and whenever f : B — B’ and
g: B" — B" are composable, there is a 2-cell ¢,; : FgF f — Fgf : B — B”. The data
are subject to equations found in [Ben]. We denote the action of F' on a hom category by
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F(B,B) : B(B,B") — C(FB,FB'). We will also need to consider oplax transformations
between morphisms. An oplax transformation o : (F,¢) — (G,v) is given by arrows
op : 'B — GB for all objects B in B, and 2-cells oy : op/l'f — G fop, whenever
f: B— B'isin B, subject to equations again in [Ben]|. Our interest, as noted above, will
be in rather special morphisms and transformations. They arise in examples and ensure that
we obtain a monoidal category in which to define lax monads.

Proposition 39 [CR](Prop. 2.1) For any class X the following data determine a bicategory
which we denote M(X):

1. Objects are bicategories with class of objects X.
2. One-cells are morphisms of bicategories which are identity on objects.

3. Two-cells are oplazx transformations whose object components are all
identities. 1

Definition 40 [CR] A lax monad on B with objects B, is a monoid in M(B,)(B,B).

We can give explicit criteria of a more elementary sort providing a characterization of
morphisms that are lax monads.

Proposition 41 [CR](Prop. 2.3) An endomorphism (T, 7) of B in M(B,) together with,

for every pair B, B' in B, natural transformations
npp : 15(B, B") — T(B,B") «— T*(B,B') : ugp
extends to a lax monad if
1. each (T(B, B"),nBp, ppp') is a monad on B(B, B');
2. for all B,

T™B = M1p;

3.0 f: B— B and g: B' — B" are I-cells in B then

Ter(gomg) =mgs i 9f — Taf

and
1 Tresmrgrs = Typ(pg o pg) s T?qT?f — Tgf
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Conversely, a lax monad determines transformations ngp: and upp: satisfying 1, 2 and 3. 1

In fact the lax monads and colax comonads considered below are (locally) idempotent,
i.e. for any arrow f: B — B’ in B we have T'n; = nr; and the common value is inverted
by tiy, so that (locally) 7% = T'. In this case we have a simplification:

Proposition 42 If ((T,7),n,p) is idempotent, then the equation involving u in 3. of the
preceding proposition follows from the other data.

Proof. To show that iy Ty s7ryrs = 744(11g0 17) we show that (t99) " 7as = Trysmrgrs (19 0
pip) ™t Now (pgs) ™" = nrgp and (pg 0 py)™" =yt opt = nry o nry. Note that the following
diagram commutes by naturality of n, and the equation above involving 7.

TgTf—2 . Tgf

Nrg O Nry NreTf NTgf

2 2 2
Thus (pgr) ' 75 = n1rgs7er = T(Tap)rgrs = Trgmi (Mg 0 N7 f) = Ty Trgrs(p1g 0 1s) =" 1

In view of condition 1. of Proposition 41, there is a local category of (Eilenberg-Moore)
algebras for each pair of objects. The main result of [CR] constructs a bicategory with these
algebras as hom categories assuming local exactness conditions on the underlying morphism
(T, 7). This construction of algebras simplifies in case the monad is idempotent. In fact, no
exactness is required of the local monads in this case.

Proposition 43 Let ((T,7),n,1) be an idempotent lax monad on a bicategory, B. The
following data determine a bicategory denoted BT :

1. objects are those of B;
2. for objects B and B’ of B, the hom category is BT (B, B');

3. composition of 1-cells f : B — B',g: B' — B" is defined by T'(gf)
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4. horizontal composition of 2-cells is also defined by application of T

Proof. In [CR] it is shown that the underlying arrow of the composite of (f, #) in BT(B, B')
with (g,v) in BT(B’, B") is the joint coequalizer of two parallel pairs of 2-cells, one of which is
T(gop): T(gTf) — T(gf) and pug;T7 6T (ngoTf): T(gTf) — T(gf) (and the other pair
just interchanges the roles of ¢ and 7.) We claim that these 2-cells are equal. Now assuming
that the monad is idempotent means that u,; = (Tn,;)~" and since algebras for T'( B, B) are
the objects (of T(B, B')) for which the unit is invertible, we have ¢ = 77;1. Thus our claim
holds if Ty, sT(gon;') = TryT(nyoTf),soif ngrgon;' = 74pm, o T f. But from the first of
equations 3. in Proposition 41, ny¢ = 71(13,017) s0 1,907 " = 745 (ngons)gon; " = 7y 0T f
as required. The other pair of 2-cells is similarly equal so the required joint coequalizer is just
T(gf), which is then the composite of (f, ¢) and (g,v) as claimed. The horizontal composite
is similar. 1

In the next section we will need to consider a dual of the concepts described above,
namely colax comonads. A comorphism of bicategories is (G,~) : B — C where G maps
objects and 1-cells of B to objects and 1-cells of C. For every object B of B there is a 2-cell
v : G(1g) — lgp; and whenever f: B — B’ and g : B — B are composable, there
is a 2-cell y,¢ : Ggf — GgGf : B — B", subject to appropriate equations. An opcolax
transformation o : (G,v) — (H,v) between comorphisms is given by arrows og : GB —
HB for all objects B in B, and 2-cells o; : H fop — op/G f,whenever f : B — B’ is in
B, again subject to equations. As above we obtain a bicategory C(X) of identity on objects
comorphisms and define a colax comonad on B to be a comonoid in C(B,)(B, B). We will not
state the obvious duals of propositions in this section, but we will use them without further
comment in the next section.

6 Applications to Automata

In Sections 2, 3 and 4 we have identified various local (co-)monads for reachability and min-
imization. Qur purpose in this section is to apply the results in the preceding section to
demonstrate that these local (co-)monads extend to lax (co-)monads defined on the bicate-
gories of automata concerned. That is, they are compatible with serial composition up to a
comparison morphism. We show further that the Nerode adjunctions described above also
extend to the (bi-)categories in question.

We begin with Mealy automata, considering reachability first and then minimization.
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The notation is from Section 2. In the case of reachability we deal with identity on objects
endocomorphisms.

Proposition 44 The comonads R(X,Y') defined on A extend to an idempotent colax comon-
ad R: A— A, and the algebras for R(X,Y) are the one-cells of a bicategory, denoted Ag

of reachable automata.

Proof. We first need to show that the local functors R(X,Y) have the structure of a
comorphism (R, r) on M. Recall that the identity Mealy automaton 1x on X is (essentially
the identity arrow) (1,£,1;) : X — X where ¢ : X x 1 — 1 x X. Since RX = X and
since we easily see R(1y) = lx, we simply take ry : R(1x) — lgrx to be the identity. Let
(U,a,ug) : X — Y and (V,3,v9) : Y — Z. The comparison 2-cell for their composite is
ruy from Proposition 11.

Since the R(X,Y) are idempotent comonads, by Proposition 42 we have to check only
equations 2. and the first of equations 3. in Proposition 41 to see that the R(X,Y") extend.
Both rx and py, are identities so equations 2. are satisfied. For the first of equations 3. we
note that

(pVOpU)TUV:(UXV)R—>UR><VR—>U><V

is simply the inclusion pyy : (U x V)g — U x V. |

The colax structure provides a comparison between the reachable kernel of a serial com-
posite (in A) and the serial composite of reachable kernels. Serial composition of reachable
automata is just composition of 1-cells in the bicategory of coalgebras. The explicit descrip-
tion of composition in Apg is simply that the composite of reachable automata in Apg is the
reachable kernel of their composite in A. Comments of the same sort apply to the colax
comonads for reachability and lax monads for minimization described below.

The next result follows immediately from Theorem 3.6 of [CR], and the preceding Propo-
sition.

Corollary 45 The idempotent colax comonad (R,p): A — A factors as
A A = A

where G is a bicategory homomorphism. For all X, Y we have J(X,Y) 4 G(X,Y), and so
Ar(X,Y) is a coreflective subcategory of A(X,Y) with coreflector G |
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We now turn to the similar results for minimization of Mealy automata.

Proposition 46 The monads M(X,Y) : AX,)Y) — A(X,Y) extend to a lax monad
on A. Algebras for M(X,Y) are the one-cells of a bicategory, denoted AM of minimized
automata.

Proof. Again we first show that the local functors M (X, Y’) have the structure of a morphism
(M,m) on M. The identity Mealy automaton 1x on X is (essentially the identity arrow)
(L,,1;) : X — X where t : X x1 — 1 x X. Thus M(lx) = 1lx and since MX = X
we take mx : lyyx — M(lx) to be the identity. The comparison 2-cell for a composite
(V,B,v0)(U, o, u0) : X — Z is myy from Proposition 14.

Since the M(X,Y) are idempotent monads, by Proposition 42 we have to check only
equations 2. and the first of equations 3. in Proposition 41 to see that the M(X,Y’) extend.
Both myx and p;, are identities so equations 2. are satisfied. For the first of equations 3.
we note that myy(py o pr) is simply the quotient ppy : U x V. — (U x V). |

Composition in AM is easy to describe: the composite of minimized automata in A is
the minimization of their composite in A.

Corollary 47 The idempotent lax monad (M,n) : A — A factors as
AL AM Ly 4

where F' is a bicategory homomorphism, for all X,Y we have F(X,Y) 4 I[(X,Y), and so
AM(XY) is a reflective subcategory of A(X,Y) with reflector I |

The situation we have been describing is summed up in the following proposition. The
pairs of functors are locally adjoint and provide examples of the various notions of local
adjunction in the literature.

Proposition 48 In the following diagram both the inner and outer squares commute. The
I’s (resp. J’s) are locally reflective (resp. coflective) inclusions.
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J/

112

(Ar)™

Theorem 49 The Nerode automaton construction extends to a morphism of bicategories,
N : By — Ag, and E and N determine a local adjunction. Moreover, N factors as
N =I'N', E factors as E = E'F', and N' and E' determine an equivalence B4 = (Ap)M’

as indicated in the diagram.
Ar
K/ T ENNN
E/
(Ap)™ =~ B
N/

Proof. Suppose that f: X — Y and g : Y — Z are composable behaviours. We need
a 2-cell vy : NgNf — Ngf in Ar. Note that the composite NgN f is in Apg, so is that
described in Corollary 44. Recall that the composite in A of N f and Ng¢g has internal states
X*) ~p xY*[ ~,, e pairs ([w]y,[v],) where w € X*, v € Y*. An easy calculation shows
that the reachable states are pairs of the form ([w]s, [f(w)],). After this observation, it is
easy to see that defining v([w]y, [f(w)],) = v([w],s) provides the required structure.

We also need vy : 1x — N1y, but this 2-cell can be taken to be an identity since N1y
has only one internal state (the equivalence relation ~1, is the all relation.)

In the diagram above, we can define £ to be EI" and N’ to be F'N. To establish the
theorem, we verify that these provide factorizations of £ and N as I/ = E'F' and N =Z I'N’,
and then show that both composites of £’ and N’ are isomorphic the identity.
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First, E'F' = EI'F’ by definition. Since I’ is minimization, applying it does not affect
behaviour, so we have FI'F' = E, and the first iso is established. Next, I'N' = I'F'N
by definition. Now N f is a minimized automaton, so application of I’} is essentially the
identity and the second iso follows.

For the equivalence, note that E'N’ = EI'F'N by definition, and as just observed,
I'F'N 2 N,so E'N'" 2 EN, but ENf = f by the previous Theorem. Finally, N'E' =
I"NEI' by definition. Now a reachable, minimal Mealy automaton I’A is isomorphic to
the Nerode automaton of its behaviour, i.e. NEI'A = I'A. (The unit of the adjunction in
the previous Theorem provides the comparison which is epic by reachability and monic by

minimality.) Thus N'E'A = FINEI'A = F'I'A = A. |

Using notation from Section 4, we consider the situation for ¥-automata. Recall that we
can view the Elgot automata of Section 3 as a special case.

Proposition 50 The monads R(X,Y') defined on F extend to an idempotent colax comonad
R:F — F, and the algebras for R(X,Y") are the one-cells of a bicategory, denoted Fr of

reachable Y -automata.

Proof. Recall first from Proposition 36 that if (U,«a): X — Y and (V,3): Y — Z, there
is a comparison 2-cell ryy @ R(U,a)(V,3)) — R(U,a)R(V,3). The equations for a colax

comonad are trivial in this situation so the result follows from Proposition 43. 1

The composite of reachable automata in Fg is the reachable coreflection of their com-
posite in F.

Corollary 51 The idempotent colax comonad (R,p): F — F factors as
FS L F

where G is a bicategory homomorphism. For all X, Y we have J(X,Y) 4 G(X,Y), and so
Fr(X,Y) is a coreflective subcategory of F(X,Y') with coreflector (. |

Once again, the minimal realization-behaviour adjunction is essentially the minimization
local adjunction. We begin with minimization.
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Proposition 52 The monads M(X,Y) : F(X,Y) — F(X,Y) extend to a lax monad
on F. Algebras for M(X,Y) are the one-cells of a bicategory, denoted FM of minimized
Y-automata.

Proof. Recall first from Proposition 37 that if (U,«a) : X — Y and (V,3): Y — Z, there
is a comparison 2-cell myy : M(U, )M (V,3) — M((U,a)(V,3)). The equations for a lax

monad also follow easily, so the result follows from Proposition 43. 1

The composite of minimized Y-automata in FM is the minimization of their composite

in F.
Corollary 53 The idempotent lax monad (M,n) : F — F factors as
FLoM LoF

where F' is a bicategory homomorphism. For all X,Y we have F(X,Y) 4 I(X,Y), and so
FM(X)Y) is a reflective subcategory of F(X,Y) with reflector F |

As with Mealy automata, it is easy to see that reachable kernel and minimization com-
mute. Thus we obtain lax monads for reachability (resp. minimization) on F (resp. Fg)

whose local algebras coincide, i. e. (FM)p = (fR)M/, where the primed monads act as R
(resp. M) did on F. We sum up with the following proposition.

Proposition 54 In the following diagram both the inner and outer squares commute. The
I’s (resp. J’s) are locally reflective (resp. coflective) inclusions.

G
F Fr

J

F |1 '\ | F’

J! ~ /
FU—= (F e = (Fr)Y
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Finally, the minimized reachable ¥-automata have the same relation to their behaviours
as Mealy automata.

Theorem 55 The minimal realization construction on Br extends to a morphism of bicate-

gories, N : B — Fpr, and F and N determine a local adjunction. Moreover, N factors as
N = I'N', E factors as E = E'F', and N’ and E' determine an equivalence Br = (Fr)™'

as indicated in the diagram.
Fr
K/ ENNN
E/
E i ——
N/

Proof. The proof is very similar to the proof in the case of Mealy automata once we make
the observation that N is actually a lax functor in this situation also. |

f
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