
Ontology engineering, universal algebra, and
category theory ?

Michael Johnson1 and Robert Rosebrugh2

1 Department of Computer Science
Macquarie University
mike@ics.mq.edu.au

2 Department of Mathematics and Computer Science
Mount Allison University

rrosebrugh@mta.ca

Abstract. In this chapter we review a category theoretic approach to
ontology engineering. Using ideas from universal algebra, we carefully
distinguish presentations of ontologies from the ontologies themselves.
This leads to a precise notion of “view”, and views can be used both
to create new ontologies incorporating existing ontologies while recog-
nising their common classes and relations, and to develop interoperating
ontologies. Interoperating ontologies are separate but linked ontologies
with the property that systems developed under each ontology can in-
teroperate without changing the system and with only a small amount
of front-end interoperations code.
Keywords: View update, semantic data model, category theory, ontol-
ogy, interoperation.

1 Introduction

Ontology engineering is most often used to refer to the (indeed vitally important)
process of constructing ontologies.

Thus it was once with traditional engineering — engineers were concerned
with building essentially unique artifacts: bridges, roads and buildings for exam-
ple. The engineer had learnt from other examples and would bring general con-
cepts, known solutions, rules-of-thumb, and scientific calculation to the partic-
ular problems presented by a new site. Sometimes the engineer could effectively
reuse a design, adjusting only a few parameters (height of the towers, length
of a span etc) because a new site was sufficiently like an old site, but essen-
tially each new artifact called for a newly engineered solution. In contrast much
modern engineering is fundamentally about developing interoperations among
extant systems — telecommunications is almost by definition thus, and most
modern manufacturing depends very significantly on planning and managing
the interactions between known systems.

? Research partially supported by grants from the Australian Research Council and
NSERC Canada.



The irony of ontology engineering needing to focus on constructing individual
ontologies (whether small and domain specific (see examples in [2]) or extensive
and intended to establish standards over a wider field [3]) is of course that
ontologies themselves were introduced to aid system interoperability. A good
theory and detailed processes for ontology interoperability will significantly aid
the development of new ontologies incorporating old ones. Then extant ontologies
can be used to support systems interoperation even when the distinct systems
are based themselves in separately developed ontologies. This was the goal of
the Scalable Knowledge Composition group’s algebra of ontologies [11].

This chapter follows and further develops [9] in drawing ideas from categor-
ical universal algebra, a field which might be viewed as ontology engineering
for mathematics, and using them to support ontology engineering in a manner
that leads naturally, and mathematically, to support for interoperations among
ontologies.

The ideas presented here have a strong theoretical foundation in the branch
of mathematics called category theory (see the chapter by Healy), and they have
been developed and tested in a range of industrial applications over the last
fifteen years.

2 Representing ontologies

Formal ontologies are at least “controlled vocabularies” and can take many forms
ranging from glossaries to first order logical theories [12]. Often ontologies are
expressed as trees or directed graphs because subsumption is such an important
(real-world) relationship and we are used to representing subsumption relation-
ships as directed edges. In fact, subsumption is a particular example of a function
(to each instance of the subclass, there corresponds a particular instance in the
superclass), and graphically or not, ontologies depend fundamentally on being
able to represent functions.

Of course, it is largely unimportant how we represent ontologies because there
is substantial software support for ontology engineering. It is vital that a pro-
posed ontology is given via a precise representation, but then that representation
can be compiled into other forms.

In this chapter we will consider ontologies represented as categories. This will
have several advantages for us, including the use of the technical tools of category
theory (see the chapter by Healy) to support our analysis of ontologies, the use
of categorical logic (see the chapter by Vickers) to make clear the link between
ontologies as categories and ontologies as logical theories, and the graphical
representation and reasoning of category theory to easily allow fragments of
ontologies to be represented in their more usual form as graphs or trees.

As an example we present a fragment of an ontology for air traffic control
systems. For those not used to category theory it will suffice to contemplate
the diagram (Figure 1) and we will explain the categorical constructions in that
diagram in logical terms. For ease of exposition we have focused upon the part
of the ontology related to aircraft planning a landing.



NDBApproach
��

is a

��

// NDB
��

is a

��

Overshoot
at

&&NNNNNNNNNNN

Approach
faf //

on

66mmmmmmmmmmmm

to

��

NavAid

at

��

VORoois aoo

Runway
at // Airport

Fig. 1. A fragment of an air traffic control ontology

Nodes in the directed graph shown in Figure 1 are the main subject matter of
the ontology. In this case we are concerned with airports, runways, navigational
aids (VOR, which stands for VHF Omni-Range, and NDB, which stands for Non-
Directional Beacon), and aircraft approaches to airports. As noted by Gruber [6],
ontologies are typically represented using classes, relationships (between classes)
and attributes (of instances of classes). In Figure 1 classes are represented by
nodes and functional relationships by arrows. Attributes, while important and
easily represented in our category theoretic approach, are suppressed to keep the
diagram simple.

At this point it is worth making three remarks about our use of functional
relationships.

First, all traditional (many-to-many) relationships can be represented as a
“span” of functional relationships. For example Approach might be a relationship
between Runway and NavAid (some navigational aids can be used as final ap-
proach fixes for particular runways). Here that is expressed by the directed edges
to and faf (final approach fix). As is often the case, an attempt to “tabulate” the
(many-to-many) relationship between Runway and NavAid in fact records a class
that has semantic significance and which might itself be explicitly recorded as
a class in other related ontologies. So, choosing to represent only functional re-
lationships doesn’t limit our representational power, and may (in practice, does
often) assist in identifying meaningful classes.

Second, because ontologies are intended to be more abstract than data mod-
els, what in many ontologies appears as a functional relationship in fact may be
only a partial function. If one were to say for example that an airport has a radio
frequency used for approaches, one would be largely correct. And it is certainly
worth recording that an airport may have such a frequency, and that that rela-
tionship is in general functional, but strictly the function would be partial since
there are uncontrolled airports. Such partiality most often arises with optional



attributes and can be dealt with by introducing a (tabulated as just discussed)
relation. How one does this turns out to include some theoretical surprises, and
we will discuss it in more detail in Section 8.

Third, is a relationships, among others, are denoted here by edges indicated
// // . Those edges are intended to be realised not just as functions, but as injec-

tive (one-to-one but not necessarily onto) functions. This makes sense since if
every instance of X is an instance of Y , then we certainly expect that given an
instance of X we have a corresponding instance of Y (ie we have a function),
but furthermore no two distinct instances of X would correspond under the is a
relation to the same instance of Y (ie the function is injective). It is also valuable
to be able to specify that other (functional) relationships are also required to be
injective. For example, the function faf specifies, for an approach to a particular
runway, which navigational aid provides the final approach fix. We will return
to the specification of // // arrows in Section 3.

Remembering that Figure 1 is a representation of part of a category, there
are other constraints. For example, in a category, arrows can be composed and
so diagrams do, or do not, commute (see again the chapter by Healy). In our
example, both rectangles commute. To check the commutativity of the lower
rectangle we note simply that an Approach uses as final approach fix a NavAid
which is located at an Airport, and that the approach is to a Runway which
must be at the same airport as the navigational aid. On the other hand the
triangle does not in general commute: An Approach has associated with it an
Overshoot which indicates which NavAid an aircraft should go to in the case of
failing to land after the particular approach. The overshoot navigational aid will
not usually be the aid that was used as the final approach fix for the approach.

It is important to emphasise that whether or not a diagram commutes is a
question of real-world semantics — a question that should be asked, and a ques-
tion whose answer should be recorded as part of the ontology. Further examples
of the importance of specifying commutative and not necessarily commutative
diagrams are given in [8].

Finally there are other, also categorically and logically expressible, interac-
tions between the nodes shown in Figure 1. The is a arrows into NavAid tell us
that all instances of VOR and NDB are NavAids. There is nothing in the diagram
that tells us that the “subobjects” are disjoint from each other, nor is there
anything to say whether or not there can be NavAids which are of other types.
If, as is the case in the real ontology, NavAid is known to be the coproduct of
the two subobjects, then that ensures that both these conditions are satisfied.
In set theoretic terms the coproduct requirement ensures that NavAid can be
obtained as the disjoint union of VOR and NDB. Similarly NDBApproach can be
computed as a pullback in set theoretic terms, which in this case is the inverse
image of the inclusion of NDB’s in NavAid’s along faf. It selects those Approaches
whose NavAid is an NDB.

Note that although NavAid and its two is a arrows can be computed from
other classes, it needs to be presented in Figure 1 as it is the codomain of two
further arrows. On the other hand the ontology would not be changed at all if



NDBApproach were left out. It, and its two arrows, and the commutativity of its
rectangle, are all determined and can be recomputed as needed. This flexibility
is at the heart of ontology interoperation discussed in Section 5.

3 Presenting ontologies

In the last section we noted (by example) that an ontology may seem to take a
different form merely because classes may not be included although they may
still be fully determined by other classes and relationships which are present.
This is the essence of the semantic mismatch problem which has made system
interoperability so difficult and has motivated many of the developments of on-
tologies. Probably the potential complications are obvious to those who have
worked with independently developed but partially overlapping ontologies: each
of the ontologies contains enough information to model the application domain,
but they seem hardly comparable because classes, often sharing the same name,
can be two different specialisations of a more general class that doesn’t appear
in either ontology, and because each ontology seems to contain important classes
that are absent from the other.

In this section we briefly review mathematical presentations and the forms of
category theoretic presentation that the authors have found empirically sufficient
for ontology engineering.

A presentation is a specification of the generators and axioms that are re-
quired to determine a mathematical object. Common examples include in group
theory presentations of a group, or in the theory of formal languages presen-
tations of a language. A presentation is important because it gives a precise
and usually finite specification which suffices to fully determine the object. Yet
presentations are not usually the subject of mathematical study since a given
mathematical object will usually have many different presentations.

Categories are presented using sketches [1]. At its most basic, a sketch consists
of a directed graph (like Figure 1) together with a set of diagrams in the graph
(pairs of paths of arrows with common start and endpoint) which are intended
to be the commutative diagrams. The category presented by the sketch is simply
the smallest category, generated by the graph, subject to the commutativity of
the diagrams (and hence of all others that follow logically from those diagrams).

More generally a mixed sketch is a sketch together with sets of cones and
cocones (see the chapter by Healy) in the graph which are intended to be limit
and colimit cones. The category presented by the (mixed) sketch is simply the
smallest category with finite limits and finite colimits, generated by the graph,
subject to the commutativity of the diagrams and to the requirement that the
cones and cocones do indeed form limit cones and cocones.

The formal development of the theory of (mixed) sketches is not important
for us here but one empirical observation is important: over a wide range of prac-
tical studies finite limits and finite coproducts have sufficed to specify ontologies.
So, we will limit our attention to these kinds of mixed sketches. Furthermore,
it turns out that finite limits and finite coproducts are sufficient to support, via



categorical logic (see the chapter by Vickers) a large fragment of first order logic.
This fragment is sufficient to model all usual “queries” for example. It is a pow-
erful tool for specifications, and easily supports, for example, the specification
of monic arrows which are modelled by injective functions. Indeed, an arrow is
monic exactly if its pullback along itself can be obtained with equal projections.

Having settled on the presentations we use, we now note in the strongest of
terms: An ontology is not its presentation. If you accept our claim that finite
limits and finite coproducts should be used in the category theoretic definition
of an ontology, then whenever you ask to see an ontology you will be shown a
presentation. This is simply because the category with finite limits and finite
coproducts specified by the presentation will in general be infinite, so can’t rea-
sonably be shown to you. But, as with other mathematical presentations, the
object of study is not the presentation, but rather the (infinite) category.

When one takes this point of view many of the difficulties of independently
developed but overlapping ontologies disappear. If two such ontologies really do
capture the same real-world domain then the independent presentations have the
incompatibilities discussed at the beginning of this section, but the ontologies
that they present will be the same.

Of course, other ontologists have recognised this point in their own frame-
works. In particular, taking an ontology as a first order logical theory (rather
than a collection of logical sentences) corresponds to taking the ontology as a
category rather than as a presentation. Nevertheless, it is apt to be forgotten
when working with tools that support and indeed display only finite fragments.

4 Views versus sub-ontologies

An immediate benefit of recognising ontologies as categories rather than pre-
sentations comes with the definition of views. In many practical treatments a
view of an ontology is in fact a sub-presentation. When such a view exists, it
will behave well. Certainly a subpresentation is a view. But there are many
views of ontologies whose basic classes include some which do not occur in the
presentation.

Instead, a view of on ontology O should be a presentation V together with
a mapping of that presentation into the entire ontology O, not just into the
presentation for the ontology O.

The idea here is worth emphasising: A view of an ontology should be given
just like any other ontology would be, via a presentation V, but when it comes
to instances the ontology generated by that presentation should be populated
by instances determined by the mapping of the presentation into the ontology
O.

Incidentally, in the category theoretic treatment, a mapping of a presentation
V into an ontology O is the same as a functor, preserving limits and coproducts,
between the ontology V generated by the presentation V and the ontology O. If
in a particular application the ontology O has sets of instances associated with
its classes, then the view is obtained for any class V by following the functor to



O, obtaining a class in O, and then seeing what set of instances is associated
with that class.

We choose to work always with views and to eschew the use of subontology
except for the very simple cases which arise as a result of subpresentations.

5 Interoperations

The last section dealt carefully with views and subpresentations because some
particularly forward looking work in the 1990s was intended to develop interop-
erations for ontologies via an algebra of ontologies [11]. The algebraic operations
were based on the “intersection” of ontologies, and we claim that the notion of
view introduced in the preceding section supports an appropriate generalisation
of the notion of intersection.

The idea is as follows.
First, let’s review the familiar notion of intersection. Given two structures A

and B their intersection is the largest structure C which appears as a substruc-
ture of both A and B. Diagrammatically A oo C // B, where the arrows are
inclusions and C is the largest structure that can be put in such a diagram. Thus
if we seek the intersection of two presentations of two ontologies the construc-
tion is fairly clear: We merely take the set-theoretic intersection of the classes of
the ontologies, and the set theoretic intersection of the relations between those
classes.

Of course, the foregoing is too naive. Two different ontologies may have two
common classes X and Y , and in each ontology there may be a functional relation
X // Y , but the two relations may be semantically different. Perhaps we could
require that the relations carry the same name when we seek their intersection,
but this brings us back to the very problem ontologies are intended to control
— people use names inconsistently.

Instead, we take seriously the diagram A oo C // B, developed with in-
sightful intervention to encode the common parts of A and B and record that
encoding via the two maps. Thus an f : X // Y will only appear in C when
there are corresponding semantically equivalent functions in A and B, whatever
they might be called.

The requirement to check for semantic equivalence is unfortunate but un-
avoidable. Mathematically structures can be linked by mappings provided the
mathematical form that they take does not contradict the existence of such a
mapping, but whether such mappings are meaningful is a semantic question that
requires domain knowledge.

Now we need to note that so far we have only dealt with presentations. If
we want an appropriate generalisation of intersection for ontologies we need to
recognise that two ontologies can have common classes. The commonality only
becomes apparent when one moves from the presentations, to the ontologies.
For example, two ontologies might both have a class called Product, but if the
ontologies were developed for different domains those classes are very unlikely
to be semantically equivalent. Nevertheless, it might happen that the ontologies



do both deal with products of a certain type. To find an “intersection” it will be
necessary to specialise both of the Product classes, perhaps by restricting them to
products with certain attributes (likely different in the two different ontologies)
or that have certain relationships with other classes (again likely different in
the two different ontologies). In our experimental work such situations arise
frequently, but with the limits and coproducts that are available in the two
ontologies (represented as categories with finite limits and finite coproducts) we
can analyse the specialisations and determine the corresponding classes in the
two ontologies. Thus, if the two ontologies are called O and O′ we develop a
view V together with mappings into O and O′ obtaining O oo V // O′.

The largest such V might be viewed as the “generalised intersection” of O
and O′.

In fact, in our empirical work we can rarely be confident that we have ob-
tained the largest such V. No matter, V together with its mappings provides
an explicit specification of identified common classes in the two ontologies that
should be kept synchronised if we expect the ontologies to interoperate. In prac-
tical circumstances two industries will have specific intentions about how they
will interoperate, and so there is guidance as to which general areas of their
ontologies will need to be synchronised. There may be other commonalities (for
example, Person might be semantically equivalent in the two ontologies), but
if as industries they keep those parts of their operations distinct we need not
necessarily support interoperations on those commonalities.

It is worth emphasising here that views are better than subpresentations,
and ontologies as categories with finite limits and finite coproducts are better
than mere presentations of ontologies, because, at least in our experience, only
in very fortuitous circumstances will ontologies be able to be “linked” via classes
which happen to appear already in their presentations.

6 Solving view updates

Although this chapter has dealt mostly with ontologies, rather than with the
applications of ontologies (often databases of some kind) that store the instances
of the classes that occur in the ontology, it is important to consider carefully the
interaction between views and instances.

In one direction the interaction is straightforward. As noted in the previous
section, a view’s classes should be populated with the instances from the corre-
sponding classes in the ontology. In category theoretic terms, the assignment of
instances to classes is a functor from the ontology (viewed as a category) to a
category of (usually finite) sets. Then a view, being not simply a presentation
V but also a functor between the ontology V determined by that presentation,
and the fundamental ontology O, can be composed with the instances functor
O // set to yield an instances functor V // set.

Thus modifying the recorded instances of an ontology automatically modifies
the instances of any view of that ontology.



The reverse direction presents significantly more complications. In particular,
if one were to treat a view and its instances as if it were simply an ontology, and
one were to modify (update) the recorded instances of the view, it’s a very sig-
nificant problem to determine how best to correspondingly modify the recorded
instances of the ontology. In database theory this has been known as “the view
update problem” and has been the subject of research for nearly thirty years.

The difficulty of the view update problem is easily underestimated when one
concentrates on the classes, as we so often do when working with ontologies,
and neglects the relations between classes. But fundamentally the information
about an instance of a class is contained in the way that that instance is related
to other instances of other classes, or indeed to attributes. Thus, when one
introduces or deletes an instance from a class in the view, an instance must be
likewise introduced or deleted from the corresponding class in the ontology. But
what happens to the relationships that that instance might participate in? In
some cases the relationships will also be present in the view, and then we can
see what we should do to them in the ontology, but inevitably there will be
relationships which are not present in the view but which need to be modified
in the ontology. How should we modify them if we want to update the instances
of the ontology to match the instances of the view?

Over the years there have been many solutions proposed for the view update
problem. We won’t review them here, but we will point out that there is one
solution suggested naturally by the category theoretic approach — category the-
ory makes extensive use of so-called universal properties (properties like those
used to define limits and colimits in the chapter by Healy), and there is a natural
such property, well-known in category theory, which can provide arguably opti-
mal solutions to view update problems. The required property is the existence of
cartesian and op-cartesian arrows, and the details are presented in the authors’
[10].

Rather than embarking on the category theoretic details, we will proceed now
to show how solutions to view update problems, when they exist, can be used
to develop ontology interoperation, and hence ultimately to aid ontology engi-
neering in the sense discussed in the introduction — engineering new ontologies
by carefully developing interoperations among existing ontologies.

7 Interoperations with instances

For many purposes, including an algebra of ontologies, and for many ontolo-
gists, the identification of a common view in the manner of Section 5 suffices. A
new ontology incorporating both extant ontologies and respecting their common
views can be calculated by taking the colimit of O oo V // O′ in the category
of categories with finite limits and finite colimits. This corresponds to Healy’s
“blending of theories”. Nevertheless, we can ask for more.

Many ontology projects, including both BizDex [3] and aspects of e2esu [5],
seek to develop interoperations based on independently developed domain-based
ontologies. Interoperations in these cases mean interoperations at the instance



level, and as we saw in the preceding section, interoperations at the instance
level are more subtle than the colimit ontology would suggest.

We say that ontologies O and O′ interoperate via a view V when in the
diagram O oo V // O′ the view update problems have both been solved. In
such a case the ontologies support interoperating systems. Suppose that we have
two information systems I and I ′ based respectively in the ontologies O and O′,
then the systems can interoperate as follows. Suppose that a change is made to
the information stored in system I. Immediately that results in a change to the
V view of I. Because we have a solution to the view update problem for the
V view of I ′ that change in the view can be “propagated” to the information
system I ′. Similarly, changes in the information stored in I ′ are propagated via
the common view to I. The result is that the two systems remain synchronised on
their common views while they operate independently and, apart from the view
update code, without any modification to the original stand-alone information
systems.

A detailed example for e-commerce systems is presented in [7]. That paper
also points out that this “full-duplex” interoperability is in fact stronger than is
often required in business. Instead, a “half-duplex” approach to interoperability
often suffices. This takes advantage of the empirical observation that for partic-
ular interoperating businesses information only flows one way on certain classes,
and the other way on other classes, and these limited flows reduce the difficulty
of solving the view update problems.

We reserve the term interoperating ontologies for cases like those discussed
in this section where view update problems have been solved, at least in the
half-duplex sense, and so the V-linking of ontologies yields a corresponding and
effective linking of extant systems constructed using those ontologies.

8 Nulls and partial functions

It is notoriously difficult to precisely distinguish ontologies from data mod-
els. Even Gruber’s definition [6], in common with other treatments, can only
broadly distinguish ontologies by discussing their expected independence of data-
structures and implementation strategies. He also notes that primary keys are
the kind of thing that one would not expect to find in an ontology.

One only half-facetious proposal put forward by the authors is that ontologies
are, at least often in practice, those data models in which all functional relation-
ships are partial. This does correspond with remarks about primary keys, since
a defining property of primary keys is that they are mandatory attributes. But
more than this, ontologies frequently provide a controlled vocabulary that in-
dicates what might be said about instances. Thus attributes are optional, or in
other words, attributes are always allowed to take null-values.

This suggests that in a theory of ontologies it is very important to determine
how one represents null-values or partial functions.

There are two widely used representations, both in databases and in category
theory. In one, a partial function is modelled by including an explicit null-value.



Thus a partial function X // A is represented by total function X // A + 1
with the same domain X, but whose codomain is augmented by summing it with
a single null value. When the function is undefined on a particular x ∈ X the
value at x for the total function is by definition the extra or null value of the
codomain A + 1. In the other approach a partial function X // A is modelled
by a relation X oo oo X ′ // A in which X ′ should be viewed as the subobject
of X for which the function is defined. Surprisingly a careful analysis of these
two approaches shows that in the context of instances, viewed as categories of
models, they are not equivalent. See the discussion of ontological problems with
“not” discussed in the chapter by Vickers.

Although the explicit use of null-values is probably the most widespread rep-
resentation of partial functions in databases, the authors choose to represent
partial functions using the relation approach. Using this approach we accept on-
tologies in which explicit functional relations are drawn as arrows, but interpret
those arrows X // A as an abbreviation standing for X oo oo X ′ // A. This
is in contrast to our treatment of data models in which an arrow X // A is
interpreted as a total function. When it comes to making precise category the-
oretic calculations in ontologies the spans X oo oo X ′ // A need to be explicitly
included.

9 Universal nulls

One of the great advantages of interpreting functions in ontologies as partial
functions is that view update problems much more often have straightforward
solutions. Perhaps this is easy to see. If a view includes a class, but not an
attribute of that class which is present in the ontology, then solving a view
update problem will be very difficult. After all, new instances of the class in the
view don’t come with an attribute value, but in the ontology, at least if functions
are interpreted as total functions, each new instance needs to be associated with
a particular value for the attribute. Recall that view update problems are solved
using category theoretic universal properties. When a function needs to take a
value, but no value is in any sense canonical, then there is very little chance of
finding a universal solution.

One might reasonably expect that when functions are allowed to be partial,
the null-value will in some sense be canonical. Certainly, assigning the null-value
in cases where no other value is determined by the view is the minimal change.
Unfortunately, an explicit null-value is not category theoretically distinguishable
from any other value of an attribute, and so the difficulty in finding a universal
solution remains.

Happily, using the relation approach from the previous section, assigning a
null-value to an instance x in the relation X oo oo X ′ // A simply means not
including x in the subobject of defined values X ′. This is again the minimal
change, but this time it is also minimal with respect to natural transformations
among the set-valued functors which keep track of the assignment of instances



to classes. It turns out that this minimality is exactly what is required to provide
a universal solution for the view update problem.

10 Conclusion

Developing interoperating systems is one of the most important uses of ontolo-
gies. Over recent years category theory has been used to develop new approaches
to ontology presentation, and new solutions to view update problems. View up-
date solutions can be used to engineer systems interoperation.

In this chapter we have studied the relationship between category theoretic
specification and ontologies. We have noted how views can be used in a general
way to support calculating the colimit of two ontologies so as to create a new
ontology which includes them both and recognises their commonalities. We have
shown further how solving view update problems can lead to systems interop-
eration without a need to modify the basic systems. In this latter case we call
the ontologies interoperating ontologies. We have noted briefly how view update
solutions can be aided by the limitations of half-duplex interoperation, and by
the very common if often inexplicit use of partial functions in ontologies.

Over all we have found that new and mathematically precise treatments
of difficult problems in the foundation of ontologies and information systems
support ontology interoperation.

It’s always pleasing when theoretical developments yield practical advantages
and new insights as well as stronger theory.

References

1. M. Barr and C. Wells. Category theory for computing science. Prentice-Hall, second
edition, 1995.

2. Elena Paslaru Bontas, Christoph Tempich. Ontology Engineering: A Reality Check.
In R. Meersman and Z. Tari et al, The 5th International Conference on Ontologies,
Databases, and Applications of Semantics (ODBASE2006), (LNCS 4275), 836–854.
Springer, 2006.

3. BizDex is an e-Business framework that incorporates common Standards. See
http://www.standards.org.au/cat.asp?catid=37&contentid=73 (accessed Jan-
uary 2, 2008)

4. John Davies, Rudi Studer and Paul Warren (eds). Semantic Web Technologies:
Trends and Research in Ontology-based Systems, 326pp, 2006.

5. End-to-End Service Utility (E2ESU). See http://www.e2esu.eu/public/ (ac-
cessed November 13, 2007)

6. Tom Gruber. Ontology. To appear in the Encyclopedia of Database Systems, Ling
Liu and M. Tamer Özsu (eds), Springer-Verlag, 2008.

7. Michael Johnson. Enterprise Software with Half-Duplex Interoperations. In press
for I-ESA, Bordeaux, 2006, Lecture Notes in Computer Science.

8. Michael Johnson and C.N.G. Dampney. On the value of commutative diagrams in
information modelling. Springer Workshops in Computing, eds Nivat et al, 1994,
47–60, Springer, London.



9. Michael Johnson and C.N.G. Dampney. On category theory as a (meta) ontology
for information systems research. In Proceedings of the International Conference
on Formal Ontology in Information Systems (FOIS2001) 59–69, ACM Press, 2001.

10. Michael Johnson and Robert Rosebrugh. Fibrations and Universal View Updata-
bility. Theoretical Computer Science 388, 109–129, 2007.

11. Prasenjit Mitra and Gio Wiederhold. An Ontology-Composition Algebra. In
S.Staab, R.Studer (eds). Handbook on Ontologies, Springer International Hand-
books on Information Systems, 93–113 2004.

12. Barry Smith and Christopher Welty. FOIS Introduction: Ontology—towards a new
synthesis. In Proceedings of the International Conference on Formal Ontology in
Information Systems (FOIS2001) 3–9, ACM Press, 2001.


