Relational Databases and Indexed Categories

ROBERT ROSEBRUGH AND R. J. WooD

ABSTRACT. A description of relational databases in categorical terminology
given here has as intended application the study of database dynamics, in par-
ticular we view (1) updates as database objects in a suitable category indexed
by a topos; (ii) L-fuzzy databases as database objects in sheaves. Indexed cate-
gories are constructed to model the databases on a fixed family of domains and
also all databases for a varying family of domains. Further, we show that the
process of constructing the relational completion of a relational database is a

monad in a 2-category of functors.

Introduction

We use the term relation for a subobject of a finite product of objects in a
category. Following the relational database literature, we use the term domain
for an object of the ambient category (and warn readers that these are not
the ordered objects which go by the name “domain” elsewhere in theoretical
Computer Science.) A relational database, as defined by E. F. Codd [3], is
first of all a family of relations (or tables) on a family of domains. A heavily
used example of domain is the set of character strings over an alphabet. Thus
domains should be logically permitted to be infinite, though in practice they
are always finite sets, e.g. character strings up to a fixed maximum length. The
theory of databases as families of relations views domains simply as discrete
objects. We adopt that point of view for this paper though the domains of
practice usually have at least an order structure.

A very brief example will serve to illustrate the concepts mentioned so
far. We introduce three domains, name, address, phone, which can each
be viewed as sets of character strings satisfying appropriate constraints. An
example of a database on this family of domains is the family of two relations,
address-book, phone-book, where address-book is a subobject of name X
address, and phone-book is a subobject of name x phone. Clearly, the storage
and manipulation of databases is an important part of computing practise.

The theory of relational databases is well-developed, and the relational
model for databases is now the most widely implemented. Earlier database
paradigms (“network” and “hierarchical”) are still found in many older sys-
tems. They are not as amenable to theoretical treatment, do not provide a
portable conceptual structure and are of decreasing interest. Moreover, there is
active current research on enhancements and extensions of the relational model.
Current editions of the texts by Date [4] or Ullman [18] contain pointers to this
work.

Research partially supported by grants from NSERC Canada. Diagrams typeset using
Catmac.

This paper is in final form and no verison of it will be submitted for publication elsewhere.

2 R. ROSEBRUGH & R. J. WOOD

The theory of families we use is the theory of indexed categories as studied
by Paré and Schumacher [13]. Indexed categories are a widely used categorical
tool, but have only begun to be explicitly used in theoretical computer science
relatively recently [6,7,12,16]. The “relational algebra” of relational database
theory involves operations which are set-theoretic and other operations which
can be defined by a language involving only constants, variables of domain or
relation type and equality. An objective of this article is to construct the rela-
tional completion of a database as the action of a monad, so that relationally
complete databases are algebras for this monad. Section 1 gives some exam-
ples, and then the construction of a required family. In Section 2 we describe
databases as families of relations in an S-indexed category A and construct an
indexed category of databases for a fixed family of domains. We then return to
examples, including updates and fuzzy databases. Section 3 considers the effect
of varying domains and attributes and finds an indexed category of all databases
in an indexed category. In Section 4 we construct the relational completion
monad. We find that the endo-functor part of the monad is an endo-functor on
the fibration which arises from the indexed category of databases. Finally, we
observe that relationally complete databases are 2-categories of relations.

1. The Setting

We will freely use the notion of indexed category, so we first describe the
basic language of indexed categories. We begin with a base category, S, which is
required to have finite limits. Moreover, for our description of database objects,
S must allow construction of free monoids. It suffices to assume that S is an
elementary topos with natural numbers object N. Appropriate examples of
S include the category of sets and functions, set, any topos of diagrams (or
presheaves), or any Grothendieck topos. A topos which will interest us below
18 setz, the topos whose objects are functions in set and whose arrows are
commutative squares.

An S-indexed category A is given by a category A’ for each object I in
S and a functor a* : A’ — AY for each arrow a : J — [in S. These
substitution functors a® are subject to isomorphisms making them compatible
with identities and composition in S, and coherent with associativity. For
example, if 7 : K — J 1s also in S, then there is a canonical isomorphism
(af)* = f*a*. For a complete description see [13].

We will often want A to be just S with a canonical indexed structure. We
denote it by S with S’ defined to be the slice category S/I, and the required
substitutions defined by pullbacks. We detail two examples of S now.

ExAMPLE 1. When we take S to be the category set, we find that the
set-indexed category set has, for any set I, ordinary I-indexed families of sets
as its I-indexed families. This follows since set/I has functions with codomain
I as objects. Such a function, # : X — I say, may be identified with a family
of sets < X; >;¢s defined by X; = #~1(i), and conversely. In fact any category
is set-indexed, again taking /-indexed families to be just ordinary families of
objects.

RELATIONAL DATABASES AND INDEXED CATEGORIES 3

EXAMPLE 2. When S is setZ we get a more interesting indexing. The
indexing objects are now functions in set, e.g. I : [y — [1, and an [-indexed
family X, being an arrow of setz, is a pair of functions zg : Xg — Iy, 1 :
X7 — I making a commutative square in set, x1 X = [lzy. Substitutions are
defined by pullback which are computed point-wise.

ExAMPLE 3. Another example of a setZ-indexed category arises when we
allow the object X above to be replaced by a partial function, which we will

denote X : Xy <—Xy i> X;7. Thus, when I = 1 we obtain the category
whose objects are partial functions and whose morphisms, from X to Y say,
are pairs of functions fy : Xo — Yo and f; : X1 — Y] such that the restriction
of fy to X4 factors through Yy by fs and Y f; = f1.X. An [-indexed family is a
pair X SN Iy, X1 2 1) so that 2. X = Toy — with z4 the restriction of zg
to X4. A morphism in I-indexed families is a pair (fy, f1) of functions so that
in

Xg <Xy Xy
Jfo J1
Zg Yy «—Y; — Y Y
Yo Y1
Iy 4 I

fo restricts to fg : Xy — Ygand f1 X =Y f4. Substitution is still accomplished
by pointwise pullback, including on the domain of full definition, X;. We denote
the resulting indexed category by set?” .

We want to define a relational database to be a J-indexed family of relations
in A on some [-indexed family of domains, say A. A central feature of indexed
category theory is that it identifies a J-indexed family of structures as a struc-
ture in the category of J-families, e.g. a J-indexed family of groups is a group
in J-families. Similarly, a J-indexed family of relations is a single relation in the
category A’ of J-indexed families. To define relational database in A we need
to be able to say when a J-indexed family of relations is a family of subobjects
of finite products of domains in A. In order to make this requirement precise,
we will need some notation and some hypotheses on A. The remainder of this
section provides this background.

For an object I of S we denote the free monoid on I by M (I). Henceforth
we assume that M (I) exists in S. Tt is well known that M (/) exists in any topos
with a natural numbers object [10,13]. We also need to assume, and do so for
the remainder of this paper that A has finite products. This requires that each
AT has finite products preserved by the a*. If A is an object of A, we will need
the M (I)-indexed family of “finite products of members of A7, denoted Py(A).
When S is set the family desired has as fibre over a word w = d1da .. .4 € M (),

4 R. ROSEBRUGH & R. J. WOOD

the (finite) product whose description is AY = A;, x A;, x...xX A;, . We conclude
this section by finding sufficient conditions for the existence of Py(A).

Under suitable hypotheses, the required family of finite products can be
constructed as a solution to a “recursion problem” [15] for the indexed functor
“crossing with A”. We recall that, for S-indexed categories A and B, an indexed
functor F': A — B is a family of functors ! : AT — B!, one for each [in
S. Further, for any arrow « : J —> I in S, we must have the squares

FI

Al B!
o o
A7 B/

commuting up to coherent isomorphism. A recursion problem on A is a pair
(®,Cy) with & an indexed endofunctor of A and Cjy in A'. The recursion
problem (®, Cy) has a solution if there is an object C'in A¥ such that 0*C = Cj
and s*C = &N (.

An hypothesis we shall need on A is that it has an indexed functor E :
A — S with small fibres. An indexed functor E has small fibres, when the
objects of Al whose image under ET is a given object of S! form a family
indexed by an object of S/I. An indexed functor with codomain S and small
fibres was called an “e-functor” in [15]. The name refers to “elements” since
the idea is that ET gives a (very rough) idea of the cardinality of an object in
A’ Examples include the identity functor on S and forgetful functors from
(the S-indexed) category of groups (in S.) More interesting, any category of
sheaves has an e-functor to set given by taking the union of all sections.

In the proposition which follows, we use a basic technique of indexed cat-
egory theory “localizing” at M (I). That is, we use the S/M (I)-indexed cat-
egory AM(I), whose o-indexed families, for ¢ : J — M(I), are defined by
(AM(I))U = A’. The hypotheses on the indexed category A remain true for
AM(I), and allow us to construct the required object there. We denote the
inclusion of generators I in the monoid M (I) by n. The internal sum of A in
Al along 7 is denoted X, A. When S is set, ¥, A is the M (I) family with fibre
A; over i and empty elsewhere.

PrOPOSITION 1. Let S be a topos with NNO and A an S-indexed category
with an e-functor £ : A — S. Suppose that A has finite products and that
the canonical arrows EY(A x B) — EY(A) x EX(B) are all monic. Suppose
that A is in AT and Y, A exists. Then the recursion problem (®,1), where

@ : AMUD _y AMUD) s defined by ®(C) = C x X, A, has a solution.

ProOF. We first localize F to EMI) . AMU) __y M) and note that the

canonical arrows are still monic. Now we can invoke Proposition 2.2 of [15] as
soon as we show that ® is mono-bounded, i. e. for all C'in AMU) there is a B

in §/M (I) such that

RELATIONAL DATABASES AND INDEXED CATEGORIES 5

(i) EBMI(C)— B;
(i) for all C" in (AMU)7 if F7(C")»=— B then E7(®°C')— o*B.

We let B = QUEE+EE AN where Q s the subobject classifier in S/M(I).
Then using the coproduct injection and singleton, E(C)— B is clear and

E(®C") = E(C' x $,A)— E(C") x E(S,A)—> B x B— B.

The last monomorphism, whose existence is guaranteed by Lemma 2.2.3, Chap-

ter 5 of [13], localizes to (S/M(I))? giving (ii). 1

2. A Categorical Model for Databases

For this section we assume that S 1s a topos with NNO and A is S-indexed and
has finite products and an e-functor to S. The scheme of a relation in a database
is the list of attributes (= names of domains) appearing in the relation, that
is, if A in A’ is an I-indexed family viewed as a family of domains, the scheme
of a relation is in M (7). A database with J relations and (database) signature
o J— M(I) is as follows:

DEeFINITION 1. Let A in AT be a family of domains. An A-database with
database signature o, where o : J — M(I), is a relation R : Ry»— ¢* Py(A)
in A7,

REMARKS. The signature o of a database should not be confused with the
scheme of a relation in the database. When A = S = set, the schemes of the
relations in the database, R; for j € J, are elements of M (I) given by the
signature, o : J — M (]).

As J and ¢ vary we obtain databases with varying families of relations.
From this variation we will find a category of databases below.

The category S/M(I) is the base for indexing below, but we wish to also
note that the full subcategory of set/M (I) whose objects are those J — M (1)
with J finite is of important practical interest, for these objects are signatures
of databases in set with finitely many relations. However, this subcategory fails
to have a terminal object. (In fact the terminal object in S/M([) is 1n7(sy :
M(I) — M(I), whose domain is essentially never finite.) The subcategory is
thus unsuitable as a base category for indexing as arguments by localization
become impossible. |

For any object o : J — M (I) of S/M (I), we define D(A)? to be the partial
order, hence category, of subobjects of o* Py(A). If @ : ¢/ — o is an arrow of
S/M(I), ie. oo =o' : J — M(I), define o* : D(A)? — D(A)UI using
substitution in A.

PROPOSITION 2. Assume that all the functors a* preserve monomorphisms.
The D(A)? determine an S/M (I)-indexed category denoted D(A).

6 R. ROSEBRUGH & R. J. WOOD

PROOF. We merely note that to R : Ry ¢* Py(A), we have a* R defined
by

a*Ro— a*c* Py(A) = " Py(A).
Checking functorality of a* and the equations is routine. |

REMARKS. The indexed category of databases which we denote D(A) above
is locally a poset; in fact, it is the indexed category sub(Py(A)) described in
[13], and when A = S it is internally complete and cocomplete. Below we will
consider subcategories arising by restricting the morphisms of D(A). |

Except for Example 3, where we will comment in more detail, we may take
the identity functor as e-functor in the examples below. Thus all conditions of
Proposition 1 are easily met. The substitution functors below are all defined by
pulling back, so the conditions of Proposition 2 are met in all of the examples.

EXAMPLE 1 - CONTINUED. Once again, let S = set and A = set. We note
that for any family < A; >;er of sets, Py(A) is the family of finite products
of the A;. When I, all of the A; and J are finite, a database according to
Definition 1 coincides exactly with the usual definition of a relational database
with I domains < A; >;¢; and J relations. That 1s, we have not lost anything
by considering the setting proposed. We have gained a definition of morphism
of databases — here just an inclusion, and further a definition of substitution
along a function ¢ : K — J, say. This substitution with ¢ monomorphic, for
example, defines a database from a subset of the current relations. It might
define an authorization class for example.

EXAMPLE 2 - CONTINUED. For an object A in (setz)l, the object Py(A) is
constructed “pointwise” i.e.

Po(A)

PO(AO) Po(Al)

Po P1

M (o) ML)

M(I)
where to (a;,,...,a;,) € pal(il ...ix) we have

Po(A)(az,, ... a;) = (Alai,), ..., Alai)) € py (M (1) (3y . . .iy))

Thus a database object with J : Jo — J; relations arises from a diagram such
as the following:

RELATIONAL DATABASES AND INDEXED CATEGORIES 7

YP

Mfo MII

M(I)

That is, it consists of an Ay database, Ry, in set with Jy relations, an A;
database, Ry, in set with J; relations and a function R : Ry —> R; so that
a tuple a = (a;,,...,qa;,) in the j’th relation of Ry has R(a) in the J(j)’th
relation of Ry. Thus R itself is a rather general morphism of databases in that
the domains, relations and attributes are allowed to be fully variable. This
notion of database morphism will be encountered again in the next section.
Restricting A and I to be identity functions, and similarly J, provides a simpler
notion of database morphism. We exploit such restrictions in the next example.

EXAMPLE 3 - CONTINUED. Again letting S = setz, but now with A =
set’! | we obtain rather complicated objects similar to those in Example 2 as
databases, but restricting attention to special cases will provide a description of
the notion of “update”. First, in order to guarantee that Py(A) exists we define
an e-functor £/ : A — S as in Proposition 1. If ag : Ag — Iy, a1 : Ay — I}
is an object of Al with domain Ag <—A,; — A;, we define F!(ag,a;) by

+
Ao A7, A+ 1L
Qg a

Iy

7 h

where AT is the canonical extension of A : Ay — A; given by viewing A as
an [i-indexed family of functions in set viz,

(r(io)=ir (Ad)ic — (A1))iren
and since (Aq)i, = (Ao)i, we may extend the I;-family canonically to
(Er(io)=i, (Ao)ic — (A1)iy + Dien-

Then ai" is defined on A; + I; using a; and the identity on I;. The Ef de-
fine an indexed functor £ : A — S with small fibres. We omit the tech-
nicalities of proving this. With this definition of E it is easy to see that

8 R. ROSEBRUGH & R. J. WOOD

EY(A x By E!(A) x EI(B). Moreover, ¥, A exists as internal sums are

inherited from set2. So the requirements of Proposition 1 are met. The expe-
rienced reader will have noted that Py(A) could have been constructed directly
in the case at hand. The point of the construction given is that it can be carried
out for 8P/ for any topos S with NNO. In that case, at : Ay + 1, — I, above
is replaced with the partial morphism classifier [8] for a; in S/1;.

An update of a database which does not change the current family of rela-
tions is one or several of three possible actions on elements (called “tuples”) of
the current relations:

(1) delete a tuple from a relation

(ii) add a tuple to a relation

(iii) change the values of some components of a tuple.

In fact, the third action can clearly be accomplished by a combination of the
first two actions, namely delete the tuple in its current state and add it in the
new state. Thus, an update can be accomplished by specifying a subset of cur-
rent tuples which will be unchanged by the update (i.e. deleting the tuples to be
changed or deleted) and specifying tuples to be added. In short, it is specified
by a partial monomorphism whose domain 1s the current set of tuples, whose
subset of total definition i1s the set of unchanged tuples, and whose function
part is a monomorphism on that subset. Now let us describe the database ob-
jects in set?’ which express updates. For simplicity, we assume that the family
of domains and the database signature are constant. That is, we assume that
I and J in set? are identity functions, and A in (setpf)I has a fully defined
identity function as its domain. In this special case, consider the diagram below
for a database r with signature o : J — M (). In the diagram following we
denote the domain of ¢* Py(A) by P.

Ro <ZE4 Rd it Rl

o Td 1

P<—<p—1—= P

We see that since rg and ¢z are monic, r4 is monic and then R is too as r1 R = ry.
The conclusion is:

a database object in set’! is an update of a database object in set.

It follows from this conclusion that we can reason about updates by reason-
ing about mere database objects in set?” .

RELATIONAL DATABASES AND INDEXED CATEGORIES 9

EXAMPLE 4. Let us denote by w the category freely generated by the graph
0—1—2—.. .
set” is a topos whose objects are diagrams
DD R (R SR

with X; sets and z; functions, and which can be thought of as X varying in
discrete time steps encoded in the x;. An analysis similar to that in Example
2 shows that a database object in set" is a sequence Ry, Rq, ... of databases in
set, and the general morphisms of them discussed in Example 2. Restrictions
to constant attribute families and relation signatures (the ¢’s of Definition 1)
again provide a description of a database’s variation through discrete time steps.

An important class of elementary topos is the categories of sheaves on a
topological space, or more generally a locale. All base categories S above are
of this form. Categories of fuzzy sets, after appropriate completion for fuzzy
equality, are categories of sheaves on a locale, as Barr [1] has explained.

ExaMPLE 5. Let L be a locale. Following Barr, we will denote by LT the
locale I with a new bottom element adjoined. Then (the completion for fuzzy
equality of) L-fuzzy sets is the category of sheaves on Lt sh(L¥1). Tt is thus
appropriate to define an L-fuzzy database to be a database object in sh(L™).
With this definition, we note that Examples 1 and 2 above are special cases;
Example 4 can be modified to set**!, where w + 1 is 0 — 1 — .. .w.The
topos set@+DT is of the form sh(L*). Tt is worth emphasizing that, with the
definition we give here; an L-fuzzy database has not only fuzzy relations, but
also fuzzy domains and fuzzy index objects for its family of relations. Compare

[14].
3. More indexed categories of databases

We have concentrated on a fixed (I-indexed) object A in the discussion above.
It is clear that variation of A within A7, and further, variation of I, will define
more indexed categories of databases. We have already seen such morphisms
for the case S = set. They appeared as objects with variable attribute families
and indexes for them, together with their associated databases in set2. We
indicate a few definitions:

Let f: B — A be a morphism of A7, The arrow f determines an arrow
of AMU) which we denote Py(f) : Po(B) — Py(A). For signatures o : JJ —
M(I) and 7 : K — M (I) we have a morphism between them in S/M (I) when
there is v : J — K satisfying 7v = 0. Now we define a category D(A)! as
follows. Objects are triples (A4, o, R) with R an A-database with signature o.
An arrow from (4,0, R) to (B, 7, R') is a pair (f: A — B,v:¢ — 7) such
that o* Py(f) restricted to R factors through v*R’ as in the following (recall
that we assume substitution preserves monics):

10 R. ROSEBRUGH & R. J. WOOD

O'*Po(f)

o* Py(A) v*r*Py(B) = * Py(B)

R v*R

¢

Thus, when S = set for example, we are requiring that for any r € R,¢;(r) =
(c*Po(f));(r) lies in (v*R'); = R;(j). Since f determines ¢, our description of
arrows is appropriate.

Now suppose a : J —> [is an arrow of S. We obtain a functor a* :
D(A) — D(A)? when we define

a*(A o, R) = («*(A),0', R)

where o*(A) refers to the indexed structure on A, R’ = (M («)')* R, and the
following is a pullback:

M(J) M(I)

PropPOSITION 3. The categories D(A)! and functors a* determine an S-
indezed category, denoted D(A).

Proor. All that remains after the construction above is to verify that
the D(A)! are categories and that the a* are functorial and compatible with
identities and composition. This is a good exercise in the definitions of indexed
category. |

4. Relational Completion is a Monad

The information obtained by querying a relational database is presented as re-
lations. The relations which present the information derived are obtained by
operating on the “base tables” or stored relations. The operations are collec-
tively known as the “relational algebra” and depend on the schemes of stored
relations as well as on the constants in the family of domains for the database.
Simple examples of the operations are “list tuples in either of two relations”
(union), “list the cartesian product of two relations”, “list tuples whose value
in one attribute equals their value in another” (selection.) The reader will have
noted that combining the latter two sorts of operations allows formation of
pullbacks. We will say that a database is relationally complete if it is closed
under the operations of relational algebra. Of course, a relationally complete

RELATIONAL DATABASES AND INDEXED CATEGORIES 11

database can never be physically stored, having at least countably many rela-
tions. Thus, the ability to present any relation in the relational completion of a
physically stored database is an important objective for a database system. Our
objective in this section is to show that constructing the relational completion
of database objects on a family of domains is a monad in a suitable 2-category,
and that relationally complete databases are precisely algebras for this monad.
Until further notice, we assume that our databases are in set, though much of
what we say holds for databases in indexed categories satisfying the hypotheses
of Proposition 1 by having A = S. Various families of binary and unary oper-
ations on the relations in a database have been called the “relational algebra”.
We describe a simple family of them namely two boolean operations, cartesian
product, projection and selection. We remark that the other common opera-
tions, with the exception of difference, may be derived from those mentioned
below [11]. We are unable to handle the binary difference of relations operation
in our setup. Unlike the other operations of relational algebra we use here, it
1s not monotonic. This spoils functoriality of relational completion and that 1s
too high a price to pay. We make some further remarks about this difficulty
below.

The boolean operations are the simplest to describe. To do so, suppose that
R : Rg=— o*Py(A) is an A-database with signature o : J — M (/) and r, s
are relations in R with the same scheme i.e. for some j;,j2 : 1 — J we have
r = jT(Ro), s = j5(Ro) and oj; = gj3 so r,s=— (0j1)* Po(A). Then rUs,rN
s (0j1)*Po(A) are relations with scheme ¢j;. Next we consider cartesian
product. If r— (0j1)* Py(A) and s> (cj2)*Po(A) then r x s»— (oj; -
0j2)* Po(A) where oj1 - 02 denotes product in M(I) of oj1, and ojs.

Projection and selection require a little more care. Suppose that j : 1 — J
and that r—— (0j)* Py(A). Since oj is a word of length n : 1 — N, say, we
may view the word as oj : [n] — I. Now let ¢ : [n/]>— [n] be one-one.
The projection of r along ¢, denoted m,r is the (n'-ary) relation obtained by
“projecting on the n’ columns specified by ¢.” Finally, for j and r as above, and
viewing oj as ¢j : [n] — I, suppose that ¢j(i1) = 0j(iz) € [and ¢ € Agji,)-
The selection operators S;, =, (r) and S;,=.(r) are defined by equalizers with
codomain r as follows:

71'2'1
Siy=iy(r)——r—>(0))"Po(A) " Asjiy)
71'2'2
and
o iy
Siyze(r) »=——1—— (07)* Py (A) Agjin)

_—

1

Before proceeding, to establish notation, we give a brief description of 2-
categories. The standard reference is [9]. A 2-category B consists of a class of
objects, denoted By, and for each pair B, C of objects, a hom category, denoted
B(B, (), whose objects are called 1-cells, and whose arrows are called 2-cells.
We denote a 2-cell by o : f = ¢ in B(B, (). Composition of 2-cells in B(B, ()

12 R. ROSEBRUGH & R. J. WOOD

is called vertical composition. There is also a horizontal composition of 2-cells
defined by a functor B(C, D) x B(B, (') — B(B, D) for each triple B,C, D
of objects of B. An identity l-cell in B(B, B) for each object B completes
the necessary data. The data are required to satisfy associativity of horizontal
composition, neutrality of identity arrows for horizontal composition and an in-
terchange law linking horizontal and vertical composition. We generally denote
vertical composition by juxtaposition or - , and horizontal composition by o.
The interchange law, for example, states that for

Yo 4T
B o C I D
we have (7' - 1) o (¢/ - o) = (7' 0o ¢') - (T 0 ¢). The motivating example of a

2-category 1is cat, the 2-category with categories as objects, functors as 1-cells
and natural transformations as 2-cells. Another important example is rel, the
2-category of relations. The objects of rel are sets. If B and C' are sets, then
the category rel(B, C) is the partial order, qua category, of relations from B
to (', so vertical composition is trivial and horizontal composition is the usual
composition of relations. It is defined on 2-cells since if R C R’ : B — (' and
S C S . C —s D are relations then SR C S’R’. The interchange law follows
since all equations among 2-cells in rel are trivial: inclusion either holds or it
doesn’t.

We next describe the 2-category cat? in which we will work below. The
objects of cat? are functors. If A : Ay — Ay and B : By — B; are functors
al-cell F: A — B is atriple F = (Fy, F1,®) where Fy : Ay — Bg and
Fy : A; — By are functors and ® : BFy = F1 A is a natural isomorphism. A
2-cell : F —= G : A — B, with G = (G, G1,T), is a pair of transformations
1 : Fo = Gy and 1 : F} = Gy such that T'- (10 A) = (BoTg)-®. Verification
that the obvious compositions of 1- and 2- cells provide a 2-category is left to
the reader.

For any S-indexed category A there is a functor with codomain S called
the Grothendieck construction for A. We denote this functor G4 : gr(A) —
S and briefly describe it. The objects of gr(A) are pairs (I, A) with A an
object of Af. The hom-sets are defined by the formula gr(A) ((I, A), (J, A")) =

{(a, ¥) ‘I 5745 a*A’} . The functor G4 is given on objects and arrows by

projecting on I and «. In fact, G4 is a fibration [5].

We can now proceed to describe the relational completion monad. We recall
that a monad in a 2-category is a l-cell with a monoid structure given by
“unit” and “multiplication” 2-cells [17]. Thus in cat? a monad is an arrow of
cat? together with unit and multiplication 2-cells. We note that a monad on
A:Ayg — A in cat? is specified by a monad My in cat on Ay, a monad
M in cat on Ay and a 2-cell M : M1 A= AM,. These must satisfy equations
involving the structures of the given monads in cat and M.

The domain of our monad C is the Grothendieck construction for the

S/M (I)-indexed category D(A), which is denoted Gp(ay : grD(A) — S/M(I).

RELATIONAL DATABASES AND INDEXED CATEGORIES 13

Thus, the monad C = (C° C, T') requires functors C? : grD(A4) — grD(A),
Cl:S/M(I) — S/M(I) and a transformation I : C’lGD(A) = GD(A)C'O.
The second functor C! is inductively defined and we describe it first. Its
action on a database signature o : J — M (I) produces the database signa-
ture we denote C'(c) : o' — M (I). This is generated, beginning from the
set of relation names J, by freely adjoining to o' all expressions of relational
algebra as described above for the family of domains A. These expressions have
appropriate schemes given by C'1(s). The inductive definition of ¢! (and simul-
taneously C''(c)) follows:
o' is the smallest set satisfying clauses 1. — 5. below subject to identifications
generated by equations 1. — 7.:

1. Vj € J,j € ol (with scheme o(j))

2. if 51, 85 € ! (Wlth scheme C(c

s1) = C'H(0)(s2)) then (s U ss),
(51 Nsy) € ol (with scheme C(1

51))
1) and C*(o)(s2) then (s; x s2) € ot

)
o)
3. if 51, s9 in ¢! (with schemes C(o)

(

(o) (s

(with scheme C1(e)(s1) - C1(0)(s2))

4. if s € o (with scheme Ct(o)(s) : [n] —) and ¢ : [n'] — [n],
then (m,s) € o' (with scheme C(c)(s) -

5. if s € ol CHo)(s)(i1) = CHo)(s)(i2) and if ¢ € Act(o)(s)(iy), then
(Si,=in(s)) and (S;,=c(s)) are in ¢! (with schemes C*(o)(s).)

The following equations (which have no effect on schemes) apply to the “words”
generated above. Let s, s1,s9,53 € 0! be such that the operations mentioned
below are defined, then

1. (81 X 82) X 83 = 81 X (82 X 83)

2. (81U82)U83281U(82U83) (81 USZ) = (82U81) (81 USl) = 51
(81U82)ﬂ$3 = (81083)U(82083) (81U82)ﬂ$2 = 51
and the dual equations

3. if ¢ : [n']=— [n] and ¥ : [n']>=—— [n'] then my7,s = Tuys
4. Si=j(Si=js) = Sizjs = Sj=;s Sizis =5 Sizj(Sk=15) = Sk=1(5=;5s)

Sizc(Si=js) = Si=j(Si=cs) Sizc(Sizcs) = Sizcs
5. 1% (s2Uss) = (81X s2)U(s1 X s3) s1% (82Nsg) = (81X s2)N (81X 53)
6. Tu(s1Usz) = mps1 Umpsy Tp(51 N 82) = Tps1 N Tesy
7. Sizj(s1 Usy) = Sizjs1 U Sizjss Sizj(s1 Ns2) = Si=js1 N Siz;s2

The definition of C! on an arrow 7 : ¢; — o2 of S/M(I) is that induced by the
action of 7 from generators of i to those of ¢3. The transformations making
C' a monad on S/M(I) are easily described. The unit is simply inclusion of
the generators, while the multiplication simply rewrites a “word of words” in

14 R. ROSEBRUGH & R. J. WOOD

(C1(o))* as that element of ¢! obtained by treating operations on elements of
o' as operations defining an element of o!.

Next we decribe C°. The image under C? of an object (o, R) of grD(A)
is (C1(0), R’) where R is the ol-indexed family of relations where, for s €
ol RY is the relation obtained by applying the relational operations in the
construction of s to the corresponding relations of R. Extending C° to arrows
of grD(A) presents no difficulties. Once again, the monad unit is inclusion of
generators and the multiplication arrow on the family of relations component
merely applies the appropriate relational operations.

The non-monotonicity of binary difference of relations would prevent the
definition of C° indicated above. Omne way to get around this problem is to
use updates rather than simply inclusions as arrows in a modified D(A4). The
relationally complete databases are then those algebras for the resulting monad
which have fully defined structural arrows. We have chosen to leave out differ-
ence in order that a “relationally complete database” is precisely an algebra for
the monad C we have described.

Now the definition of T' is straightforward. For any object (o, R) of grD(A),
the natural isomorphism required has components the identity on C*(c). The

reader will have no trouble verifying that C is a monad on G'p(4) in cat®.

The category grD(A)CD of Eilenberg-Moore algebras [17] for the monad C°
has objects pairs (o, R) where ¢ is the database signature of a relationally com-
plete database with relations R. The Eilenberg-Moore algebras set/]W(I)C1
for C! has objects database signatures with interpretations for the operations

C

of relational algebra. There is a functor between these categories GD(A) :

grD(A)¢" —s set/M(I)C" which forgets the relations.

ProrosiTION 4. The functor Gg(A) 1s the Eilenberg-Moore object for the

monad C on Gp(4) in cat2.

Proo¥. This is an instance of a more general result which asserts that
Eilenberg-Moore algebras for monads in cat? are computed, as here, by taking
algebras for the domain and codomain monads and the induced functor between
these categories of algebras. |

For the balance of this section we will assume that the indexing category
S is an elementary topos with NNO and that A = S. Before describing the
2-category arising from a relationally complete database, we note that to any
word w : 1 — M(I) of M(I) we can associate a “diagonal” relation &, :
Ay (vw)*Py(A) = w* Py(A) x w* Py(A). We take Ay to be w*Py(A), and
define §y, by projections to w* Py(A) which are both the identity.

Now let R : Ro=— ¢*Py(A) be a datbase with database signature o :
J — M (I). Provided that R is closed under projection, selection and cartesian
product, we can construct a 2-category which we will denote R. We define the
objects of R to be M (I). Letting v, w : 1 — M (I) be objects of R, we define

RELATIONAL DATABASES AND INDEXED CATEGORIES 15

1-cells by the formula

_J (v, Rj,w) € R|o(j) = vw} if v # w
R(v,w) = { {(v,Rj,w) € R|o(j) =vw} | H{Aw} ifv=w

The two-cells are given by inclusion.

PrOPOSITION 5. Let p be a database closed under selection, projection and
cartesian product. The structure R is a 2-category with composition of 1-cells
given by relational composition.

PrROOF. We need only observe that if r € R(v,w) and s € R(u,v) then
their relational composite (with a slight abuse of our notation for projection
and selection) is

78 = Ty (s DU 7) 1= Tyw (Srv=s.o (s X 7))

so that rs is in R. Now, with identities given by the A’s, we have that R is a
sub-2-category of rel(S) and the required equations all follow from the latter’s
structure. |

COROLLARY 1. If p s a relationally complete database, then R s a 2-
category of relations. |

We end this section with two remarks:

(1) the results raise the question whether a relationally closed database is a “2-
category of relations” in the sense of Carboni and Walters [2] (= the 2-category
rel(E) for a regular category E) — the answer appears to be no;

(ii) the setting we have constructed will be useful for the expression of functional
dependencies which are important in database design — the statement that there
is a functional dependency becomes the categorical statement that a 1-cell in
R(v, w) always has a right adjoint.

Conclusion

We conclude this article with some directions for further work. While the
theory of indexed categories gives a satisfactory account of the theory of rela-
tional databases, viewing databases as 2-categories of relations begs the investi-
gation of databases on a different data structure which appears in a bicategories
closely related to 2-categories of relations, namely bicategories of profunctors.
A (binary) relation from set A; to set A; is determined by stating whether or
not an element of A; 1s related to an element of A;. A profunctor generalizes
this in two ways. First, Ay and A, are categories and there is a set (not just a
boolean truth value) relating an object of A; to an object of A;. Second, this
doubly indexed family of sets is acted on by arrows of the categories A; and
As. Replacing the discrete objects used as domains in the relational theory by

16 R. ROSEBRUGH & R. J. WOOD

categories, and hence considering the profunctor data structure, may provide a
suitable theoretical foundation for object-oriented databases. This observation
is currently under investigation.

REFERENCES

1. M. Barr, Fuzzy set theory and topos theory. Bull. Can. Math. Soc. 29
(1986), 501-508.

2. Aurelio Carboni and R. F. C. Walters, Cartesian bicategories 1. Journal of
Pure and Applied Algebra 49 (1987), 11-32.

3. E. F. Codd, A relational model for large shared data banks. Comm. ACM
13 (6) (1970), 377-387.

4. C. J. Date, Introduction to Database Systems, Fifth edition. Addison-Wesley,
1990.

5. J. W. Gray, Fibered and Cofibered Categories, Proceedings of the Conference
on Categorical Algebra, La Jolla, pages 21-83, Springer, 1966.

6. B. Hilken and D. E. Rydeheard, Indexed categories for program development.
Cahiers de topologie et géometrie différentielle catégoriques, XXXIT (1991),
165-185.

7. M. Hyland and A. M. Pitts. The Theory of Constructions: Categorical
Semantics and Topos-Theoretical Models, Categories in Computer Science and
Logic, Contemporary Math No. 92, American Mathematical Society, 1989.

8. Peter T. Johnstone, Topos Theory, Academic Press, 1977.

9. G. M. Kelly and R. Street, Review of the elements of 2-categories, Lecture
Notes i Math. 420, pages 75-103. Springer-Verlag, 1974.

10. B. LeSaffre, Structures algebriques dans les topos elementaires. PhD thesis,
U. de Paris 7, 1974.

11. D. Maier, The Theory of Relational Databases, Computer Science Press,
1983.

12. Eugenio Moggi, A category-theoretic account of program modules, Mathe-
matical Structures in Computer Science 1 (1991), 103-139.

13. R. Paré and D. Schumacher, Abstract Families and the Adjoint Functor
Theorems, Indezed Categories and their Applications, pages 1-125. Volume 661
of Lecture Notes in Math., Springer-Verlag, 1978.

14. K. Raju and A. Majumdar, Fuzzy functional dependencies and losslessjoin
decomposition of fuzzy relational database systems. ACM Transactions on

Database Systems, 13 (1988), 129-166.

15. Robert Rosebrugh, On defining objects by recursion in a topos, Journal of
Pure and Applied Algebra, 20 (1981), 325-335.

16. R. A. G. Seely, Categorical semantics for higher order polymorphic lambda
calculus, Journal of Symbolic Logic, 52 (1987), 4.

RELATIONAL DATABASES AND INDEXED CATEGORIES 17

17. R. Street, The formal theory of monads, Journal of Pure and Applied
Algebra, 2 (1972), 149-168.

18. J. D. Ullman, Principles of Database and Knowledge Base Systems, Volumes
1 and 2, Computer Science Press; 1988.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
MOUNT ALLISON UNIVERSITY

SACKVILLE, N.B. CANADA

RROSEBRUGHG@GMTA.CA

and

DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTING SCIENCES
DALHOUSIE UNIVERSITY

HALIFAX, N.S. CANADA

RIJWOOD@QCS.DAL.CA

18 R. ROSEBRUGH & R. J. WOOD

References

[1] M. Barr. Fuzzy set theory and topos theory. Bull. Can. Math Soc., 29:501—
508, 1986.

[2] Aurelio Carboni and R. F. C. Walters. Cartesian bicategories 1. Journal
of Pure and Applied Algebra, 49:11-32, 1987.

[3] E. F. Codd. A relational model for large shared data banks. Comm. ACM,
13(6):377-387, 1970.

[4] C. J. Date. Introduction to Database Systems, Fifth Edition. Addison-
Wesley, 1990.

[6] J. W. Gray. Proceedings of the Conference on Categorical Algebra, La Jolla,
chapter Fibered and Cofibered Categories, pages 21-83. Springer, 1966.

[6] B. Hilken and D.E. Rydeheard. Indexed categories for program devel-
opment. Cahiers de topologie et géometrie différentielle catégoriques,

XXXII:165-185, 1991.

[7] M. Hyland and A. M. Pitts. Categories in Computer Science and Logic,
chapter The Theory of Constructions: Categorical Semantics and Topos-
Theoretic Models. Contemporay Math No. 92, American Mathematical
Society, 1989.

[8] Peter T. Johnstone. Topos Theory. Academic Press, 1977.

[9] G. M. Kelly and R. Street. Lecture Notes in Math. 420, chapter Review of
the elements of 2-categories, pages 75-103. Springer-Verlag, 1974.

[10] B. LeSaffre. Structures algebriques dans les topos elementaires. PhD thesis,
U. de Paris 7, 1974.

[11] D. Maier. The Theory of Relational Databases. Computer Science Press,
1983.

12] Eugenio Moggi. A category-theoretic account of program modules. Math-
g ge g g
ematical Structures in Computer Science, 1:103-139, 1991.

[13] R. Paré and D. Schumacher. Indexed Categories and their Applications,
chapter Abstract Families and the Adjoint Functor Theorems, pages 1-125.
Volume 661 of Lecture Notes in Math., Springer-Verlag, 1978.

[14] K. Raju and A. Majumdar. Fuzzy functional dependencies and losslessjoin
decomposition of fuzzy relational database systems. ACM Transactions on

Database Systems, 13:129-166, 1988.

[15] Robert Rosebrugh. On defining objects by recursion in a topos. Journal
of Pure and Applied Algebra, 20:325-335, 1981.

RELATIONAL DATABASES AND INDEXED CATEGORIES 19

[16] R.A.G. Seely. Categorical semantics for higher order polymorphic lambda
calculus. Journal of Symbolic Logic, 52:4, 1987.

[17] R. Street. The formal theory of monads. Journal of Pure and Applied
Algebra, 2:149-168, 1972.

[18] J. D. Ullmann. Principles of database and knowledge base systems, Vol. 1
and 2. Computer Science Press, 1988.

