
Reverse Engineering Legacy Information Systems for Internet Based
Interoperation

Michael Johnson
Department of Computing

Macquarie University
Sydney, Australia

Email: mike@ics.mq.edu.au

Robert Rosebrugh
Mathematics and Computer Science

Mount Allison University
NB, Canada

Email: rrosebrugh@mta.ca

Abstract

The maintenance of legacy information systems is be-
coming increasingly common as needs for internet based
interoperation drive system changes. This paper outlines
new techniques for achieving interoperability among legacy
information systems, usually without making major changes
to the legacy code. The techniques involved use a limited
type of reverse engineering to establish a formal model of
relevant parts of the legacy systems, and they use existing
interfaces to communicate between the code written to sup-
port the reverse engineered models and the legacy code.
Interoperation is then achieved using mathematical tech-
niques to support common logically data independent views
of the reverse engineered models. The paper is somewhat
theoretical as it provides a detailed exposition of the new
techniques, but the techniques themselves are currently be-
ing tested in industrial applications with considerable suc-
cess, and they are based on a framework which has been
used in a number of major consultancies.
Keywords: Logical data independence, category theory, re-
verse engineering, legacy systems, databases, semantic data
modelling

1 Introduction

The growing pervasiveness of internet technologies is
driving business process changes that present significant
software maintenance problems. In particular, legacy in-
formation systems need to be modified to support interbusi-
ness and interdivisional interoperation. Frequently legacy
systems have only limited documentation and major main-
tenance can involve significant reverse engineering.

This paper has grown out of the authors’ previous work
[16], [17] (which has been successfully utilised in a number
of large scale consultancies including [7] and [26] — in fact

the technique grew out of the needs of a very large infor-
mation system specification consultancy [5]). Other related
work includes [2], [11], [12], [15], [22], [23], [20]. Our
work had been intended to limit reverse engineering prob-
lems in the future by improving specification techniques in
the present. However, during the course of recent major
consultancy work with our colleague Dampney [6] we have
discovered that our techniques can be used for a form of
limited reverse engineering that is sufficiently powerful to
enable the design, implementation and maintenance of com-
plicated information system internet based interoperations.

We use techniques that are drawn from category theory.
Category theory ([3], [21], [28]) is a branch of mathematics
that has been widely applied to specification in computer
science. Examples of this application include: abstract data
types [13], [14], semantics of programming languages [24],
[25], and functional programming [1]. The techniques of
category theory are graphical and based on a simple axiom
set. They are highly valued for powerful semantic expres-
siveness.

We make extensive use of the idea of logical data in-
dependence (see, for example, [27]). Logical data inde-
pendence supports views of systems’ data that have differ-
ent logical structure from the original systems. We argue
that this is especially important in developing interopera-
tions between legacy systems as it is rare that such systems
would include common data in the same logical structure.
We present below a mathematical treatment of logical data
independence in a category theoretic framework and show
how it is used to support our interoperation technique.

In summary our technique is as follows. Given two (or
more) legacy information systems for which we wish to de-
sign interoperations, we use category theoretic specification
techniques to develop logically data independent models
of (parts of) the legacy information systems. These mod-
els are formal representations of reverse engineered subsys-
tems. We then develop a single logically data independent



model of (parts of) each of the reverse engineered subsys-
tems. This model, IK, is the locus of interoperation. It is
a single formal representation of those parts of the origi-
nal systems that will be involved in the interoperations. It
remains to develop the interoperation code.

To develop the interoperation code we need to explore
the propagatability of update information from each legacy
system, “out” to the common submodel IK and back “in”
to the other information system(s). It turns out that the out-
ward propagatability (from the legacy system to IK) is guar-
anteed, first by the construction of the reverse engineered
model, and then for formal mathematical reasons from the
reverse engineered model to IK. Inward propagatability on
the other hand cannot be guaranteed. Instead, inward prop-
agatability needs to be explored in two steps. First from IK

to the reverse engineered submodel we use mathematical
methods (since both models are formally specified), and a
catalogue of some of these methods has been published in
[17]. Then model checking techniques are used to test in-
ward propagatability from the reverse engineered submodel
to the legacy system (in fact these checks are typically part
of the reverse engineering process we use, and there is no
need to implement code for this part of the inward propa-
gation since the legacy system interface is used to carry it
out).

The plan of the paper is as follows. In Section 2 we out-
line the category theoretic information system specification
techniques that we use. In Section 3 we develop a treat-
ment of logical data independence in our category theoretic
framework. Section 4 explores the propagation of updates
across data independence boundaries. Finally in Section 5
we show how the theory developed in the earlier sections
can be used to link interacting legacy information systems
using limited reverse engineering.

2 Information System Schemata and States

In this section we provide a brief introduction to category
theoretic information system specification. For more detail
we refer the reader to [16]. Any introduction to category
theory (for example, [3] or [28]) contains the definitions
and elementary properties of the category theoretic concepts
needed below including commuting diagrams, limits, and
coproducts. We will assume some familiarity with the ter-
minology of Entity-Relationship (ER) model [4].

We have called our category theoretic data model the
sketch data model since it relies on the syntactic specifi-
cation device known as a mixed sketch [3]. An information
system schema or EA sketch is specified in two parts. The
first requirement is a graph, roughly corresponding to an
ER graph. The second element is a set of (categorical) con-
straints. The constraints take three forms:

ShipperID

RedOrders �� isa ��

��

�������������
Orders

��

��

��

Quantity

RedStock ��
isa

��

����
���

���
���

�� WineStock

�������������

���
�
�

����
���

���
���

� WhiteStock��
isa

��

��� � �
� � �

� � �
� � �

�

Bin Year

Figure 1. A fragment of a Winery data model
schema IE

1. Commuting diagrams that are pairs of paths in the
graph with common origin and destination.

2. Limit constraints that specify that a certain node in the
graph is to act as the “limit” of a specified diagram in
the graph.

3. Coproduct constraints that specify that a certain node
in the graph is to act as the “coproduct” of specified
nodes in the graph.

EA sketches are special cases of the more general mixed
sketch. They have been studied by the authors and cowork-
ers [18], [19].

An information system state, also called a database state
or instance, is an assignment of (i) a finite set for every node
in the schema (the set of instances or values of that entity or
attribute), and (ii) for every arrow in the schema a function
between the corresponding sets (the relationships among
the entity instances, or the attribute values corresponding
to the instances). These assignments are required to satisfy:

1. The commuting diagrams do indeed commute as dia-
grams of corresponding functions.

2. The sets assigned to limit nodes are indeed the limits
of the corresponding specified diagrams of functions.

3. The sets assigned to coproduct nodes are indeed co-
products (disjoint unions) of the sets assigned to the
corresponding specified nodes.

In other words, a state for an information system schema
is a diagram of sets and functions which is the same shape
as the graph, and whose sets and functions satisfy the con-
straints. When the context is clear, we will refer to a
database stateD for a category theoretic data model schema
IE as simply a state D of IE.

2



Figure 1 is the graph part of an example information sys-
tem schema. It is a small fragment of a business schema for
a winery. The full schema is much bigger. The part shown
includes among its constraints the requirements that: the
upper left triangle commutes, the rectangle commutes and is
a pullback (a kind of limit), and that the WineStock node is
a the coproduct of RedStock and WhiteStock. Also shown
are subtype relations denoted by �� �� : RedOrders is a
subtype of Orders, RedStock and WhiteStock are sub-
types of WineStock. In fact, it also follows from general
properties of coproducts and pullbacks that the functions
corresponding to these isa arrows are injective in any state
of this schema.

The constraints ensure that: The ShipperID of a Re-
dOrder is the ShipperID of the Order (the commuting tri-
angle); Exactly those Orders which are for RedStockss
are RedOrders (the pullback); All WineStocks are either
RedStocks or WhiteStocks (the coproduct).

We note two further points about the schema. First, the
dashed arrow from WineStock to Bin is not part of the
schema. However, the coproduct constraint on WineStock
and the arrows from RedStock and WhiteStock to Bin
mean that in any state of the schema there is a uniquely
defined function from the set of WineStocks to the set of
Bins which agrees with the Bin assignments by color. Sec-
ondly, it is important to realize that not all pairs of paths
need to be commutative diagrams. For example, the Quan-
tity of an Order is different from that of the WineStock of
the Order.

Schemata can be interrelated using schema maps (also
called sketch morphisms). A schema map is a graph mor-
phism between the corresponding graphs which maps each
of the constraints on the first schema graph to a constraint
(already) specified in the second schema graph.

Incidentally, any category has an underlying schema. Its
graph is the underlying graph of the category, and its con-
straints are all of the constraints that happen to be true in the
category: all of the commuting diagrams, all of the limits,
and all of the coproducts. When we refer to a schema map
into a category (as we will in Section 3) we in fact mean
a schema map into the underlying schema of the category.
Moreover, an information system state is itself precisely the
same thing as a schema map from the information system
schema to the underlying schema of the category of finite
sets.

A schema IE generates a classifying category denoted
Q�IE�. Roughly speaking it is the smallest category con-
taining the schema, satisfying the constraints, and closed
under finite limits and finite coproducts. The classifying
category has important technical uses, and, as we are about
to see, is important for logical data independence too.

Figure 2 shows a part of the schema IE from Figure 1
together with a part of the graph of Q�IE�. The node �,

ShipperFOrders

ShipFRedOrd
��

isa

�������������

��

�� �

F

��

ShipFWhiteOrd��
��

isa

��� � � � � � � � � � � �

��
RedOrders �� isa ���� ShipperID WhiteOrd��

		� � � �
� � � �

� � � �
�

Orders

��

Figure 2. A fragment of a classifying data
model schema

present in any EA schema, was not shown in Figure 1. F
is the ID of a supplier F and is part of IE. The new nodes
fromQ�IE� (in italic) include ShipFRedOrd, constructed as
a pullback and ShipFOrders constructed as a coproduct of
ShipFRedOrd and ShipFWhiteOrd — the latter a pullback
constructed using the new node WhiteOrd. The new nodes
correspond to query results on the schema. The presence of
these nodes is crucial to our description of views below.

3 Data Independence and Views

The implementation of physical data independence al-
lows a user to work with a database without needing to con-
cern themselves with how the data are physically stored. On
the other hand, Logical data independence allows working
with an information system without concern for how the
data are logically arranged — a user is insulated from the
schematic structure of the information system. With logical
data independence a user can view and manipulate data in
an arrangement, a logical data structure, which is indepen-
dent of the actual logical structure of the system.

The importance of logical data independence is that it
permits modification of an information system schema, per-
haps adding more attributes, or extra entities and relations
as a business evolves while continuing to use the same ap-
plications programs, and thus to present staff who do not
need access to the new structures with the same interface
that they were using before the change.

Most modern systems include the implementation of
some form of view mechanism in order to obtain partial
logical data independence. Unfortunately, the implemented
view mechanisms suffer serious restrictions, both on the
views that can be defined and further in how the viewed
data can be manipulated.

True logical data independence should have the follow-
ing properties:

3



1. A logically independent view should be able to con-
tain any data that can be derived from the data stored
in the underlying information system. We call this the
universality principle. Of course particular views are
sometimes constructed to limit access to data. A view
can only see the data that it is designed to include. The
point of the principle is that in designing a view we
should be able to choose to include in that view any
data from the universe of data available from the sys-
tem.

2. A logically independent view should be able to be
structured, queried and manipulated as if it were an
independent information system. We call this the mod-
ularity principle. The point of the principle is that as
users we should not be able to distinguish a logically
independent view from an information system, and so
we should for example be able to define logically in-
dependent views of our view, etc, and as designers we
should be able to structure the data in the view in any
manner (compatible with the underlying data) as if we
were designing an independent system.

Interpretation of the two principles just defined must take
place relative to the data model employed. With respect
to the universality principle, the universe of data available
from a system depends upon the queries that are available,
that is, it depends upon the queries that are supported by the
data model in use. In a similar way, the modularity principle
assures us that we can structure viewed data as if it were
an information system. The range of structures we have
available for our systems depends entirely on the data model
we are using.

We now present our approach to logical data indepen-
dence in the sketch data model.

Definition 1 Let IE be an information system schema and
let Q�IE� be its classifying category. A view of IE is a
schema IK and a schema morphism k � IK ��Q�IE�.
For a given view, we will refer to the database state corre-
sponding to the schema IE as the underlying database of
the view.

What makes such a morphism a view of an information
system schema? Since IK is itself a schema, it defines the
structure of the view schema as a (virtual) database. The
schema map k determines, for each node in IK, where to
find the corresponding data in the state of the underlying
database.

As an example of a view, we let IK be the information
schema in Figure 3 (without the constraint that ShipperFOrd
is a coproduct), and k just the inclusion in Q�IE�. One of
the nodes of IK is from IE while others only exist inQ�IE�.

To see that views support true logical data independence
let us consider the principles above.

ShipFRedOrd �� isa ��

��

ShipperFOrd ShipFWhiteOrd��isa��

RedOrders

Figure 3. View schema for a view of the Winery
schema

Universality: As we noted above and in more detail
in [8], the classifying category Q�IE� has a node for ev-
ery query that can be made on an information system with
schema IE. Thus, when designing a view we can choose
nodes whose value under k, that is, whose underlying data,
arises from any query on the underlying database state.

Modularity: In the sketch data model an information
system schema is presented by giving the graph and con-
straints. Now IK which is the view schema, can itself be
first structured, and then queried, or manipulated, as if it
were an ordinary database. Nevertheless it must be remem-
bered that the data available in a state for IK have come
from the underlying database state of the schema IE, and
so they will always be subject to the constraints in IE. The
implications of this will be taken up in the next section.

It is important to remember that the schema map k �
IK ��Q�IE� defining a view carries constraints to con-
straints. Thus, the schema IK cannot include constraints
that do not map to corresponding constraints in IE. This
certainly matches our intuition about how views should op-
erate — it should be impossible to require constraints in
the view schema that are not required in the underlying
database schema since the data from a state of the under-
lying database, which might violate those constraints, is ex-
actly the data seen by the view. However, this does not vio-
late modularity. Rather, it clarifies the meaning of “compat-
ible with the underlying data” in the statement of the mod-
ularity principle.

It should also be noted that the constraints just mentioned
have nothing to do with the queries used to define the view.
A view of the orders from shipper F does not include a con-
straint that says orders come only from shipper F . Instead
it takes its values from queries of the form

select ... where SHIPPER = F.

4 Propagatability and View Updates

In this section we consider propagatability of view up-
dates. Clarity on this will permit consideration of informa-
tion system interoperability. If K is a state of IK for a logi-
cally independent view k of an information system schema
IE, we should be able to insert and delete in K. However k

4



is a view of some of the data (derivable) from IE. Thus an
insert or delete in a state K must transmit the change to the
underlying database stateD of IE . The change to the data of
D must be made in such a way that the resulting view data
corresponds to the intended insert or delete. Unfortunately,
not all view inserts and deletes are propagatable in this way.

We consider some examples. Suppose that the graph of
IK is a part of that for IE, but that IE includes an extra con-
straint that is not required in IK (remember that each con-
straint in IK is mapped by k to a constraint in IE , though
nothing prohibits extra constraints in IE). An insert in the
view schema state which is in violation of the extra con-
straint is acceptable to the (virtual) view database. However,
the insert cannot be propagated to the underlying database
(because it violates the extra constraint). In the example
view of Figure 3, the view does not include the coproduct
constraint on ShipperFOrd so it would be possible to insert
an item in the value of ShipperFOrd without adding an item
to either of its summands. This would violate the constraint
in IE.

As a second example consider the schema

Age �� Person ��Address

with no constraints. Let IK be Person ��Address (with
k the evident inclusion). An insert into Person in IK re-
quires the specification of the person’s address. But upon
propagation to D we find that we cannot make such an in-
sertion, because we need to specify the person’s age too.

Are these problems violations of the modularity princi-
ple? It could be argued that they are. But we point out that
the view schemata are still independent information sys-
tems. As a result of the view morphism they contain extra
“hidden” constraints which are not true violations of mod-
ularity. Such hidden constraints include the “extra” con-
straint, in the first example and a constraint prohibiting in-
serts into Person in the second example.

Taking this point of view, we need to characterize the
hidden constraints. What inserts and deletes are propa-
gatable from views to their underlying databases? This
is known as the view update problem [10, Chapter 9].
The view update problem has provoked widely varying at-
tempts at solution and some confusion because workers
have sought to answer it in terms of schemata. Our posi-
tion is that view updatability is determined by the current
state of a database, and we define propagatable as follows.

Definition 2 Suppose that we have a view k �
IK ��Q�IE� and a current state D for the database
corresponding to IE. A view insert is propagatable if there
is a unique minimal insert in D (the underlying database)
which achieves the view insert.

There is a need for precision about the “unique minimal
insert” in the definition. The phrase is easily misunderstood.

In fact it means that among all of the inserts D �� ��D��

which achieve the view insert, there is one D �� ��D�

which is initial in the full subcategory of the slice category
underD ([3]). The definition of propagatable delete is sim-
ilar using “unique minimal delete”.

For an example of a propagatable delete, consider the
view in Figure 3. Suppose that an item in ShipFWhite-
Ord and its image in ShipperFOrd are deleted in the view
state (both deletes are needed to avoid violatingQ�IE� con-
straints). These deletes require a deletion in the value of
WhiteOrd (in Q�IE�) and then in Orders. They can be
done in a unique correct way with only single deletions
while maintaining the constraints. The resulting state of the
schema IE satisfies the definition.

The definitions can be unified and extended with the
mathematical concept of fibration. General propagatabil-
ity results for particular schema shapes have been studied
in [18], but we will not need them here. We are ready to
show how state-based propagatability and logical data in-
dependence can support interoperability for reverse engi-
neered legacy information systems.

5 Reverse Engineering Application

The setting for our application requires two or more sys-
tems with a need to interoperate. The systems could require
business-to-business web-based transactions, or simply col-
laborative work among divisions inside one organization.

We begin with a limited reverse engineering approach.
Presumably the two systems have some common data that
we seek to synchronize. Probably those data are stored in
radically different ways. We aim to develop models of each
of the systems which include all of the data that are likely
to be relevant for interoperability, and as many of the con-
straints as we can discover. Useful tools of course include
any documentation that is available, most especially data
dictionaries as a complete list of attributes is very useful.
However, the main tool is the legacy system itself which
can be explored using its own interface. One of the great
advantages of the methodology below is that it interacts
with the systems through their extant interfaces as far as
possible, and in fact aspects of the system which are not re-
vealed through interaction with the interface do not need to
be modelled.

To our surprise, there is a very large body of methodol-
ogy that can be used to aid in the reverse engineering pro-
cess. It turns out that our need to elicit structure and con-
straints from the legacy systems to incorporate in our mod-
els corresponds exactly with the needs when modelling real
world and business systems in order to design information
systems. Thus the whole body of information system spec-
ification methodology, and particularly the category theo-
retic specification methodology, can be used to try to cap-

5



ture a reasonable formal representation of a legacy system.
Furthermore, the fact that we only need to model a small
part of each legacy system to support interoperation makes
the elicitation task relatively straightforward.

The use of the extant methodologies does not make the
reverse engineering process trivial, but it is enormously eas-
ier than most reverse engineering tasks. Nevertheless, it is
important not to understate its importance: Many informa-
tion systems development processes aim to develop detailed
documentation, in stark contrast to what is available for
many legacy systems, because the designers expect to work
with a full (often formal) specification for major mainte-
nance tasks, and view reverse engineering as so difficult that
it is better to reimplement systems than to try to understand
them well enough to modify them. Yet our comparatively
easy reverse engineering process in fact provides the infor-
mation needed to develop quite complicated interoperating
systems.

Throughout the remainder of this section we will assume
that the systems have been reverse engineered to give a rep-
resentation of relevant parts of them which is based on the
sketch data model. Thus we have a rich description of the
data via schemata which include constraints. We note that
it is a logically data independent description since we have
structured the data in the reverse engineering process in
whatever manner seemed most convenient, and we do not
need to be concerned about the actual logical structure used
in the legacy system.

Interoperations among the models must be developed for
extension to the legacy systems using their interfaces.

Suppose two systems which need to interoperate have re-
verse engineered schemata IE and IF , with current states E
and F respectively. For the following paragraphs the reader
might think of IE as the schema we considered in Figure
1. For IF one might consider the schema for a shipper (see
Figure 4). We will pursue the example below.

Of course, the information systems must include some
common data (otherwise we would not need them to inter-
operate) but it is unlikely that the common data will have
the same names, or even share similar data structures in the
legacy systems. For example, one system might have sep-
arate nodes for each of several different customers, while
the other has a single node for all customers (as with Or-
ders in IE and ShipperFOrd in IK above). Or one system
might only store the products which are at a particular lo-
cation, while the other stores in one node the products from
all locations and has an attribute to record their locations.

So we again use logical data independence.
Recall that a view consists of k � IK ��Q�IE�, and

that Q�IE� contains all queries that can be performed on
IE. So we can construct views that see the coproduct of
all of the different customers, or the subtype of products
at all locations obtained by pulling back over the particular

Quantity WineryID

RedShip �� isa ��Shipment



� � � � � � � � � � � �

��������������
WhiteShip��isa��

WinERedShip �� isa ��

��

WineryEShip

��

WinEWhiteShip��isa��

��

Figure 4. A fragment of Q�IF �, a data model
schema for a Shipper

location, that is, the result of a query of the form

select ... where LOCATION = ...

Our objective is the construction of a logically indepen-
dent structure, namely a schema IK. The schema should
contain matchable nodes from each of Q�IE� and Q�IF � so
that we can construct schema maps (views)

Q�IE� �� IK ��Q�IF ��

Consider the schema Q�IF � in Figure 4. It represents
a fragment of the classifying category for a shipper’s data
model IF (with the nodes in IF itself distinguished by font).
As an exercise, the reader could fill in the constraints and
additional arrows necessary to make Winery IE’s shipments
arise as pullbacks.

Suppose we simplify the schema IK of Figure 3 by delet-
ing the node RedOrders and continue to denote the obvi-
ous view k � IK ��Q�IE�. The view l � IK ��Q�IF �
is obtained by assigning the nodes in the bottom row of Fig-
ure 4 to nodes of (the simplified) Figure 3.

It is now possible to consider state-based propagatability
across this structure (called a span) of schema maps. Con-
sider arbitrary legal states E and F of IE and IF . An insert
or delete in F affects directly the state K of IK under the
view l. We consider the propagatability of this change of
the state of K to the state E via the view k.

For example, suppose that an item in the value for F of
WhiteShip and its corresponding Shipment are deleted. If it
happens to be an item in the value of WinEWhiteShip then
according to the view l there is a delete in the state of IK .
As we discussed above, this delete is propagatable.

Frequently we can prove lemmas that assure us that all
such changes are propagatable [17]. In that case we have
achieved interoperability, and the schema maps, expressed
in say SQL terms, together with the construction used in the
proof of the lemmas, provide the algorithms for the interop-
erability mechanism.

In cases where propagatability fails in general, we may
identify specific cases causing this. They can be the subject

6



of consultations between the organizations involved to de-
termine constraint or system changes that will assure inter-
operability. Unfortunately, when system changes are agreed
upon, we usually need to resort to more traditional main-
tenance techniques. The advantage is that the precise is-
sues that need to be corrected have then been identified and
agreed upon.

A straightforward extension of the methodology is ap-
propriate when organizations wish to merge operations.
What is required is that each organization’s schema is ex-
tended in harmonization with that of the other in its re-
verse engineered form. This will allow the common view
IK to be “widened” to include the resulting larger parts of
the individual organizations’ schemata. If the organizations
with schemata IE and IF above were to merge operations,
it would be appropriate to extend the schema for each to in-
clude (at least an expanded part) of the other’s schema. This
would allow an expansion of IK to include, for example, in-
formation on all Shipments and perhaps all WineStocks.

6 Conclusion

This paper has developed an approach to the mainte-
nance of legacy information systems. One of the principal
problems which has arisen with the growing use of internet
technologies to link business systems is the need for extant
systems to be modified so as to support internet based inter-
operations.

The approach presented here is founded on the sketch
data model which has already been widely tested in indus-
trial consultancies. This foundation provides relatively rich
representations which aid in properly designing interopera-
ble views, and a well-understood mathematical basis which
supports both constraint definition and the analysis required
to guarantee the propagatability of updates.

The approach uses logical data independence in two
senses.

First it develops reverse engineered subsystems and
presents them as logically independent formal models of
(parts of) the legacy systems. This is a very limited form
of reverse engineering (and is correspondingly easier to
achieve), and the logical data independence ensures that it
is not necessary to completely match the internal data struc-
tures of the legacy systems. The veracity of the models is
ascertained by model checking. The completeness of the
models is not important as we only seek to reverse engineer
enough of the legacy system to support the planned interop-
erations.

Secondly the approach uses logical data independence
between mathematically specified models to connect data
in the reverse engineered submodels even when those data
are stored in perhaps radically different forms.

The interoperations themselves depend upon the prop-
agatability of updates between logically data independent
systems. For the first use of logical data independence (the
reverse engineering part) propagatability is tested as the re-
verse engineered model is developed, and is then guaran-
teed. For the second use of logical data independence it is
necessary to mathematically analyze the logically data in-
dependent views to ensure the required propagatability.

The techniques described here are currently being tested
on the interoperation of the very large Department of Health
data models [6]. Preliminary results have shown the tech-
niques to be very successful, and the development of this
case study (and its important practical use in the organiza-
tion) continues.

One interesting limitation that we have found in apply-
ing the techniques in industry is that they seek to ensure
the propagatability of all updates in both directions (from
legacy systemA to legacy systemB and vice versa). In fact,
most interoperating systems we have investigated do need to
interoperate in both directions, but updates of many particu-
lar data structures only occur in one direction (for example,
the customer changes orders and this needs to be indicated
on the supplier’s systems, while the supplier changes in-
voices and this needs to be indicated on the customer’s sys-
tems). Using data communications terms, simplex interop-
erations (which correspond to the client-server model) are
well understood, full-duplex interoperations (as described
in this paper) are proving very useful but sometimes require
more interoperability than is actually used, and half-duplex
interoperations would seem to suffice. We are currently at-
tempting to extend the techniques presented here to support
“half-duplex” interoperations.

7 Acknowledgements

The research reported here has been supported in part
by the Australian Research Council, the Canadian NSERC,
and the Oxford Computing Laboratory.

References

[1] A. Asperti and G. Longo. Categories, Types and
Structures: An introduction to category theory for the
working computer scientist. MIT Press, 1991.

[2] K. Baclawski, D. Simovici and W. White. A categor-
ical approach to database semantics. Mathematical
Structures in Computer Science, 4:147–183, 1994.

[3] M. Barr and C. Wells. Category theory for computing
science. Prentice-Hall, second edition, 1995.

7



[4] P. P. -S. Chen. The Entity-Relationship Model—
Toward a Unified View of Data. ACM Transactions
on Database Systems, 2:9–36, 1976.

[5] C. N. G. Dampney and Michael Johnson. TIME Com-
pliant Corporate Data Model Validation. Consultants’
report to Telecom Australia, 1991.

[6] C. N. G. Dampney and Michael Johnson. Fibrations
and the DoH Data Model. Consultants’ report to NSW
Department of Health, 1999.

[7] C. N. G. Dampney, Michael Johnson and G. M. Mc-
Grath. Audit and Enhancement of the Caltex Informa-
tion Strategy Planning (CISP) Project. Consultants’
report to Caltex Oil Australia, 1993.

[8] C. N. G. Dampney, Michael Johnson, and G. P. Monro.
An illustrated mathematical foundation for ERA. In
The unified computation laboratory, pages 77–84, Ox-
ford University Press, 1992.

[9] C. N. G. Dampney, Michael Johnson, and Robert
Rosebrugh. View Updates in a Semantic Data Model
Paradigm. ADC2001, 29–36, IEEE Press, 2001.

[10] C. J. Date. Introduction to Database Systems.
Addison-Wesley, seventh edition, 2000.

[11] Zinovy Diskin and Boris Cadish. Algebraic graph-
based approach to management of multidatabase sys-
tems. In Proceedings of The Second International
Workshop on Next Generation Information Technolo-
gies and Systems (NGITS ’95), 1995.

[12] Zinovy Diskin and Boris Cadish. Variable set seman-
tics for generalised sketches: Why ER is more object
oriented than OO. In Data and Knowledge Engineer-
ing, 2000.

[13] J. Goguen, J. W. Thatcher and E. G. Wagner. An initial
algebra approach to the specification, correctness and
implementation of abstract data types. In R. Yeh, Cur-
rent Trends in Programming Methodology IV, 80–149,
Prentice-Hall, 1978.

[14] J. Goguen, J. W. Thatcher, E. G. Wagner, and
J. B. Wright. Initial algebra semantics and continu-
ous algebras. JACM, 24:68–95, 1977.

[15] A. Islam and W. Phoa. Categorical models of rela-
tional databases I: Fibrational formulation, schema in-
tegration. Proceedings of the TACS94. Eds M. Hagiya
and J. C. Mitchell. Lecture Notes in Computer Sci-
ence, 789:618–641, 1994.

[16] Michael Johnson and C. N. G. Dampney. On the value
of commutative diagrams in information modelling.
In The Unified Computation Laboratory, eds Rattray
and Clarke, Springer Workshops in Computing, 77–
84, Springer-Verlag, 1994.

[17] Michael Johnson and Robert Rosebrugh. View up-
datability based on the models of a formal specifica-
tion. Proceedings of FME 2001, 534-549, Lecture
Notes in Computer Science 2021, 2001.

[18] Michael Johnson and Robert Rosebrugh. Universal
view updatability. preprint, 2001.

[19] Michael Johnson, Robert Rosebrugh, and R. J. Wood.
Entity-relationship models and sketches. Submitted to
Theory and Applications of Categories, 2001.

[20] E. Lippe and A ter Hofstede. A category theoretical
approach to conceptual data modelling. RAIRO Theo-
retical Informatics and Applications, 30:31–79, 1996.

[21] Saunders Mac Lane. Categories for the Working
Mathematician. Graduate Texts in Mathematics 5,
Springer Verlag, 1971.

[22] F. Piessens and Eric Steegmans. Categorical data spec-
ifications. Theory and Applications of Categories,
1:156–173, 1995.

[23] F. Piessens and Eric Steegmans. Selective At-
tribute Elimination for Categorical Data Specifica-
tions. Proceedings of the 6th International AMAST.
Ed. Michael Johnson. Lecture Notes Computer Sci-
ence, 1349:424-436, 1997.

[24] D. Scott. Continuous lattices. Lecture notes in Math-
ematics, 274:97–136, 1972.

[25] D. Scott. Domains for denotational semantics. Lecture
notes in Computer Science, 140:577–613, 1982.

[26] G. Southon, C. Sauer, and C. N. G. Dampney. Lessons
from a failed information systems initiative: issues for
complex organisations. International Journal of Med-
ical Informatics, 55:33–46, Elsevier Science, 1999.

[27] J. D. Ullman. Principles of Database and Knowledge-
Base Systems. Volume 1, Computer Science Press,
1988.

[28] R. F. C. Walters. Categories and Computer Science.
Cambridge University Press, 1991.

8


