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Abstract

Partial information is common in real-world databases. Yet the theoretical foundations
of data models are not designed to support references to missing data (often termed nulls).
Instead, we usually analyse a clean data model based on assumptions about complete in-
formation, and later retrofit support for nulls.

The sketch data model is a recently developed approach to database specification based
on category theory. The sketch data model is general enough to support references to
missing information within itself (rather than by retrofitting).

In this paper we explore three approaches to incorporating partial information in the
sketch data model. The approaches, while fundamentally different, are closely related, and
we show that under certain fairly strong hypotheses they are Morita equivalent (that is they
have the same categories of models, up to equivalence). Despite this equivalence, the query
languages arising from the three approaches are subtly different, and we explore some of
these differences.

Key words: Database, semantic data model, null, category theory.

1 Introduction

Partial information is common in real-world databases. To offer a banal example,
most address books contain many entries (records) with an empty address field. In
database terms, we sometimes say that the address field is null.
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The theoretical foundations of databases are most frequently based upon the
mathematical study of relations. Relations, formally subsets of cartesian products,
cannot have fields which are null, and attempts to extend the notion of relation to
permit nulls have led to many anomalies (for a textbook treatment of these prob-
lems see [18], chapter 18). The problem is essentially that the current foundations
depend upon a simple data model based on assumptions about the completeness of
information, and later attempts have been made to retrofit support for nulls.

The sketch data model is a recently developed approach to database specifica-
tion based on category theory. The sketch data model is general enough to support
references to missing information within itself rather than by retrofitting.

In this paper we explore three approaches to incorporating partial information
in database specifications structured as sketch data models. For the purposes of this
analysis in all three cases we begin with a specification which would correspond to
the database with incomplete information prohibited, along with a specification of
which attribute values might be allowed to be null. The approaches differ in how
they encode the information about permitted nulls. Our main results show that
under certain fairly strong hypotheses the three approaches are Morita equivalent
(that is they have the same categories of models, up to equivalence). The three
approaches are well understood by category theorists and have been applied in a
range of areas of theoretical computer science. Their application to data modelling
is, to the authors’ knowledge, entirely new, and the delicacies of their interaction
with the database specification are somewhat surprising.

In the sketch data model the function which assigns to a given entity instance a
certain attribute value is specified by an arrow in a directed graph, which we will
call here an attribute arrow. The approach that we will take is to include with a
specification a subset R of its attribute arrows. The arrows in R will be the ones
for which null values are permitted (all other attribute functions are required to be
fully defined). To simplify these initial explorations of the three approaches we
will put some limitations on allowable elements of R . These are the “fairly strong
hypotheses” referred to above. The limitations ensure that permitting partiality
does not interact too much with other aspects of the specification. Relaxing these
limitations will be the subject of future work. It is worth noting that there are
several inequivalent approaches to relaxing the limitations, so including them here
would necessitate comparing approximately eight approaches to partiality — far
too many to treat with any rigour in one paper. The eight approaches divide into
three closely related groups, so we have chosen to explore here the three groups
under hypotheses that eliminate the other differences.

We conclude this introduction with a brief look at related research.
There has been considerable work on the incorporation of nulls into implemen-

tations of standard data models. For example outer joins and their optimization for
query processing are considered in [22] and [23]. More theoretical treatments in-
volving extensions to the relational model include [19] which introduces the “prob-
abilistic relational model” and [33] which extends the relational model to incor-
porate “maybe information”. Probably the most theoretical treatment of partial
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information and its incorporation into classical data models is given by Date. He
is also the most prolific author in this field [17], [5], [13], [14], [15] and [16], and
he is generally scathing about the theoretical foundations so far provided for partial
information.

Apart from the authors’ own work there has been considerable use of sketches
to support data modelling. Piessens and Steegmans developed a notion of data
specification including sketches. They have obtained results on the algorithmic de-
termination of equivalences of model categories [34] and [35] which were intended
to support plans for view integration. Diskin and Cadish have used sketches for
a variety of modelling purposes including for example [20] and [21]. They have
concentrated on developing the diagrammatic language of “diagram operations”.
Several others, including Lippe and ter Hofstede [32], Islam and Phoa [25], Tuijn
and Gyssens [38], Rosebrugh and Wood [36] and Baclawski et al. [2], have been
applying category theory to data modelling. None of this work has so far consid-
ered modelling partial information and its interaction with sketches.

The remainder of the paper is organised as follows. In Section 2 we briefly re-
view the definitions required by the sketch data model and refer readers if required
to other papers where a more gentle introduction of the model along with appro-
priate motivation is provided. In Section 3 we indicate the general nature of the
three approaches and make precise the hypotheses we put upon R . In Sections 4,
5 and 6 we develop the three approaches in detail, and prove the main results, the
two Morita equivalence theorems. Finally Section 7 considers the resulting query
languages and Section 8 concludes.

2 Background

A review of the basic definitions follows. General introductions to the sketch data
model can be found in for example [27], [28] and [30]. The basic idea is to use
the sketches of categorical universal algebra as a database specification tool. The
sketches are considerably more powerful than standard entity relationship (ER)
models [4] [24] supporting as they do constraint information [26] that would nor-
mally be recorded outside of the standard ER framework. Nevertheless, they are
sufficiently like ER models that practitioners can work with them, and they have
already been valuable in large scale consultancies [6], [7], [8], [10], [37] and [12].
The extra constraint information has proved valuable theoretically too, leading to a
new treatment of the view update problem [11] and to new techniques for database
interoperability [29] and [9].

For background material on the theory of sketches the reader can consult [3] or
[1].

Definition 2.1 A cone C � �vC� IC : BC �� G��pb�b��BC�0
� in a graph G consists of

a node vC of G (the vertex of C), a graph morphism IC : BC �� G (the base diagram
of C), and, for each node b in BC, an edge pb : vC �� ICb. Cocones are dual (that
is we reverse all the edges of G which occur in the definition, so the new definition
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is the same except that the last phrase requires edges jb : ICb �� vC). The edges pb

in a cone (respectively cocone) are called projections (respectively coprojections
or injections).

Definition 2.2 A sketch � � �G�D�L �C � consists of a directed graph G, a set D of
pairs of directed paths in G with common source and target (called the commutative
diagrams) and sets of cones L and cocones C in G. The category generated by the
graph G modulo the commutative diagrams in D is denoted C�� �.

Definition 2.3 Let � � �G�D�L �C � and �
� � �G�

�D�
�L �

�C �� be sketches. A sketch
morphism H : � �� � � is a graph morphism H : G �� G� which carries, by com-
position, commutative diagrams in D, cones in L and cocones in C to respectively
commutative diagrams in D�, cones in L � and cocones in C �.

Definition 2.4 A model M of a sketch � in a category S is a graph morphism from
G to the underlying graph of the category S such that the images of pairs of paths in
D have equal composites in S and cones (respectively cocones) in L (respectively
in C ) have images which are limit cones (respectively colimit cocones) in S.

That is, a model is precisely a sketch morphism from � to the underlying sketch
of the category S. Equivalently, we can also express models in terms of functors as
follows. A model of � in S is exactly the same thing as a functor M : C�� � �� S
such that the cones and cocones in L and C are sent to limit cones and colimit
cocones in S. Thus, the models are some of the objects of the category �C�� ��S� of
functors from C�� � to S.

It is important to note that the category S need not satisfy any particular exact-
ness conditions, though lack of exactness will clearly reduce the number of poten-
tial models.

Definition 2.5 If M and M� are models of � (viewed as functors) a homomorphism
φ : M �� M� is a natural transformation from M to M �.

Models and their homomorphisms form the category of models of � in S de-
noted by Mod�� �S�, namely the full subcategory of the functor category �� �S�
determined by those functors which are indeed models. Frequently we will write
simply Mod�� � when their is unlikely to be confusion about the identity of S.

The following defines the class of sketches which we use for the sketch data
model. We generally work in model categories Mod�� �S� where S is a lextensive
category, that is S has finite limits and disjoint universal finite sums.

Definition 2.6 An EA sketch � � �G�D�L �C � is a (finite limit, finite coproduct)
sketch such that

� There is a specified cone with empty base in L . Its vertex will be called 1. Arrows
with domain 1 are called elements.

� Nodes which are vertices of cocones all of whose injections are elements are
called attributes.

� The graph of G is finite.
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Nodes which are neither attributes, nor 1, are called entities.

We say that the EA sketch is keyed if for each entity E there is a specified
attribute AE called its key attribute and a chosen monic specification kE : E �� �� AE

from the entity to the specified attribute. This is essentially the requirement of entity
integrity, for it means that there is a chosen primary key. Notice that such primary
keys cannot be composite since they are monic specifications to a single attribute.
Nevertheless, there is nothing in the model which forbids other possibly composite
candidate keys — they would be specified by a monic specification to a product of
attributes.

3 Approaches to incomplete information

We propose three ways to consider incomplete information, or null values in at-
tributes, in the sketch data model. Note that the semantics of the sketch data model
requires that the value of an entity in any model can never be null. Moreover, the
value of any arrow between entities in any model can also never be only partially
defined.

Suppose that we are given an EA sketch � and we want to add a treatment
for nulls in Mod�� �S�. The question arising is how to change the sketch � , the
modelling category S, or possibly the notion of model in order to allow for unknown
values at specified attributes of specified entities.

In the first two approaches there is no change to the entities in the sketch. In the
first technique, only attribute cocones are modified, essentially by adding a null
value to the attribute. Thus we change the EA sketch to explicitly include null
values wherever they are to be permitted.

In the second technique, we change the modelling category, normally taken to
be S � set0, the category of finite sets. The idea here is to keep the EA sketch
the same, but to allow it to take values in a category of “lifted sets” — sets which
already incorporate a special value� which will stand for null. The change of the
model category in this case necessitates a change of the notion of model because
lifted sets do not form a lextensive category. So we introduce a new notion called
here R p-model. This approach may be extended to allow more general ordered sets
(as used in domain theory) to model complex partial information, but the treatment
of R p-models is delicate.

The third approach involves considerable modification of the EA sketch, in-
cluding the introduction of new entities, though the modelling category S and the
definition of model do not change. In the third approach each attribute arrow
E �� A which is allowed to be null is replaced by a new entity E � and a span
of arrows E �� E � �� A. In addition we require E � to be complemented, so we
add another entity E �� and a coproduct specification that ensures that in a model
M, ME � ME ��ME �� with the injection ME � ��ME given by the image of the
added arrow E ���E. Incidentally, this implies that ME ���ME is mono, and the
idea here is that ME � is the subobject of ME for which the attribute is fully defined
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(non-null).
In all three cases we will suppose that the attribute arrows for which null values

are permitted are given in a set R . Throughout this paper we will assume that
arrows in R are arrows from a sketch � � �G�D�L �C � with domain an entity and
codomain an attribute such that

� no arrow in R occurs in a diagram in D
� no arrow in R occurs in a cone in L
� no arrow in R occurs in a cocone in C
� the codomain (attribute) of each arrow in R is not the domain of any arrow of G.

Such a set R is called � -independent.
Of course, if � is keyed, we will expect key attributes to never take null values,

so key attribute arrows cannot occur in R .

4 Attributes with null

Suppose given a sketch � and an � -independent set R .
The apparently simplest approach is to suppose that each attribute A which

occurs in the codomain of an arrow of R has added to it a specified element called
null. However, since the same attribute A might occur as the codomain of an arrow
in R and another arrow not in R we will modify the EA sketch � by adding for
each f : E ��A�R a new attribute A f whose elements are those of A and an extra
specified element called null f , and the arrow f : E �� A will be replaced by an
arrow, called f� : E �� A f . We denote the result of this change of � by �

�
R .

More precisely,

Definition 4.1 Let � be an EA sketch and R an � -independent set. Define �
�
R �

�G�
�D�

�L�
�C�� as follows:

� the nodes of G� are the nodes of G together with, for each arrow E
f �� A in R ,

a new node A f

� the edges of G� are the edges of G not in R together with, for each E
f �� A in

R , a new edge E
f� �� A f , and for each new node A f , edges A

iA f �� A f and 1
null f �� A f

� D� � D
� L� � L

� C� is the union of C and for each arrow E
f �� A in R , a new cocone

A
i f �� A f �� null f 1

Notice that we have made no change to the sketch data model methodology as
described elsewhere. Indeed the sketch �

�
R is just an EA sketch. What we are doing

6



������� ��� ����	
���

here amounts to the “special values” idea described by Date [18], Chapter 18.
Notice an advantage of this first approach: We could specify more than one

type of incomplete information simply by analogously adding more than one null
value to an attribute. For example, the Phone attribute of a Person entity may
be unknown because that information is not yet available, or because the person
refuses to provide the information. Such a distinction could be encoded with this
first approach by adding elements that indicate the type of incomplete information.

5 The lift monad and sketch data models

A commonly used construction for dealing with partially defined functions is the
lift monad. The natural domain of this monad is the (2-)category of ordered objects
and order-preserving arrows. When the base category is set, to an ordered set X ,
the lift monad construction assigns the ordered set X� whose elements are those
of X together with a new bottom element � satisfying � � x for every element x
of X . The (order-preserving) inclusion of X in X� and the collapse of two bottom
elements provide a monad structure on ���� : ord �� ord whose algebras ord�

are ordered sets with a bottom element. Morphisms preserve the bottom element.
In applications in computer science, the interpretation of � is often “unde-

fined”. With this in mind we call an arrow in ord� fully defined if the inverse
image of � is �, that is, no non-bottom element goes to the bottom. When the
base category is a topos other than set, it is appropriate to consider the “partial map
classifier” and the resulting “constructive lift monad” studied by Kock [31].

When restricted to the discrete order on a set X , X� may be thought of as a
“flat” order with a bottom element adjoined. We denote the category of such orders
by set� and call its objects “lifted sets”. Note that set� is the full subcategory
determined by objects in the image of the functor

set�� ord�� ord�

where the value of the functor from set to ord at a set X is X with the discrete order.
We denote this image by L : set�� set�. An arrow in set� is fully defined if and
only if it is L f for some arrow f � set. We denote by V : set� �� set the functor
whose value at a lifted set X is the set of elements of X (including �). The set
of non-bottom elements of a lifted set X is denoted φX . For a fully defined arrow
f : X ��Y of set� we denote by φf the restriction of V f to φX so φf : φX ��φY .
Thus φ is functorial and colimit preserving on the image of L in set�0 and inverse to
L there.

Write set�0 for the full subcategory of set� determined by set0. Our second
approach to nulls envisages taking certain “models” in S � set�0 . Some care is
required here as set�0 is not a lextensive category. Indeed, there is a zero object
0 � L /0, so any sum of terminal objects in set�0 is 0. However set�0 does have
sums. They are obtained by summing the “non-bottom” elements and identifying
bottoms, so any finite lifted set is isomorphic to a sum of the object L1.
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As above, we want nulls to have no effect on entities in models. Let C � �vC� IC :
BC ��G� be a cone in an EA sketch � and let M be a functor C�� ��� set�0 . Then
MIC is a diagram BC �� set�0 . If all the arrows MIC f : MICB��MICB� are fully
defined then we denote by ξ�C�M� the limit of the diagram φMIC in set0 (including
the projections). Now we make the following definition.

Definition 5.1 Let � � �G�D�L �C � be an EA sketch and R an � -independent set.
An R p-model M of � is a graph morphism from G to the underlying graph of the
category set�0 such that

R p-1 the images of pairs of paths in D have equal composites in set�0 ;

R p-2 the image of any non-R arrow is fully defined;

R p-3 the image M1 of the vertex 1 of the empty cone is L1;

R p-4 each cone C in L has image Lξ�C�M�;

R p-5 finite sum cocones in C have images which are finite sum cocones in set�0 .

The idea here is that, as noted in Section 3, the value of an entity to attribute
arrow in R may be null (or undefined), but other arrows and exactness requirements
among them should be fully defined. By the first item, R p-models are functors
M : C�� � �� set�0 , and by the third and fourth items they are not models of � in
set�0 . For example, the lift of 1 is not the terminal object in set�0 , and for sets A�B
the product of L�A� and L�B� in set�0 is not generally L�A�B�.

Definition 5.2 A homomorphism of R p-models is a natural transformation, all of
whose components are fully defined. We denote the category of R p-models of an
EA sketch � by R p-Mod�� �.

Notice the requirement that the components be fully defined.
We show that in appropriate circumstances the first two approaches yield the

same models.

Theorem 5.3 Let � be an EA sketch and let R be an � -independent set. There is
an equivalence of categories

Mod�� �
R �	 R p-Mod�� �

Proof. We begin by defining a functor Ψ : Mod�� �
R � �� R p-Mod�� �. Let M be

in Mod�� �
R �. On nodes we set �ΨM��X� � L�M�X��. On edges f not in R we set

ΨM� f � � LM� f �. On edges f : E �� A in R we set

ΨM� f ��x� �

��
�
� if x ��
LM� f���x� if x �M�E� and M� f���x� 
� null f

� if x �M�E� and M� f���x� � null f

We need to show that ΨM is functorial, that it is in R p-Mod�� � and that Ψ is
functorial.

To see that ΨM is functorial we need to show that it respects the commutative
diagrams. Because L is functorial this is clear for commutative diagrams involving
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only non-R arrows. This follows by functoriality of L and M, since the assumptions
on R ensure that only non-R arrows occur in diagrams of D.

To see that ΨM is in R p-Mod�� �, note that R p-1 has just been shown and R p-
2 and R p-3 follow by the definition of ΨM. R p-5 follows by the definition of ΨM
and the fact that L preserves sums. Every cone C in L appears unchanged in �

�
R , so

M carries them to limit cones in set0. Furthermore, because each cone C contains
no R arrows, the definition of ΨM ensures that ΨM carries it to Lξ�C�M�. Thus
ΨM is in R p-Mod�� �.

Next suppose α : M �� N is a morphism of Mod�� �
R �. We define the natural

transformation Ψα by ΨαX � LαX . To check for naturality, suppose f is an arrow
of � . If f is not in R then naturality is immediate since L is a functor. If on the
other hand f : E �� A is an element of R then consider

LME
LαE ��

�ΨM� f

��

LNE

�ΨN� f

��
LMA LαA

�� LNA

and check for commutativity under each of the three cases that appear in the defi-
nition of ΨM� f �. Let x � LME. If x �� then the square commutes since ΨM� f �,
ΨN� f �, LαE and LαA all preserve �. Similarly, in the third case M� f ���x� �
Mnull f and the naturality of α ensures that N� f ���αE�x�� � Nnull f and again
� is preserved. For the remaining (second) case of the definition ΨM� f ��x� �
LM� f���x�, and naturality follows since L is functorial. Finally, note that all com-
ponents are fully defined and so Ψα is indeed a morphism in R p-Mod�� � and Ψ
preserves composition of natural transformations, so it is a functor.

Next we define Φ : R p-Mod�� ���Mod�� �
R �. Let N be in R p-Mod�� �. We

need to define a model ΦN : � �
R �� set0. On nodes we set

�ΦN��X� �

�
φN�X� if X is a node in �

V NA if X � A f for some f in R

On edges f we set

�ΦN�� f � �

�����
����

φN f if f is non R
φNE ��V NE

V N f �� V NA if f � g� : E �� Ag for g in R
φNA ��V NA if f � ig for g in R
1 � �� V NA if f � nullg for g in R

We need to show that ΦN is functorial, that it is a model of � �
R and that Φ is

functorial.
Commutative diagrams in D� are preserved by ΦN since only non R arrows

are involved, N is functorial and φ takes a fully defined commutative diagram in
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set�0 to a commutative diagram of functions in set0. Cones are preserved because
none of their arrows are from R , condition R p-4 ensures that N sends them to
L of a limit cone in set0 and ΦN is defined by applying φ which returns them to
the limit cones in set0. Similarly, N sends cocones in � to sum diagrams in set�0
and by the construction of sums in set�0 , φ carries them to sum diagrams in set0.
Furthermore, the definition of ΦN on their injections guarantees that the cocones A

i f �� A f �� null f 1 are preserved. Thus ΦN is a model of � �
R .

Next suppose α : M��N is a morphism of R p-Mod�� �. We define the natural
transformation Φα by

ΦαX �

�
φαX if X is a node of �
VαA if X � A f for f in R

Note that the first case is well-defined by the fully-definedness condition on mor-
phisms of R p-Mod�� �. To check for naturality, suppose f is an arrow of � �

R . If
f is in � then naturality is immediate since the naturality square is φ applied to a
naturality square for α. If f � g� for g : E �� A in R , consider

φME
φαE ��

� �

��

φNE� �

��
VME

VαE ��

VMg
��

VNE
VNg
��

V MA VαA
�� VNA

Both squares in the diagram clearly commute and the vertical composites define
ΦMg and ΦNg. Finally, since αA is fully defined and being an arrow in set�0
preserves �, the naturality squares for ig and nullg commute for g in R . Clearly
Φ preserves composition of natural transformations, so it is a functor.

Finally, we show that ΨΦ�N� �� N and ΦΨ�M� �� M. On nodes both are
straightforward from the definitions of Ψ and Φ. Indeed, for nodes of � Ψ adds a
bottom element to the value while Φ strips this away. Similarly on R attributes, null
elements are exchanged for bottom elements. Extending this to arrows is straight-
forward. �

It might seem that Definition 5.1 is rather ad hoc, so we provide an alterna-
tive definition as follows. The new definition is motivated by the fact that the
fully-definedness of the components of morphisms of R p-models suggests that
they might be viewed as set0 valued models of some subsketch.

We denote by � -R the EA sketch resulting when the arrows in R are deleted
from � , and by J the inclusion sketch morphism � -R J �� � .

Definition 5.4 An R -partial model of � is a functor M : C�� � �� set�0 such that

C�� -R � J �� C�� � M �� set�0
10
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factors through L as a model of � -R in set0.

Proposition 5.5 If R is � -independent then a functor M : C�� � �� set0 is an R p-
model if and only if it is an R -partial model.

Proof. Suppose M is an R -partial model. Since MJ factors through L as

C�� -R � M �� set0
L �� set�0

say, and L preserves finite sums and finite connected limits we see that for M:

R p-1 holds since M is a functor and there are no R arrows in D

R p-2 holds by the factorization using M. Indeed M of any non-R arrow is fully de-
fined, being L of a set0 arrow

R p-3 holds since M1 � MJ1 � LM1 � L1, the last equality because M is a model and
the first since J is a morphism of sketches

R p-4 For any cone in L , R p-4 holds trivially using that M is a model.

R p-5 holds since L preserves sums (being a left adjoint).

In the other direction, let M be an R p-model and γ be a non-R arrow in G.
Then by R p-2, Mγ� MJγ� L f where f is some set0 arrow, and define Mγ� f .
For nodes X of G define MX to be the unique K in set0 such that LK � MX . Thus
MJX � MX � LMX . Notice that L is bijective on objects and faithful since set�0
is defined to be the free ���� 1 algebras. Thus MJ � LM and it remains to show
that M is a model. That M preserves commutative diagrams and sums follows since
L is faithful and preserves sums. Preservation of limit cones follows by R p-3 and
R p-4. �

In conclusion we remark at this point that while adding bottom values at first
seems an attractive addition, the modification to the notion of model that is intro-
duced in order to provide a reasonable semantics is undesirable. Moreover, there
is, for the basic case of merely lifted sets, no change in the expressive capacity of
the models from that obtained by simply adding null elements to attributes.

Recall that the query language for a sketch data model � is the classifying
category, usually denoted Q�� �. Notice that the query language Q�� � obtained
from � is all that we naturally have available in the case of lifted set models, but
Q�� � need not have the universal property with respect to R p-models that it has
as a classifying category with respect to models, and consequently there may be no
canonical evaluation of a query in Q�� � for an R p-model M.

6 Implementing partial arrows in the sketch data model

Our third approach requires more serious modification of the basic EA sketch. Like
the first approach it does not require variation of the notion of model. It shares with
the lifted set approach the idea that nulls are missing information rather than special
values.

11
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The idea here is that entity to attribute arrows with missing information should
be implemented as partial arrows. Recall that a partial arrow from X to Y is a
pair �i� f � where i : X0 �� X is a part of X (a monic arrow with codomain X ), and
f : X0 �� Y is arbitrary.

An appropriate construction for a sketch that implements this idea follows:

Definition 6.1 Let � be an EA sketch and R a set of � -independent arrows. Define
�
�

R � � �G� �D� �L� �C � as follows:

� the nodes of �G are the nodes of G and for each E
f �� A in R , new nodes E f

and E f

� the edges of �G are the edges of G not in R , and for each E
f �� A in R , new

edges E f
m f �� A, E f

i f �� E and E f
j f �� E

� �D � D
� �L � L

� �C is the union of C and for each E
f �� A in R , a new cocone

E f
i f �� E �� j f E f

Theorem 6.2 Let � be an EA sketch. Let R be an � -independent set. There is an
equivalence of categories:

Mod�� �
R �	Mod�� �

R �

Proof. We begin by defining a functor Ψ : Mod�� �
R � �� Mod�� �R �. Let M be in

Mod�� �
R �. On nodes we define �ΨM�X � MX if X is a node of � , and if X � E f

or X � E f we define �ΨM��X� so that both squares in the following diagram are
pullbacks, and thus the rows are sum diagrams:

ΨM�E f �
ΨM�i f � ��

ΨM�m f �

��

M�E�

M� f��

��

ΨM�E f �
ΨM� j f ���

��
MA M�iA f �

�� M�A f � M1M�nullA�
��

On edges f of G that are not in R we define ΨM� f � to be M� f �. On the edges

E f
m f �� A, E f

i f �� E and E f
j f �� E the effect of ΨM is defined by the diagram

above.
We need to show that ΨM is functorial, that it is an �

�

R -model and that Ψ is
functorial.

To see that ΨM is functorial we need to show that it respects the commutative
diagrams of � �

R . Because M is functorial this is clear for commutative diagrams

12
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involving only non-R arrows, but the assumptions on R and the construction of
�
�

R ensure that only such diagrams occur in �
�

R .

Trivially ΨM send cones in �L to limit cones (after all the cones are the same in
all three of � ��

�
R and �

�

R ). Similarly for cocones in C . The extra cocones in �C are
sent to sum diagrams in set0 as noted above. Thus ΨM is a model.

Next suppose α : M �� N is a morphism of Mod�� �
R �. We define the natural

transformation Ψα on nodes of � by ΨαX � αX . For the nodes E f , ΨαE f is de-
fined as shown in the diagram, noting that the front face is a pullback and that the
commutativity of the back, right and bottom faces ensures that the outside of the
diagram commutes.

�ΨM�E f
�ΨM�i f ��

�ΨM�m f

��

�Ψα�E f

���������� ME

M f�

��

αE

������
�����

����
��

�ΨN�Ef
�ΨN�i f ��

�ΨN�m f

��

NE

N f�

��

MA
M�iA f

�
��

αA

������������������� MA f

αA f

���������������

NA NiA f

�� NAf

For the nodes E f a similar argument defines ΨαE f
.

These definitions make Ψα a natural transformation since, for arrows in � , α
is already natural, while for the arrows m f and i f the naturality squares are the left
and top faces of the diagram above. Similarly for j f . Furthermore, Ψ preserves
composition of natural transformations, so it is a functor.

Next we define Φ : Mod�� �R � �� Mod�� �
R �. Let N be in Mod�� �R �. On nodes

we set

�ΦN��X� �

�
N�X� if X is a node of �
N�A��1 if X � A f is a new attribute

On edges f of G that are not in R we define ΦN� f � to be N� f �. Let the sum in

the second case be ΦN�A�
ΦN�iA f � �� ΦN�Af � �� ΦN�nullA� ΦN�1�. If the edge f

is in R , we use the fact that N�E f �
N�i f � �� N�E� �� N� j f � N�E f � is a sum so that

the arrows N�Ef �
N�m f � �� N�A� � ΦN�A�

ΦN�iA f
�

�� ΦN�Af � and N�E f � �� 1 �

ΦN�1�
ΦN�nullA� �� ΦN�Af � define

ΦN� f�� : ΦN�E��� N�Ef ��N�E f � �� ΦN�Af �

We need to show that ΦN is functorial, that it is a model of � �
R and that Φ is

13



������� ��� ����	
���

functorial.
Commutative diagrams in D� are preserved by ΦN since only non R arrows

are involved and N is functorial. Cones in L� are sent to limit cones in set0 because
none of their arrows are from R , and N is a model. Similarly, N sends cocones in

� to sum diagrams in set0. The only remaining cocones are of the form A
iA f �� A f

�� null f 1 and the definition of ΦN�A f � shows that this is sent to a sum diagram
as above. Thus ΦN is a model of � �

R .

Next suppose α : M �� N is a morphism of Mod�� �

R �. We define the natural
transformation Φα on nodes of � by ΦαX � αX . For the nodes A f , ΦαA f is defined
as shown on the bottom faces of the diagram below, that is �Φα�A f � αA �α1.

ME f
Mi f ��

Mm f

��

αE f

������������ ΦME

�ΦM� f�

��

�Φα�E

�������������� ME f j f
M��

��

αE f ������������

NEf
Ni f ��

Nm f

��

ΦNE

�ΦN� f�

��

NE f
N j f��

��

MA
�ΦM��iA f

�
��

αA
������������� ΦMA f

�Φα�A f

���
�

�
�

� M1
ΦM�null f ���

α1

��������������

NA ΦNiA f

�� ΦNAf N1ΦN�null f �
��

These definitions make Φα a natural transformation since, for arrows in � , α is
already natural, while for the arrows iA f and null f the bottom squares of the dia-
gram above show naturality, remembering that �Φα�A � αA and �Φα�1 � α1. The
only remaining arrows are of the form f � and the middle vertical square of the dia-
gram is the required naturality square. It commutes because all outside faces of the
diagram commute, so the two composites from ΦME to ΦNA f are both the unique
arrow determined by the coproduct in the top line of the diagram. Furthermore, Φ
preserves composition of natural transformations, so it is a functor.

Finally, we need that ΨΦ�N���N and ΦΨ�M���M. On nodes both are straight-
forward from the definitions of Ψ and Φ. Indeed, for nodes and arrows of � neither
Φ nor Ψ makes any change. Ψ adds new entities that model null values in models
with partial arrows while Φ models the partial arrows with null values. Similarly
on R attributes, null elements are exchanged for partial arrow specifications. �

7 Effects on queries

As the previous sections have shown, three constructions that extend an EA sketch
or its models in order to introduce incomplete information result in equivalent
model categories. For example, while the sketches �

�
R and �

�

R are different, they
are Morita equivalent. In the second approach, the case of the category of R p-
models, a different notion of model is used to obtain a category equivalent to the
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model categories for � �
R and �

�

R . However, the classifying categories for � �
R and

�
�

R are clearly different from each other and from the classifying category for � .
As noted above, this last may fail to satisfy the classifying category property for
R p-models. Hence the query languages that arise depend on the construction used
and even to speak formally of the query language for the R p-models may require
a new notion which we call the lift-model classifying category.

The detailed analysis of differences between the classifying categories will be
deferred to a future paper. In the meantime we record here by way of illustration a
few examples.

We begin by comparing the classifying category Q�� � for � with the classifying
category Q�� �

R � for � �
R .

We consider first selection queries. The added null elements for � �
R attributes

mean that we can add queries which refer to null values. For example, we can ask
for the Persons whose phone attribute is null. All of the nulls we have introduced
are essentially typed by their attribute, so one classical difficulty with null values,
that they are equal independent of type does not arise. As we mentioned earlier,
augmenting attributes by additional new values corresponding to different types of
unknown information is handled smoothly by �

�
R .

The case of join queries is not so favourable. For example, Office entities
might have a phone attribute and a join with the data in the previous paragraph
should indicate pairs Person, Office where the Person’s phone number is that
of the Office. Unfortunately in this case, there may be many spurious pairs in the
join — all those Person, Office pairs where the Person and the Office have
unknown phone attributes. It is, of course possible using finite sums (allowed by
Q�� �

R �) to obtain the non-null phones with a query result called phone-nn for
example, then join both Person and Office with this result, and finally join those
results with each other.

Projection queries do not apparently pose any particular difficulty in this case.
The construction of �

�
R from � is done without adding any new nodes to the

graph G of � : only a new element per attribute is added. By contrast, the construc-
tion of � �R adds many new entities, arrows involving them and monic specifications.
Thus we expect stronger effects on the expressivity of the query language. This is
indeed the case.

First for selection queries and referring to our examples above. Suppose that
the Person and Office entities have their phone attributes expressed by arrows PP
and OP respectively. The construction of �

�

R adds new entities called PersonPP

and OfficeOP together with new arrows and monic specifications. When these
entities are modelled they provide the Persons and Offices with known phone
attributes.The join of the new entities over the phone attribute now computes the
expected pairs, at least of PersonPP and OfficeOP entities, but this result is easily
seen as Person, Office pairs via the new monic specifications.

Fortunately the construction of � �

R requires that entities like PersonPP be com-
plemented. Had this not been required, as is usually the case in categories of partial
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morphisms, there would be no way of querying on nulls at all.

8 Conclusion

The most important conclusion to draw from this work is that, unlike the relational
data model, there is, as shown by the first and third approaches to partiality, no need
to alter the foundations of the sketch data model in any way in order to support
partiality. Notice that both �

�
R and �

�

R are standard sketch data models.
On the other hand, interestingly, the second approach does require substantial

modification of the foundations, needing as it does a new definition of model be-
cause set�0 is not lextensive, and the appropriate notion of classifying category for
that approach remains to be developed. It is likely to be some time before a detailed
treatment of sketch data models valued in ordered sets (including information sys-
tems in the sense of Scott) can be worked out. This is contrary to the expectations
of a number of workers who predicted it would be a routine extension of the theory.

The most important results of the paper are the two Morita equivalence theo-
rems. These theorems align precisely the three approaches, under the hypotheses
on R , and show that they have equivalent expressive power.

It is also worth noting two smaller points of interest: the requirement that mor-
phisms of R p-models be fully-defined was unexpected, but can be justified in retro-
spect, and the need to complement the subobject of domain of definition of partial
functions was also unexpected. This latter could be avoided, but only by restricting
the morphisms of models of the third approach by requiring them to be “cartesianly
partial” by which we mean that the naturality squares involving the inclusions of
the domains of definition must all be pullbacks.
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