
Today�

�
Query optimization�

� Algebraic laws� extensions to relational algebra
for select�distinct� grouping�

Soon�

� Estimating costs�

� Algorithms for computing joins� other
operations�

�



Query Optimization

Cost
estimation

Plan
generator

Query

Query plans

Selected plan

�



Query Plan

� Choose operations� e�g�� �� ���

� Order operations�

� Detailed strategy of operations� e�g��

✦ Join method�

✦ Pipelining� consume result of one
operation by another� to avoid temporary
storage on disk�

✦ Use of indexes�

✦ Sort intermediate results�

	



Example

MovieStar�name� addr� gender� birthdate�

StarsIn�title� year� starName�

SELECT title� birthdate

FROM MovieStar� StarsIn

WHERE year � ���� AND

gender � �F� AND

starName � name	

Plan I �from de�nition�

MovieStar StarsIn

�

�title�birthdate

�year����� AND gender��F � AND starName�name






Plan II

MovieStar StarsIn

�title�birthdate

�gender��F � �year�����

��
starName�name

� Join method�

� Can we pipeline the result of one or both
selections� and avoid storing the result on disk
temporarily�

� Are there indexes on MovieStar
gender

and�or StarsIn
year that will make the ��s
e
cient�

�



Generating Plans

� Start with query de�nition�

✦ A plan� but usually a terrible one�

� Apply algebraic transformations to �nd other
plans�

✦ Usually� there is a preferred direction�

✦ Relational algebra is a good start� but we
need also to consider� GROUP BY� duplicate
elimination� HAVING� ORDER BY�

� Evaluate the cost of each generated plan�
using estimates of sizes for intermediate
results� possibly using statistics about the
stored relations�

�



Algebraic Transformations

Laws give equivalent expressions� meaning that
whatever relations are substituted for variables� the
results are the same�

� Commutative and associative laws�

✦ Example� for natural join� R �� S � S ��

R� �R �� S� �� T � R �� �S �� T ��

✦ Leads to join�ordering problem �
important for complex queries�

✦ Same idea for �� �� ��

� But beware theta�join� associative law does
not hold�

✦ Example� relations R�a� b�� S�b� c��
T �c� d��

�R ��
R�b�S�b

S� ��
a�d

T �� R ��
R�b�S�b

�S ��
a�d

T �

The latter doesn�t even make sense�
because a is not an attribute of S or T �

�



Laws Involving Selection

� Splitting�

✦ �C� AND C�
�R� � �C�

�
�C�

�R�
�

✦ �C� OR C�
�R� � �C�

�R� � �C�
�R�

� �Pushing selections��

✦ �C�R �� S� �
�
�C�R�

�
�� S� as long as

condition C makes sense on R�

✦ Also possible to move �C to S if C makes
sense there�

✦ We can even move �C to both if it makes
sense�

✦ Same ideas for commuting � with �� ��
C
�

� Selection and union� intersection� di�erence�

✦ �C�R � S� � �C�R� � �C�S�

✦ Similar for �� ��

� Selection and product � combine to form a
join�

✦ �C�R � S� � R ��
C
S

�



Directionality in Selection Pushing

SKS says always push downward�

� Example� relations R�a� b�� S�b� c�� Replace
�a���R �� S� by

�
�a���R�

�
�� S�

✦ Big win� because we probably reduce the
size of the �rst join argument by a lot�

� Trivial counterexample� what if S is empty�

� Serious counterexample on next slide�

�



Selections Should Go Up Then Down

StarsIn�title� year� starName�

Movie�title� year� studioName�

CREATE VIEW MoviesOf���� AS

SELECT �

FROM Movie

WHERE year � ����	

SELECT starName� studioName

FROM MoviesOf���� NATURAL JOIN StarsIn	

Initial query�

Movie StarsIn

��

�year�����

�starName�studioName

��



Probably Better�

Move � up to root� then down both paths�

Movie StarsIn

��

�year����� �year�����

�starName�studioName

��



Pushing Projections

� �X �R �� S� � �X
�
�Y �R� �� �Z�S�

�
� where Y

is those attributes of R that are either�

�� In X� or

�� A join attribute of R and S�

✦ Z de�ned similarly�

� Similar rules for commuting � with �� ��
C
� ��

Problem

Does � commute with �� With ��

Selection and Projection

� �X
�
�C�R�

�
� �X

�
�C

�
�Y �R�

��
if Y is X

union the attributes mentioned in C�

��



Should We Push Projections�

SKS says pushing projections down is good� but
they are too optimistic� Example�

SELECT starName

FROM StarsIn

WHERE year � ����	

� Suppose there is an index on year�

E�cient

StarsIn

�year�����

�starName

�	



Wastes Time

StarsIn

�starName

�starName�year

�year�����

�




Operators Outside Relational Algebra

Real query optimizer must deal with�

� Duplicate elimination� and operators that
require bag semantics� e�g�� UNION ALL�

� Group�by and HAVING�

Duplicate Elimination

A step in a query tree that involves the relation as
a whole�

� We�ll use � as the duplicate�elimination
operator� e�g�� ��R� � R with duplicates
eliminated�

��



Algebraic Laws Involving �

� Commutes with �� �� ��� ��
C
� �� �� ��

✦ Examples� �
�
�A�c�R�

�
� �A�c

�
��R�

�
�

��R �� S� � ��R� �� ��S��

✦ Note that � goes down both paths of a
binary operator�

� Remember that �� etc�� eliminate duplicates
anyway� Thus� we have rules like� R � S �
��R � S� � ��R� � ��S��

� General goal of moving � around� it is an
expensive operation� and sometimes we can
eliminate it altogether when it meets a �set�
union� e�g�� or a group�by �which always
produces a set��

��



� and �

Duplicate elimination does not commute with
projection�

� Example� R�A�B� � f��� ��� ��� 	�g�
�
�
�A�R�

�
�� �A

�
��R�

�
�

Bag Versions of �� Etc�

Since SQL allows us to require bag union� etc�� we
need operators �B � �B� and �B to denote these
operations�

� Question� which of these are valid�

✦ ��R �B S� � ��R� �B ��S��

✦ ��R �B S� � ��R� �B ��S��

✦ ��R �B S� � ��R� �B ��S��

��



Grouping

Introduce operator � for grouping�

� Takes a list of attributes and aggregated
attributes� plus possibly a HAVING condition�

Example

StarsIn�title� year� starName��

SELECT title� MIN�year�

FROM StarsIn

GROUP By title

HAVING COUNT�starName� 
� �

�title�MIN�year�jCOUNT �starName����StarsIn�

Laws Involving �

Not much�

� � absorbs �� �
�
�X�R�

�
� �X�R��

� Some special opportunities� e�g�� if the the
only aggregation is MIN or MAX� then we can
introduce a � to apply to the operand relation�

✦ Might allow compacting of computation
below�

��


