Today:

- Query optimization.
- Algebraic laws; extensions to relational algebra for select-distinct, grouping.

Soon:

- Estimating costs.
- Algorithms for computing joins, other operations.

Query Optimization

Query Plan

- Choose operations, e.g., σ , \bowtie .
- Order operations.
- Detailed strategy of operations, e.g.:
 - ✤ Join method.
 - *Pipelining*: consume result of one operation by another, to avoid temporary storage on disk.

✤ Use of indexes?

✤ Sort intermediate results?

Example

MovieStar(<u>name</u>, addr, gender, birthdate)
StarsIn(<u>title</u>, year, starName)

SELECT title, birthdate
FROM MovieStar, StarsIn
WHERE year = 1997 AND
gender = 'F' AND
starName = name;

Plan II

- Join method?
- Can we pipeline the result of one or both selections, and avoid storing the result on disk temporarily?
- Are there indexes on MovieStar.gender and/or StarsIn.year that will make the σ 's efficient?

Generating Plans

• Start with query definition.

 $\blacklozenge \quad A \text{ plan, but usually a terrible one.}$

• Apply algebraic transformations to find other plans.

 \blacklozenge Usually, there is a preferred direction.

- Relational algebra is a good start, but we need also to consider: GROUP BY, duplicate elimination, HAVING, ORDER BY.
- Evaluate the cost of each generated plan, using estimates of sizes for intermediate results, possibly using statistics about the stored relations.

Algebraic Transformations

Laws give *equivalent* expressions. meaning that whatever relations are substituted for variables, the results are the same.

- Commutative and associative laws.
 - Example: for natural join: $R \bowtie S = S \bowtie$ $R; (R \bowtie S) \bowtie T = R \bowtie (S \bowtie T).$
 - ✤ Leads to *join-ordering problem* important for complex queries.
 - Same idea for \times, \cup, \cap .
- But beware theta-join; associative law does not hold.
 - Example: relations R(a, b), S(b, c), T(c, d);
 - $(R \underset{R.b > S.b}{\bowtie} S) \underset{a < d}{\bowtie} T \neq R \underset{R.b > S.b}{\bowtie} (S \underset{a < d}{\bowtie} T)$

The latter doesn't even make sense, because a is not an attribute of S or T.

Laws Involving Selection

• Splitting:

$$\bullet \quad \sigma_{C_1 \ AND \ C_2}(R) = \sigma_{C_1}\left(\sigma_{C_2}(R)\right)$$

$$\bullet \quad \sigma_{C_1 \ OR \ C_2}(R) = \sigma_{C_1}(R) \cup \sigma_{C_2}(R)$$

- "Pushing selections":
 - $\sigma_C(R \bowtie S) = (\sigma_C(R)) \bowtie S$, as long as condition C makes sense on R.

• Also possible to move
$$\sigma_C$$
 to S if C makes sense there.

- We can even move σ_C to *both* if it makes sense.
- Same ideas for commuting σ with \times , $\overset{\bowtie}{C}$.
- Selection and union, intersection, difference:

$$\bullet \quad \sigma_C(R \cup S) = \sigma_C(R) \cup \sigma_C(S)$$

• Similar for
$$\cap$$
, $-$.

• Selection and product — combine to form a join:

$$\ \bullet \quad \sigma_C(R \times S) = R \overset{\bowtie}{_C} S$$

Directionality in Selection Pushing

SKS says always push downward.

- Example: relations R(a, b), S(b, c). Replace $\sigma_{a=1}(R \bowtie S)$ by $(\sigma_{a=1}(R)) \bowtie S$.
 - Big win, because we probably reduce the size of the first join argument by a lot.
- Trivial counterexample: what if S is empty?
- Serious counterexample on next slide.

Selections Should Go Up Then Down

StarsIn(title, year, starName)
Movie(title, year, studioName)

CREATE VIEW MoviesOf1996 AS SELECT * FROM Movie WHERE year = 1996;

SELECT starName, studioName FROM MoviesOf1996 NATURAL JOIN StarsIn;

Initial query:

Probably Better:

Move σ up to root, then down both paths.

Pushing Projections

- $\pi_X(R \bowtie S) = \pi_X(\pi_Y(R) \bowtie \pi_Z(S))$, where Y is those attributes of R that are either:
 - 1. In X, or
 - 2. A join attribute of R and S.

 $\blacklozenge \quad Z \text{ defined similarly.}$

• Similar rules for commuting π with \times , $\overset{\bowtie}{C}$, \cup .

Problem

Does π commute with \cap ? With -?

Selection and Projection

• $\pi_X(\sigma_C(R)) = \pi_X(\sigma_C(\pi_Y(R)))$ if Y is X union the attributes mentioned in C.

Should We Push Projections?

SKS says pushing projections down is good, but they are too optimistic. Example:

SELECT starName FROM StarsIn WHERE year = 1996;

• Suppose there is an index on year.

Efficient

Wastes Time

Operators Outside Relational Algebra

Real query optimizer must deal with:

- Duplicate elimination, and operators that require bag semantics, e.g., UNION ALL.
- Group-by and HAVING.

Duplicate Elimination

A step in a query tree that involves the relation as a whole.

• We'll use δ as the duplicate-elimination operator, e.g., $\delta(R) = R$ with duplicates eliminated.

Algebraic Laws Involving δ

- Commutes with σ , \times , \bowtie , $\stackrel{\bowtie}{_C}$, \cup , \cap , -.
 - Examples: $\delta(\sigma_{A=c}(R)) = \sigma_{A=c}(\delta(R)),$ $\delta(R \bowtie S) = \delta(R) \bowtie \delta(S).$

• Note that δ goes down *both* paths of a binary operator.

- Remember that \cup , etc., eliminate duplicates anyway. Thus, we have rules like: $R \cup S = \delta(R \cup S) = \delta(R) \cup \delta(S)$.
- General goal of moving δ around: it is an expensive operation, and sometimes we can eliminate it altogether when it meets a (set) union, e.g., or a group-by (which always produces a set).

δ and π

Duplicate elimination does not commute with projection.

• Example:
$$R(A, B) = \{(1, 2), (1, 3)\}.$$

 $\delta(\pi_A(R)) \neq \pi_A(\delta(R)).$

Bag Versions of \cup , Etc.

Since SQL allows us to require bag union, etc., we need operators \cup_B , \cap_B , and $-_B$ to denote these operations.

• **Question**: which of these are valid?

$$\delta(R \cup_B S) = \delta(R) \cup_B \delta(S)?$$

$$\delta(R \cap_B S) = \delta(R) \cap_B \delta(S)?$$

$$\delta(R - BS) = \delta(R) - B\delta(S)?$$

Grouping

Introduce operator γ for grouping.

• Takes a list of attributes and aggregated attributes, plus possibly a HAVING condition.

Example

```
StarsIn(title, year, starName).
SELECT title, MIN(year)
FROM StarsIn
GROUP By title
HAVING COUNT(starName) >= 3
```

 $\gamma_{title,MIN(year)|COUNT(starName \geq 3)}(\texttt{StarsIn})$

Laws Involving γ

Not much.

- γ absorbs δ : $\delta(\gamma_X(R)) = \gamma_X(R)$.
- Some special opportunities, e.g., if the the only aggregation is MIN or MAX, then we can introduce a δ to apply to the operand relation.
 - Might allow compacting of computation below.