Today:

Query optimization.

e Algebraic laws; extensions to relational algebra
for select-distinct, grouping.

Soon:

e [Lstimating costs.

e Algorithms for computing joins, other
operations.

Query Optimization

Query
Y

Plan
generator

e

Cost
estimation

Y

Selected plan

Query Plan

e Choose operations, e.g., o, X.
e Order operations.
e Detailed strategy of operations, e.g.:

[Join method.

1 Pipelining: consume result of one
operation by another, to avoid temporary
storage on disk.

Use of indexes?

Sort intermediate results?

Example

MovieStar (name, addr, gender, birthdate)
StarsIn(title, year, starName)

SELECT title, birthdate

FROM MovieStar, Starsln

WHERE year = 1997 AND
gender = ’F’ AND
starName = name;

Plan I (from definition)

Ttitle,birthdate

Oyear=1996 AND gender='F' AND star Name=name

X

/\

MovieStar Starsln

Plan 11

Ttitle,birthdate

P>

star Name=name

O gender='F"' Oyear=1996

MovieStar Starsln

e Join method?

e Can we pipeline the result of one or both
selections, and avoid storing the result on disk
temporarily?

e Are there indexes on MovieStar.gender
and/or StarsIn.year that will make the o’s
efficient?

Generating Plans

e Start with query definition.
[1 A plan, but usually a terrible one.

e Apply algebraic transtormations to find other
plans.

[Usually, there is a preferred direction.

[1 Relational algebra is a good start, but we
need also to consider: GROUP BY, duplicate
elimination, HAVING, ORDER BY.

e Evaluate the cost of each generated plan,
using estimates of sizes for intermediate
results, possibly using statistics about the
stored relations.

Algebraic Transformations

Laws give equivalent expressions. meaning that
whatever relations are substituted for variables, the
results are the same.

° Commutative and associative laws.

[1 Example: for natural join: RS = § <
R, (R S)<xT =R (S=T).

[1 Leads to join-ordering problem —
important for complex queries.

[1 Same idea for x, U, N.

e DBut beware theta-join; associative law does
not hold.

[0 Example: relations R(a,b), S(b,c),

T(c,d);
> > > >
(R R.b>S.b S) a<d T # R R.b>S.b (S a<d T)

The latter doesn’t even make sense,
because a is not an attribute of S or 7'

Laws Involving Selection

Splitting:

0 00, anD ¢.(R) = 0¢, (00, (R))

0 o¢, or ¢,(R) =0¢,(R) U oe,(R)
“Pushing selections”:

0 oc(R > S) = (0c(R)) > S, as long as
condition C' makes sense on FR.

[Also possible to move o to S if C' makes
sense there.

[1 We can even move o¢ to both if it makes
sense.

[Same ideas for commuting o with x|, Dg
Selection and union, intersection, difference:
0 oc(RUS)=0c(R)Uoc(S)

(1 Similar for N, —.

Selection and product — combine to form a
join:

0 oc(RxS)=R7S

Directionality in Selection Pushing

SKS says always push downward.

Example: relations R(a,b), S(b,c). Replace
Ta=1(R >15) by (0,=1(R)) > 5.

[1 Big win, because we probably reduce the
size of the first join argument by a lot.

Trivial counterexample: what if S is empty?

Serious counterexample on next slide.

Selections Should Go Up Then Down

StarsIn(title, year, starName)
Movie(title, year, studioName)

CREATE VIEW Movies0f1996 AS
SELECT *
FROM Movie
WHERE year = 1996;

SELECT starName, studioName
FROM Movies0£f1996 NATURAL JOIN StarslIn;

Initial query:

Tstar Name,studioN ame

>
Oyear=1996

Movie Starsln

10

Probably Better:
Move o up to root, then down both paths.

Tstar Name,studioN ame

>
Oyear=1996 Oyear=1996
Movie Starsln

11

Pushing Projections

e 7x(RS)=rmx(my(R) = mz(S)), where Y
is those attributes of R that are either:

1. In X, or
2. A join attribute of R and S.
1 Z defined similarly.

U.

e Similar rules for commuting 7 with X, Dg,

Problem

Does m commute with N? With —7?

Selection and Projection

e Ty (JC(R)) = Ty (ac (Wy(R))) ifYis X
union the attributes mentioned in C.

12

Should We Push Projections?

SKS says pushing projections down is good, but
they are too optimistic. Example:

SELECT starName
FROM StarsIn
WHERE year = 1996;

e Suppose there is an index on year.

Efficient

Tstar Name

Oyear=1996

StarsIn

13

Wastes Time

Tstar Name

Oyear=1996

Tstar Name,year

StarsIn

14

Operators Outside Relational Algebra

Real query optimizer must deal with:

e Duplicate elimination, and operators that
require bag semantics, e.g., UNION ALL.

e Group-by and HAVING.

Duplicate Elimination

A step in a query tree that involves the relation as
a whole.

e We'll use 0 as the duplicate-elimination
operator, e.g., 6(R) = R with duplicates
eliminated.

15

Algebraic Laws Involving 6

ey
O

0 Examples: §(ca=c(R)) = oa=c(6(R)),
O(RpS)=06(R)>6(9).

[1 Note that 6 goes down both paths of a
binary operator.

Commutes with o, X, U, N, —.

Remember that U, etc., eliminate duplicates
anyway. Thus, we have rules like: R U S =

§(RUS) = 8(R) U 8(S).

General goal of moving ¢ around: it is an
expensive operation, and sometimes we can
eliminate it altogether when it meets a (set)
union, e.g., or a group-by (which always
produces a set).

16

0 and 7

Duplicate elimination does not commute with
projection.

e Example: R(A,B) = {(1,2), (1,3)}.
5(ra(R)) £ 74 (8(R)

Bag Versions of U, Etc.

Since SQL allows us to require bag union, etc., we
need operators Ug, Np, and —p to denote these
operations.

¢ Question: which of these are valid?
0 6(RUp S)=06(R) Up 6(5)7
0 6(RnNnp S)=06(R) N 6(5)7?
0 6(R -5 S)=6R) —p 6(5)7

17

Grouping
Introduce operator v for grouping.

e Takes a list of attributes and aggregated
attributes, plus possibly a HAVING condition.
Example

StarsIn(title, year, starName).

SELECT title, MIN(year)
FROM StarslIn

GROUP By title

HAVING COUNT (starName) >= 3

Wtitle,MIN(year)|C’OUNT(starNam623) (StarSIn)

Laws Involving ~

Not much.
e v absorbs &: §(7x(R)) = vx(R).

e Some special opportunities, e.g., it the the
only aggregation is MIN or MAX, then we can
introduce a 0 to apply to the operand relation.

[Might allow compacting of computation
below.

18

