Elmer Tory

Professor emeritus

Elmer Tory

Contact Information

E-mail
elmer@sherpasoftware.ca
Phone
(506) 536-2426
Office
Office hours
Other websites

Contact

 

36 Queens Road

P. O. Box 6054, Sackville, NB, E4L 1G6

Phone: (506) 536-2426


Education

Bachelor of Science (Honours Chemistry), University of Alberta

 

Ph. D. (Chemical Engineering), Purdue University

Research interests

Sedimentation of polydisperse suspensions

Publications

Books

 E. M. Tory (ed.). Sedimentation of Small Particles in a Viscous Fluid, Computational Mechanics Publications, Southampton, UK (1996).

 

M. C. Bustos, F. Concha, R. Bürger, and E. M. Tory. Sedimentation and Thickening. Phenomenological Foundation and Mathematical Theory. Kluwer Academic Publishers, Dordrecht (1999).

 

 

Thesis  

E. M. Tory. Batch and continuous thickening.  Ph. D. thesis, Purdue University, June, 1961.

  

  

Papers

93. Monika Bargiel and Elmer M. Tory. Solution of Linear and Nonlinear Diffusion Problems via Stochastic Differential Equations, Computer Science 16, 415-428 (2015).

 

92. Monika Bargiel and Elmer M. Tory. Effect of higher-order and lubrication terms on the stability of polygonal arrangements of sedimenting spheres, Powder Technology 264, 519-526 (2014). 

 

91. Monika Bargiel and Elmer M. Tory. Extension of the Richardson-Zaki equation to suspensions of multisized irregular particles, Int. J. Mineral Processing 120, 22-25 (2013).

 

90. Monika Bargiel, Merzik T. Kamel, and Elmer M. Tory. Periodic motion of four spheres in a "kite" configuration, Powder Technology 214, 14-20 (2011).

 

89. Stefan Berres, Ricardo Ruiz-Baier, Helmut Schwandt, and Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow, Networks and Heterogeneous Media 6, 401-423 (2011).

 

88. Stefan Berres, Ricardo Ruiz-Baier, Helmut Schwandt, and Elmer M. Tory. Two-dimensional model of pedestrian flow, P.G. Ciaret and Ta-Tsien Li, Eds. Series in Contemporary Applied Mathematics (Proceedings of  HYP2010), Higher Education Press (Beijing) and World Scientific (Singapore) 2011. 

 

87. F. Betancourt, R. Bürger, K.H. Karlsen, and E.M. Tory. On nonlocal conservation laws modelling sedimentation, Nonlinearity24, 855-885 (2011).

 

86. Monika Bargiel and Elmer M. Tory. A comparison of the results of two methods for computing the sedimentation behavior of bidisperse suspensions, Int. J. Mineral Processing, 95, 53-61 (2010).

 

85. Monika Bargiel and Elmer M. Tory. A particle-based approach to sedimentation and fluidization. In Leading-Edge Applied Mathematical Modeling Research, Matias P. Alvarez (ed), Nova Science Publishers, 2008, pp 19-65.

 

84. Monika Bargiel and Elmer M. Tory. A five-parameter Markov model for simulating the paths of sedimenting particles, Appl. Math. Modelling 31, 2080-2094 (2007).

 

83. Monika Bargiel and Elmer M. Tory. Stability of tridisperse suspensions, Computing and Visualization in Sci. 10, 163-170 (2007).

 

82. Monika Bargiel and Elmer M. Tory. Simulation of sedimentation and fluidization of polydisperse suspensions via a Markov model, Chem. Eng. Sci. 61, 5575-5589 (2006).

 

81. Monika Bargiel and Elmer M. Tory. An extension of the particle-based approach to simulating the sedimentation of polydisperse suspensions, Int. J. Mineral Processing 79 235-252 (2006).

 

80. Stefan Berres, Raimund Bürger and Elmer M. Tory. Applications of polydisperse sedimentation models, Chem. Eng. Journal, 111, 105-117 (2005).

 

79. Monika Bargiel, Robert A. Ford and Elmer M. Tory. Simulation of sedimentation of polydisperse suspensions: a particle-based approach, AIChE Journal, 51, 2457-2468 (2005).

 

78. Stefan Berres, Raimund Bürger and Elmer M. Tory. On mathematical models and numerical simulation of the fluidization of polydisperse suspensions, Applied Math. Modelling, 29, 159-193 (2005).

 

77. S. Berres, R. Bürger, and E. M. Tory. Mathematical model and numerical simulation of the liquid fluidization of polydisperse solid particle mixtures, Computing and Visualization in Sci. 6, 67-74 (2004).

 

76. E. M. Tory and R. A. Ford. Simulation of sedimentation of bidisperse suspensions. Int. J. Mineral Processing 73, 119-130 (2004).

 

75. Stefan Berres, Raimund Bürger, Kenneth H. Karlsen and Elmer M. Tory. Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math.64, 41-80 (2003).

 

74. Stefan Berres, Raimund Bürger and Elmer M. Tory. Mixed-type systems of convection-diffusion equations modeling polydisperse sedimentation, In Analysis and Simulation of Multifield Problems, M.A. Efandiev and W.L. Wendland (Eds.), Lecture Notes in Applied and Computational Mechanics, Vol. 12, Springer-Verlag, 2003, pp 257-262.

 

73. E. M. Tory, R. A. Ford and M. Bargiel. Simulation of sedimentation of monodisperse and polydisperse suspensions, Analysis and Simulation of Multifield Problems, M.A. Efandiev and W.L. Wendland (Eds.), Lecture Notes in Applied and Computational Mechanics, Vol. 12, Springer-Verlag, 2003, pp 343-348.

 

72. R. Bürger, K. H. Karlsen, E. M. Tory, and W. L. Wendland. Model equations and instability regions for the sedimentation of polydisperse suspensions of spheres. Z. Angew. Math. Mech. 82, 699-722 (2002).

 

71. M. Bargiel and E. M. Tory. Packing fraction and measures of disorder of ultradense packings of equal spheres. II. Transition from dense random packing. Advanced Powder Technol. 12, 533-557 (2001).

 

70. E. M. Tory and R. A. Ford. Stochastic simulation of sedimentation. In Advances in Fluid Mechanics III, M. Rahman and C. A. Brebbia (Eds.). WIT Press (2000), pp. 663-672.

 

69. E. M. Tory. Stochastic sedimentation and hydrodynamic diffusion. Chemical Engineering Journal 80, 81-89 (2000).

 

68. R. Bürger and E. M. Tory. On upper rarefaction waves in batch settling. Powder Technol.108, 74-87 (2000).

 

67. E. M. Tory and M. T. Kamel. Mean velocities in polydisperse suspensions. Powder Technol. 93, 199-207 (1997).

 

66. M. Bargiel and E. M. Tory. Stochastic dynamic solution of nonlinear differential equations for transport phenomena. AIChE Journal 42, 889-891 (1996).

 

65. E. M. Tory and C. H. Hesse. Experimental evidence for a Markov model for sedimentation. In Sedimentation of Small Particles in a Viscous Fluid, E. M. Tory (ed.), Computational Mechanics Publications, Southampton, UK (1996), pp. 241-281.

 

64. C. H. Hesse and E. M. Tory. The stochastics of sedimentation. In Sedimentation of Small Particles in a Viscous Fluid, E. M. Tory (ed.), Computational Mechanics Publications, Southampton, UK (1996), pp. 199-239.

 

63. E. M. Tory, R. J. Hughes, and M. Bargiel. Validity of measures of sedimentation velocity. Powder Technol. 84, 259-267 (1995).

 

62. E. M. Tory, M. Bargiel, and R.L. Honeycutt. A three-parameter Markov model for sedimentation III. A stochastic Runge-Kutta method for computing first-passage times. Powder Technol. 80, 133-146 (1994).

 

61. E. M. Tory. The complex behaviour of simple systems of sedimenting spheres. Proc. Atlantic Math. Days, L. E. Garey and M. H. Hamdan (eds.), Univ. New Brunswick, Saint John, NB, Oct. 29-30, 1993. Reprinted in The Blundon Lectures, 1982-1997, R. Turner (ed.), UNB, 1997, pp. 105-110

 

60. M. Bargiel and E. M. Tory. Packing fraction and measures of disorder of ultradense packings of equal spheres. I. Nearly ordered packing. Advanced Powder Technol. 4, 79-101 (1993).

 

59. E. M. Tory, M. Bargiel, and M. T. Kamel. The distribution of velocities of a concentric sphere in a dispersion of spheres sedimenting in a spherical container. Powder Technol. 74, 159-169 (1993). Erratum. ibid.94, 267 (1997). 

 

58. E. M. Tory, M. T. Kamel, and C. F. Chan Man Fong. Sedimentation is container-size dependent. Powder Technol. 73, 219-238 (1992).

 

57. E. M. Tory and M. T. Kamel. A note on the periodic motion of four spheres. Powder Technol. 73, 95-96 (1992).

 

56. E. M. Tory and D. K. Pickard. Unilateral Gaussian Fields. Advances in Appl. Prob. 24, 95-112 (1992).

 

55.E. M. Tory, M. T. Kamel, and C. B. Tory. Sedimentation of clusters of identical spheres III. Periodic motion of four spheres. Powder Technol. 67, 71-82 (1991).

 

54. M. T. Kamel and E. M. Tory. Sedimentation of clusters of identical spheres II. Periodic motion of three spheres. Powder Technol. 63, 187-195 (1990).

 

53. M. Bargiel and E. Tory. Simulation of homogeneous isotropic transitional packings of equal spheres. Proc. 2nd World Congress Particle Technology, Kyoto, Sept. 19-22, 1990, Part I, pp. 142-149.

 

52. E. M. Tory. A stochastic model for the slow sedimentation of small particles in a viscous fluid. In Ocean Waves Mechanics, Computational Fluid Dynamics and Mathematical Modelling, M. Rahman (ed.), Computational Mechanics Publications, Boston, 1990, pp. 671-685.

 

51. M. T. Kamel and E. M. Tory. Sedimentation of clusters of identical spheres I. Comparison of methods for computing velocities. Powder Technol. 59, 227-248 (1989). Erratum. ibid. 94, 266 (1997).

 

50. E. M. Tory and D. K. Pickard. A stochastic analysis of a new fixed-distance experiment in sedimentation. In Continuum Mechanics and its Applications, G. A. C. Graham and S. K. Malik (eds.), Hemisphere, New York, 1989, pp. 289-298.

 

49. E. M. Tory and M. T. Kamel. On the divergence problem in calculating particle velocities in dilute dispersions of identical spheres III. Sedimentation in a spherical container. Powder Technol. 55, 187-192 (1988).

 

48. E. M. Tory and M. T. Kamel. On the divergence problem in calculating particle velocities in dilute dispersions of identical spheres II. Effect of a plane wall. Powder Technol. 55, 51-59 (1988). Erratum. ibid. 94, 265 (1997).

 

47. D. K. Pickard, E. M. Tory, and B. A. Tuckman. A three-parameter Markov model for sedimentation II. Simulation of transit times and comparison with experimental results. Powder Technol. 49, 227-240 (1987).

 

46. D. K. Pickard and E. M. Tory. A Markov model for sedimentation: Fundamental issues and insights. In Advances in the Statistical Sciences, Vol. IV, Stochastic Hydrology, I. B. MacNeill and G. J. Umphrey (eds.), D. Reidell, Dordrecht, 1987, pp. 1-25.

 

45. E. M. Tory and D. K. Pickard. On the divergence problem in calculating particle velocities in dilute dispersions of identical spheres. Powder Technol. 47, 39-42 (1986). Corrigenda, ibid. 48, 189 (1986).

 

44. E. M. Tory and D. K. Pickard. Experimental evidence for a stochastic approach to sedimentation. In Flocculation, Sedimentation and Consolidation, B. M. Moudgil and P. Somasundaran (eds.), AIChE, New York, 1986, pp 297-306.

 

43. D. K. Pickard, B. A. Tuckman, and E. M. Tory. Experimental evidence for a three-parameter Markov model for sedimentation: Simulation and analysis of transit times for spheres in monodisperse suspensions. Proc. 1st World Congress Particle Technology, Nürnberg, April 16-18, 1986, Part IV, pp. 325-339.

 

42. E. M. Tory, C. B. Yhap, and D. K. Pickard. Periodicity and fine structure in two-dimensional gravitational random packing. Particulate Sci. and Technol. 3, 89-99 (1985).

 

41. W. S. Jodrey and E. M. Tory. Computer simulation of close random packing of equal spheres. Phys. Rev. A 32, 2347-2351 (1985). Erratum. ibid.34, 675 (1986).

 

40. D. K. Pickard and E. M. Tory. Simulation of sedimentation, Stochastic Hydrology, Applied Probability in Biology and Engineering, Adv. Appl. Prob. 16, 22 (1984).

 

39. E. M. Tory and D. K. Pickard. Sedimentation of slurries: the long and winding road to chaos. Proc. Atlantic Math Days, Fredericton, NB, Oct. 28-29, 1983. University of New Brunswick, May 1984, pp. 84-96.

 

38. E. M. Tory and W. S. Jodrey. Comments on some types of random packing. In Advances in the Mechanics and The Flow of Granular Materials. M. Shahinpoor (ed.), Trans Tech Publications, Vol. 1, pp 75-106 (1983).

 

37. E. M. Tory, W. S. Jodrey, and D. K. Pickard. Simulation of random sequential adsorption: efficient methods and resolution of conflicting results. J. Theor. Biol. 102, 439-445 (1983).

 

36. E. M. Tory and D. K. Pickard. Extensions and refinements of a Markov model for sedimentation. J. Math. Anal. Appl. 86, 442-470 (1982).

 

35.W. S. Jodrey and E. M. Tory. Computer simulation of isotropic, homogeneous, dense random packing of equal spheres. Powder Technol. 30, 111-118 (1981).

 

34. E. M. Tory and D. K. Pickard. A resolution of the disparity between interface velocities and mean velocities in cluster settling. Proc. 2nd World Congress Chem. Eng., Montreal, Oct. 4-9, 1981, Vol. 5, pp. 254-257.

 

33. E. M. Tory and D. K. Pickard. An application of mixture theory to particulate sedimentation. ASME J. Appl. Mech. 48, 210 (1981).

 

32. D. K. Pickard and E. M. Tory. A critique of Weiner’s work on Palasti’s conjecture. J. Appl. Prob. 17, 880-884 (1980).

 

31. W. S. Jodrey and E. M. Tory. Random sequential packing in Rn, J. Stat. Comp. Simulation  10, 87-94 (1980).

 

30. D. K. Pickard and E. M. Tory. Experimental implications of a Markov model for sedimentation. J. Math. Anal. Appl. 72, 150-176 (1979).

 

29. E. M. Tory and D. K. Pickard. Some comments on “Sequential random packing in the plane” by H. J. Weiner. J. Appl .Prob. 16, 699-702 (1979).

 

28. M. T. Kamel, E. M. Tory, and W. S. Jodrey. The distribution of kth nearest neighbours and its application to cluster settling in dispersions of equal spheres. Powder Technol. 24, 19-34 (1979).

 

27. D. K. Pickard and E. M. Tory. The radial distribution of hard rods. J. Chem. Phys. 70, 5923 (1979).

 

26. M. T. Kamel, P. N. Kaloni, and E. M. Tory. Two-dimensional internal flows of polar fluids. J. Rheology 23, 141-150 (1979).

 

25. W. S. Jodrey and E. M. Tory. Simulation of random packing of spheres. Simulation32, 1-12 (1979).

 

24. K. Gotoh, W. S. Jodrey, and E. M. Tory. Average nearest-neighbour spacing in a random dispersion of equal spheres. Powder Technol. 21, 285-287 (1978).

 

23. E. M. Tory, J. W. Mosevich, and V. M. Reddy. A technique for the determination of the concentration distribution in a sedimenting suspension via radioactive solids. Can. J. Chem. Eng. 56, 472-477 (1978). Errata ibid. 57, 121 (1979).

 

22. K. Gotoh, W. S. Jodrey, and E. M. Tory. Variation in the local packing density near the wall of a randomly packed bed of equal spheres. Powder Technol. 20, 257-260 (1978).

 

21. K. Gotoh, W. S. Jodrey, and E. M. Tory. A random packing structure of equal spheres – statistical geometrical analysis of tetrahedral configurations. Powder Technol. 20, 233-242 (1978).

 

20. E. M. Tory and D. K. Pickard. A three-parameter Markov model for sedimentation. Can. J. Chem. Eng. 55, 655-665 (1977).

 

19. D. K. Pickard and E. M. Tory. A Markov model for sedimentation. J. Math. Anal. Appl. 60, 349-369 (1977).

 

18. J. R. Smith and E. M. Tory. Unsteady viscometric flow. Can. J. Chem. Eng. 51, 642-646 (1973).   

 

17. E. M. Tory, B. H. Church, M. K. Tam, and M. Ratner. Simulated random packing of equal spheres. Can. J. Chem. Eng. 51, 484-493 (1973). Errata. ibid. 51, 622 (1973).

 

16. E. M. Tory. Continuous thermal diffusion. Chem. Eng. Sci. 27, 1194 (1972).

 

15. E. M. Tory. A simple representation of polyadic harmonics and their inner products with other polyadics. Chem. Eng. Sci. 24, 1637-1639 (1969).

 

14. E. M. Tory, N. A. Cochrane, and S. R. Waddell. Anisotropy in simulated packing of equal spheres. Nature 220, 1023-1024 (1968).

 

13. E. M. Tory. Discussions and contributions (Papers by C. C. Dell and J. Sinha, and K. Scott and J. L. Alderton. Trans. Instn Min. Metall. (Section C: Mineral Process. Extr. Metall.) 76, C139-C140 (1967).

 

12. E. M. Tory and D. Hum. Correspondence. New optimization method is highly suitable for chemical engineering applications. Can. J. Chem. Eng. 45, 119 (1967).

 

11. P. T. Shannon and E. M. Tory. The analysis of continuous thickening. SME Trans. 235, 375-382 (1966).

 

10. R. J. Wheeler and E. M. Tory. Volume-density relationships and their use in the study and prevention of kinematic waves in traffic. Department of Highways, Ontario, Report RB112, June, 1966.

 

9. E. M. Tory and P. T. Shannon. Subsidence of slimes. J. Colloid & Interface Science 21, 107-109 (1966).

 

8. P. T. Shannon and E. M. Tory. Correspondence. Batch and continuous thickening. Prediction of batch settling behavior with results for rigid spheres. Ind. Eng. Chem. Fundamentals 4, 367-368 (1965).

 

7. R. J. Wheeler and E. M. Tory. The use of the flux plot in traffic control. Traffic Quarterly 19, 369-383 (1965).

 

6. E. M. Tory and P. T. Shannon. A reappraisal of the concept of settling in compression. Settling behavior and concentration profiles for initially concentrated calcium carbonate slurries. Ind. Eng. Chem. Fundamentals 4, 194-204 (1965).

 

5. P. T. Shannon and E. M. Tory. Settling of slurries – new light on an old operation. Ind. Eng. Chem. 57 (2) 18-25 (1965).

 

4. E. M. Tory. Absence of concentration gradients in slurries settling at high Reynolds numbers. Ind. Eng. Chem. Fundamentals 4, 106-107 (1965).

 

3. P. T. Shannon, R. D. DeHaas, E. P. Stroupe, and E. M. Tory. Batch and continuous thickening. Prediction of batch settling behavior with results for rigid spheres. Ind. Eng. Chem. Fundamentals 3, 250-260 (1964).

 

2. P. T. Shannon, E. Stroupe, and E. M. Tory. Batch and continuous thickening. Basic theory. Solids flux for rigid spheres. Ind. Eng. Chem. Fundamentals 2, 203-211 (1963). Correction. ibid. 3, 184 (1964).

 

1. W. J. Brickman, H. B. Dunford, E. M. Tory, J. L. Morrison, and R. K. Brown. The reactivity of cellulose II. Water sorption, heats of wetting, and the reactions with thallous ethylate in ether, nitration mixtures, and heavy water of cotton linters alternately wetted with water and dried. Can. J. Chem. 31, 550-563 (1953).