Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	000000	0000000	0000000000

The Category TOF

Robin Cockett, Cole Comfort

University of Calgary

June 6, 2018

	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	000000	0000000	0000000000
Outline				

Background

2 The Category TOF

TOF is a Discrete Inverse Category

Generalized controlled-not Gates

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
•0	000000	000000	000000	0000000000

Background

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF		
00	000000	000000	000000	000000000		
Backgro	Background					

The Toffoli gate is a linear map $|x_1, x_2, x_3\rangle \mapsto |x_1, x_2, x_1 \cdot x_2 + x_3 \mod 2\rangle$. It is given by the following matrix:

[1	0	0	0	0	0	0	0]	
0	1	0	0	0	0	0	0	
0	0	1	0	0	0	0	0	
0	0	0	1	0	0	0	0	
0	0	0	0	1	0	0	0	
0	0	0	0	0	1	0	0	
0	0	0	0	0	0	0	1	
0	0	0	0	0	0	1	0	

The Toffoli gate is universal for classical reversible computing: every reversible Boolean function can be simulated with Toffoli gates and fixed/input/output bits.

The Toffoli gate is the "most-universal" classically reversible gate, since we don't have to ignore any of the output bits.

This leads to the question: what identities characterize this universal class of circuits?

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	•00000	000000	000000	0000000000

The Category TOF

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	00000	000000	0000000	000000000
The Cate	egory TOF			

Define the symmetric monoidal category TOF:

Objects: Natural numbers.

Maps: Generated by the following components:

$$tof \equiv |1\rangle \equiv \langle 1| \equiv -$$

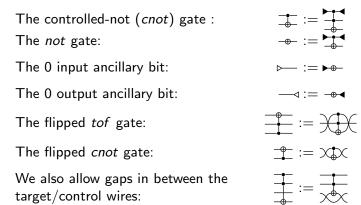
 $|1\rangle$ and $\langle 1|$ are called the 1-ancillary bits.

Composition:

$$-fg$$
 := $-f$ g

Tensor:

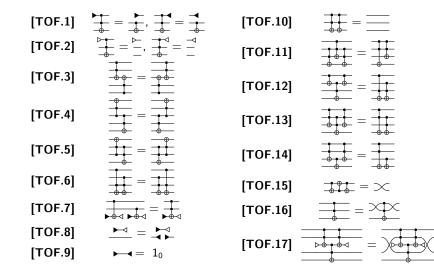
Define some basics components with these generators:



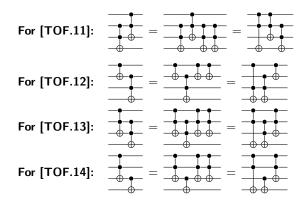
We require that these components satisfy the following identities:

TI CI	TAF II	1. A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
00	000000	000000	000000	0000000000
Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF

The Category TOF: Identities



Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF		
00	000000	000000	000000	000000000		
Justifica	Justification for [TOF.11]-[TOF.14]					



Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	000000	0000000	000000000
Proof Overview				

We show:

Т	heorem	

TOF is discrete-inverse equivalent to FPinj₂.

The proof follows the same general structure of CNOT, for which we proved a similar completeness result for the *cnot* gate:

- 1. Prove that TOF is a discrete inverse category.
- 2. Construct a normal form for the idempotents of TOF.
- 3. Construct a functor $H : \text{TOF} \rightarrow \text{FPinj}_2$ and use the normal form to show it is full and faithful on restriction idempotents.
- 4. Use the discrete inverse structure of TOF to extend the fullness and faithfulness of $H : \text{TOF} \rightarrow \text{FPinj}_2$ on idempotents to show $H : \text{TOF} \rightarrow \text{FPinj}_2$ is an equivalence.

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	00000	000000	0000000000

TOF is a Discrete Inverse Category

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	00000	000000	0000000000
Postricti	on Cotogorios			

Restriction Categories

A **restriction category** X is a category along with an assignment of an arrow $\overline{f} : A \to A$ for each $f : A \to B$ such that the following identities hold:

 $[\mathbf{R.1}] \ \overline{f}f = f \\ [\mathbf{R.2}] \ \overline{g}\overline{f} = \overline{f}\overline{g} \\ [\mathbf{R.3}] \ \overline{\overline{f}g} = \overline{f}\overline{g} \\ [\mathbf{R.4}] \ f\overline{g} = \overline{fg}f$

Maps of the form \overline{f} for some f are called **restriction idempotents**. Restriction categories generalize the category of sets and partial maps, Par, where:

$$\overline{f}(x) := \begin{cases} x & \text{If } f(x) \downarrow \\ \uparrow & \text{Otherwise} \end{cases}$$

Inverses and isomorphisms are generalized in restriction categories.

Given a map $f : A \to B$, a map $g : B \to A$ is the **partial inverse** of f when $fg = \overline{f}$ and $gf = \overline{g}$.

A map is a **partial isomorphism** when it has a partial inverse.

Just like normal inverses, partial inverses are unique and the composition of two partial isomorphisms is a partial isomorphism.

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	000000	0000000	000000000
Inverse (Categories			

A restriction category is an **inverse category** when every map is a partial isomorphism.

Alternatively, X is an inverse category when there is an identity-on-objects functor (_)° : $X^{op} \to X$ such that:

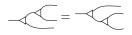
(INV.1) $(f^{\circ})^{\circ} = f$ (INV.2) $ff^{\circ}f = f$ (INV.3) $ff^{\circ}gg^{\circ} = gg^{\circ}ff^{\circ}$

The functor takes maps to their partial inverses, so that $\overline{f} := ff^{\circ}$. All idempotents in inverse categories are restriction idempotents. Denote the category sets and partial isomorphisms by Pinj.

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
		000000		
Discrete	Inverse Categ	gories		

An inverse category $\mathbb X$ has **inverse products** when it has a symmetric tensor product which preserves restriction and there is total natural diagonal transformation Δ such that:

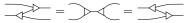
Δ is coassociative:



 \blacktriangleright Δ is cocommutative:

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	000000	0000000	000000000
Discrete	Inverse Categ	gories		

Δ satisfies the semi-Frobenius (non-unital Frobenius) identity:



Δ satisfies the uniform copying identity:



A category with inverse products is a discrete inverse category.

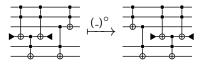
Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	00000	000000	000000000
Discroto	Invorce Struc	sture of TOE		

TOF is a discrete inverse category in the same way as CNOT:

• Δ is defined inductively, such that $\Delta_0 := 1_0$,

$$\Delta_1 = - \langle \cdot := \overline{} \quad \text{and} \quad \Delta_{n+1} = \frac{n+1}{-} := \frac{n}{-} \langle \cdot := \frac{n+1}{-} \rangle$$

▶ The functor $(_)^{\circ} : \mathsf{TOF}^{\mathsf{op}} \to \mathsf{TOF}$ is defined by horizontally flipping circuits, taking $|1\rangle \mapsto \langle 1|, \langle 1| \mapsto |1\rangle$, tof \mapsto tof . For example:



The total points look like an n-fold tensor product of computational ancillary bits.

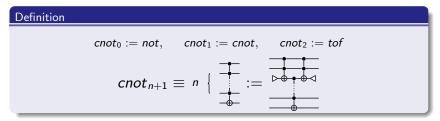
The other points are equivalent to a circuit containing the map $\blacktriangleright \neg \neg$.

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	000000	•000000	000000000

Generalized controlled-not Gates

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	000000	000000	000000000
Generali	zed controllec	not gates		

Before we can construct a normal form for the restriction idempotents of TOF, we must construct generalized controlled not gates:



The wires with the dots are called the **control wires** and the wire with the \oplus is called the **target wire**.

Algebraically denote a *cnot*_n gate with gaps/permuted wires by \bigoplus_{x}^{X} , where X are the control wires and x is the target wire.

To prove the completeness of TOF, we must also exhibit some of the basic properties of $cnot_n$ gates.

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	000000	000000	0000000000
lwama's i	dentities			

In their paper, "Transformation rules for designing cnot-based quantum circuits," Iwama, Kambayashi, and Yamashita, gave an infinite, complete set of identities for circuits of the form:

 $|x_1, \cdots, x_n, y\rangle \mapsto |x_1, \cdots, x_n, y + f(x_1, \cdots, x_n) \mod 2\rangle$

generated by $cnot_n$ gates and finitely many $|0\rangle$ auxiliary bits.

An auxiliary bit for the state $|x\rangle$ is a designated pair of extra ignored input and output wires, satisfying the condition that if $|x\rangle$ is plugged into an auxiliary bit input wire, $|x\rangle$ will be produced on the designated output wire.

Note, that *these circuits are only a small fragment of the circuits of* TOF. For example, using auxiliary bits instead of ancillary bits forces all circuits to be total.

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	000000	0000000	000000000
lwama's	identities			

The identities are as follows: (where \triangleright_x denotes the input of a $|0\rangle$ auxiliary bit on wire x wedged by identity wires):

(i)
$$\bigoplus_{x}^{X} \bigoplus_{x}^{X} = 1$$
 graphically:
(ii) $\bigoplus_{x}^{X} \bigoplus_{y}^{Y} = \bigoplus_{y}^{Y} \bigoplus_{x}^{X}$ if $x \notin Y$ and $y \notin X$ for example:
(iii) $\bigoplus_{x}^{X} \bigoplus_{y}^{\{x\} \sqcup Y} = \bigoplus_{y}^{X \cup Y} \bigoplus_{y}^{\{x\} \sqcup Y} \bigoplus_{x}^{X}$ for example:
We call this identity the "pushing Lemma" because it allows $cnot_n, cnot_m$
gates to be pushed past each other with a trailing $cnot_k$ gate.
(iv) $\bigoplus_{y}^{\{x\} \sqcup Y} \bigoplus_{x}^{X} = \bigoplus_{x}^{X} \bigoplus_{y}^{\{x\} \sqcup Y} \bigoplus_{y}^{X \cup Y}$ this is dual to (iii)
(v) $\triangleright_{z} \bigoplus_{x}^{\{x\} \sqcup X} = \triangleright_{z} \bigoplus_{z}^{\{x\}} \bigoplus_{y}^{\{z\} \sqcup X}$ for example:
(vi) $\triangleright_{x} \bigoplus_{y}^{\{x\} \sqcup X} = \triangleright_{x}$ for example:
(vi) $\triangleright_{x} \bigoplus_{y}^{\{x\} \sqcup X} = \triangleright_{x}$ for example:

Indeed, all of these identities hold in TOF.

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	000000	0000000	000000000

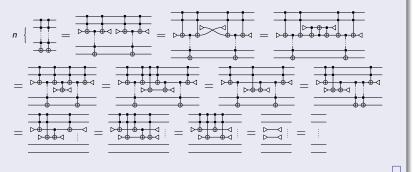
Identity (i) is easy to prove:

Lemma

cnot_n gates are self-inverse.

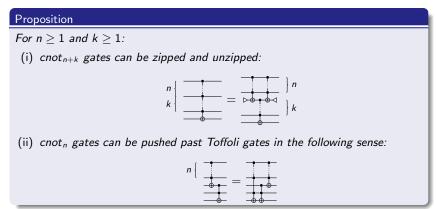
Proof.

The base cases for not, cnot and tof are easy. For the inductive case:



Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
			0000000	
The zip	per			

With these two Lemmas, it isn't too hard to prove the following claim (by simultaneous induction on claims (i) and (ii)):



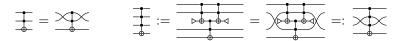
Notice that part (ii) is a special case of Iwama's identity (iii), where |X| = 2.

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	000000	000000	000000000

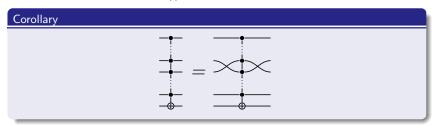
Recall the two identities:

[TOF.16]

[TOF.17]



These two identities and part (i) of the previous proposition imply:



Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	000000	000000	•000000000

Completeness of TOF

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	000000	000000	000000000
Represe	ntations of Po	lynomials in TOF		

Iwama et. al give a normal form for their restricted classes of circuits; in TOF this corresponds to:

Definition

A circuit $f : n \to n$ is said to be in **polynomial form** when it is the composition of circuits $f = c_1 \cdots c_k$ where each c_i is a generalized controlled-not gate targeting the last wire.

These circuits correspond to polynomials (up to the normal form for polynomials over \mathbb{Z}_2), for example, the following circuit corresponds to the polynomial $x_2x_4 + x_2x_3x_4 + x_4$ in $\mathbb{Z}_2[x_1, x_2, x_3, x_4]$:

For the normal form for the restriction idempotents of TOF, we restrict the value of the polynomial to 0:

Definition

A circuit $e : n \to n$ in TOF is a **polyform** if $e = (1_n \otimes |0\rangle)q(1_n \otimes \langle 0|)$ for some $q : n + 1 \to n + 1$ in polynomial form.

For example, the following circuit corresponds to the polynomial equation $x_2x_4 + x_2x_3x_4 + x_4 = 0$:

The uniqueness of polyforms follows from the uniqueness of polynomial expansions along with the self-inverse property of $cnot_n$ gates and obvious commutativity results.

Polyforn	ns are Idempt	otent		
00	000000	000000	000000	000000000
Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF

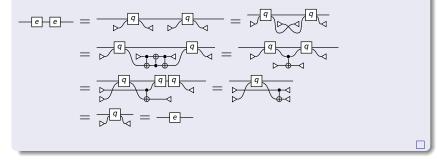
For the one direction:

Lemma

Polyforms are idempotent.

Proof.

Consider some map $e := (1_n \otimes |0\rangle)q(1_n \otimes \langle 0|)$ a polyform, as above, then:



Idemptotents have polyforms				
00	000000	000000	000000	000000000
Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF

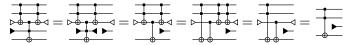
Conversely:

Lemma

Idempotents have polyforms.

The proof is by structural induction, wedging maps between all of the generators and their partial inverses.

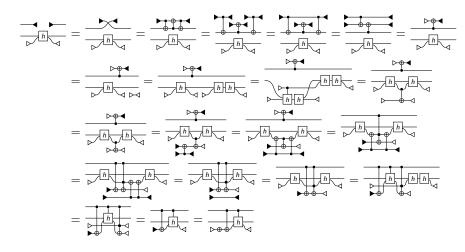
Case 1: For the generator *tof*, the claim follows from Iwama's identity. **Case 2:** For $|1\rangle$ we can use the previous corollary to only consider the case where $|1\rangle$ is on the very bottom control wire:



Case 3: For $\langle 1 |$: The structure proof similar to the proof that polyforms are ldempotent, but involves lwama's pushing identity.

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	000000	000000	0000000000

Case 3: For $\langle 1 |$:



The Full	and Eaithful	()° Eurotor from T(
00	000000	000000	000000	0000000000
Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF

Definition

Let FPinj_2 be the full subcategory of Pinj with objects: sets with cardinalities finite powers of 2.

Define a functor into this category (which will be shown to be an equivalence):

Definition

Define the functor $H : \text{TOF} \rightarrow \text{FPinj}_2$:

On Objects:
$$H(n) := \{f \in \mathsf{TOF}(0, n) | \overline{f} = 1_0\}$$

On Maps: For each map $f : n \rightarrow m$, for all $g \in H(n)$:

$$(H(f))(g) := egin{cases} gf & ext{if } \overline{gf} = 1_0 \ \uparrow & ext{otherwise} \end{cases}$$

It is not hard to show that $H: \mathsf{TOF} \to \mathsf{FPinj}_2$

- ...preserves inverse products.
- ...is full and faithful on idempotents (using their normal form).

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	000000	0000000	0000000000
Completeness				

We lift the fullness and faithfulness of $H : \text{TOF} \rightarrow \text{FPinj}_2$ on idempotents, to its fullness and faithfulness in general.

For the fullness, note that for all total maps f in FPinj₂, using polynomial forms we can construct a map g in TOF such that $H(g) = \Delta(1 \otimes f) = \langle 1, f \rangle$. But since H is full on restriction idempotents, for any map f in FPinj₂, the following map is in H(TOF):

$$-\overline{\langle \overline{f}, f \rangle} \overline{\langle \overline{f^{\circ}}, f^{\circ} \rangle^{\circ}} = -\overline{f}$$

For the faithfulness we use the fact that discrete inverse categories have meets, given by $f \cap g := \Delta(f \otimes g)\Delta^{\circ}$.

Therefore:

Theorem

TOF is discrete-inverse equivalent to FPinj₂.

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	000000	000000	0000000000

Thank you for Listening. Questions?

Background	The Category TOF	TOF is a Discrete Inverse Category	Generalized controlled-not Gates	Completeness of TOF
00	000000	000000	000000	000000000
Reference	ces			

Scott Aaronson, Daniel Grier, and Luke Schaeffer, <i>The classification of reversible bit operations</i> , LIPIcs-Leibniz International Proceedings in Informatics, vol. 67, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.
Robin Cockett, Cole Comfort, and Priyaa Srinivasan, <i>The category CNOT</i> , Electronic Proceedings in Theoretical Computer Science 266 (2018), 258–293.
J Robin B Cockett and Stephen Lack, <i>Restriction categories i: categories of partial maps</i> , Theoretical computer science 270 (2002), no. 1-2, 223–259.
Edward Fredkin and Tommaso Toffoli, <i>Conservative logic</i> , Collision-based computing, Springer, 2002, pp. 47–81.
Brett Giles, An investigation of some theoretical aspects of reversible computing, Ph.D. thesis, University of Calgary, 2014.
Kazuo Iwama, Yahiko Kambayashi, and Shigeru Yamashita, <i>Transformation rules for designing cnot-based quantum circuits</i> , Proceedings of the 39th annual Design Automation Conference, ACM, 2002, pp. 419–424.
Yves Lafont, <i>Towards an algebraic theory of boolean circuits</i> , Journal of Pure and Applied Algebra 184 (2003), no. 2-3, 257–310.