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Background

The Toffoli gate is a linear map |x1, x2, x3〉 7→ |x1, x2, x1 · x2 + x3 mod 2〉.
It is given by the following matrix:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


The Toffoli gate is universal for classical reversible computing: every reversible
Boolean function can be simulated with Toffoli gates and fixed/input/output
bits.

The Toffoli gate is the “most-universal” classically reversible gate, since we
don’t have to ignore any of the output bits.

This leads to the question: what identities characterize this universal class of
circuits?
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The Category TOF

Define the symmetric monoidal category TOF:

Objects: Natural numbers.

Maps: Generated by the following components:

tof ≡ |1〉 ≡ 〈1| ≡
|1〉 and 〈1| are called the 1-ancillary bits.

Composition:

fg := f g

Tensor:

f ⊗ g :=
f

g
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The Category TOF: Basic Components

Define some basics components with these generators:

The controlled-not (cnot) gate : :=

The not gate: :=

The 0 input ancillary bit: :=

The 0 output ancillary bit: :=

The flipped tof gate: :=

The flipped cnot gate: :=

We also allow gaps in between the
target/control wires:

:=

We require that these components satisfy the following identities:
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The Category TOF: Identities

[TOF.1] = , =

[TOF.2] = , =

[TOF.3] =

[TOF.4] =

[TOF.5] =

[TOF.6] =

[TOF.7] =

[TOF.8] =

[TOF.9] = 10

[TOF.10] =

[TOF.11] =

[TOF.12] =

[TOF.13] =

[TOF.14] =

[TOF.15] =

[TOF.16] =

[TOF.17] =
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Justification for [TOF.11]-[TOF.14]

For [TOF.11]: = =

For [TOF.12]: = =

For [TOF.13]: = =

For [TOF.14]: = =
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Proof Overview

We show:

Theorem

TOF is discrete-inverse equivalent to FPinj2.

The proof follows the same general structure of CNOT, for which we proved a
similar completeness result for the cnot gate:

1. Prove that TOF is a discrete inverse category.

2. Construct a normal form for the idempotents of TOF.

3. Construct a functor H : TOF→ FPinj2 and use the normal form to show it
is full and faithful on restriction idempotents.

4. Use the discrete inverse structure of TOF to extend the fullness and
faithfulness of H : TOF→ FPinj2 on idempotents to show
H : TOF→ FPinj2 is an equivalence.
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TOF is a Discrete Inverse Category
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Restriction Categories

A restriction category X is a category along with an assignment of an arrow
f : A→ A for each f : A→ B such that the following identities hold:

[R.1] f f = f

[R.2] g f = f g

[R.3] f g = f g

[R.4] f g = fg f

Maps of the form f for some f are called restriction idempotents.
Restriction categories generalize the category of sets and partial maps, Par,
where:

f (x) :=

{
x If f (x) ↓
↑ Otherwise

Inverses and isomorphisms are generalized in restriction categories.
Given a map f : A→ B, a map g : B → A is the partial inverse of f when
fg = f and gf = g .
A map is a partial isomorphism when it has a partial inverse.
Just like normal inverses, partial inverses are unique and the composition of two
partial isomorphisms is a partial isomorphism.
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Inverse Categories

A restriction category is an inverse category when every map is a partial
isomorphism.
Alternatively, X is an inverse category when there is an identity-on-objects
functor ( )◦ : Xop → X such that:

(INV.1) (f ◦)◦ = f

(INV.2) ff ◦f = f

(INV.3) ff ◦gg◦ = gg◦ff ◦

The functor takes maps to their partial inverses, so that f := ff ◦.
All idempotents in inverse categories are restriction idempotents.
Denote the category sets and partial isomorphisms by Pinj.
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Discrete Inverse Categories

An inverse category X has inverse products when it has a symmetric tensor
product which preserves restriction and there is total natural diagonal
transformation ∆ such that:

I ∆ is coassociative:

=

I ∆ is cocommutative:
=
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Discrete Inverse Categories

I ∆ satisfies the semi-Frobenius (non-unital Frobenius) identity:

= =

I ∆ satisfies the uniform copying identity:

=:

A category with inverse products is a discrete inverse category.
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Discrete Inverse Structure of TOF

TOF is a discrete inverse category in the same way as CNOT:

I ∆ is defined inductively, such that ∆0 := 10,

∆1 = := and ∆n+1 =
n + 1

:=
n

I The functor ( )◦ : TOFop → TOF is defined by horizontally flipping
circuits, taking |1〉 7→ 〈1|, 〈1| 7→ |1〉, tof 7→ tof .
For example:

( )◦7−−→

The total points look like an n-fold tensor product of computational ancillary
bits.

The other points are equivalent to a circuit containing the map .
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Generalized controlled-not Gates
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Generalized controlled not gates

Before we can construct a normal form for the restriction idempotents of
TOF, we must construct generalized controlled not gates:

Definition

cnot0 := not, cnot1 := cnot, cnot2 := tof

cnotn+1 ≡ n :=

The wires with the dots are called the control wires and the wire with the ⊕ is
called the target wire.
Algebraically denote a cnotn gate with gaps/permuted wires by ⊕X

x , where X
are the control wires and x is the target wire.
To prove the completeness of TOF, we must also exhibit some of the basic
properties of cnotn gates.
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Iwama’s identities

In their paper, “Transformation rules for designing cnot-based quantum
circuits,” Iwama, Kambayashi, and Yamashita, gave an infinite, complete set of
identities for circuits of the form:

|x1, · · · , xn, y〉 7→ |x1, · · · , xn, y + f (x1, · · · , xn) mod 2〉

generated by cnotn gates and finitely many |0〉 auxiliary bits.

An auxiliary bit for the state |x〉 is a designated pair of extra ignored input and
output wires, satisfying the condition that if |x〉 is plugged into an auxiliary bit
input wire, |x〉 will be produced on the designated output wire.

Note, that these circuits are only a small fragment of the circuits of TOF. For
example, using auxiliary bits instead of ancillary bits forces all circuits to be
total.



20/33

Background The Category TOF TOF is a Discrete Inverse Category Generalized controlled-not Gates Completeness of TOF

Iwama’s identities

The identities are as follows: (where Bx denotes the input of a |0〉 auxiliary bit
on wire x wedged by identity wires):

(i) ⊕X
x ⊕X

x = 1 graphically: =

(ii) ⊕X
x ⊕Y

y = ⊕Y
y ⊕X

x if x /∈ Y and y /∈ X for example: =

(iii) ⊕X
x ⊕
{x}tY
y = ⊕X∪Y

y ⊕{x}tYy ⊕X
x for example: =

We call this identity the “pushing Lemma” because it allows cnotn,cnotm
gates to be pushed past each other with a trailing cnotk gate.

(iv) ⊕{x}tYy ⊕X
x = ⊕X

x ⊕
{x}tY
y ⊕X∪Y

y this is dual to (iii)

(v) Bz ⊕{x}z ⊕{x}tXy = Bz ⊕{x}z ⊕{z}tXy for example: =

(vi) Bx⊕{x}tXy = Bx for example: =

Indeed, all of these identities hold in TOF.
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Identity (i) is easy to prove:

Lemma

cnotn gates are self-inverse.

Proof.

The base cases for not, cnot and tof are easy. For the inductive case:

n = = =

= = = =

= = = = =



22/33

Background The Category TOF TOF is a Discrete Inverse Category Generalized controlled-not Gates Completeness of TOF

The zipper

With these two Lemmas, it isn’t too hard to prove the following claim (by
simultaneous induction on claims (i) and (ii)):

Proposition

For n ≥ 1 and k ≥ 1:

(i) cnotn+k gates can be zipped and unzipped:

n

k =

n

k

(ii) cnotn gates can be pushed past Toffoli gates in the following sense:

n

=

Notice that part (ii) is a special case of Iwama’s identity (iii), where
|X | = 2.
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Recall the two identities:

[TOF.16] [TOF.17]

= := = =:

These two identities and part (i) of the previous proposition imply:

Corollary

=
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Completeness of TOF
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Representations of Polynomials in TOF

Iwama et. al give a normal form for their restricted classes of circuits; in TOF
this corresponds to:

Definition

A circuit f : n→ n is said to be in polynomial form when it is the composition
of circuits f = c1 · · · ck where each ci is a generalized controlled-not gate
targeting the last wire.

These circuits correspond to polynomials (up to the normal form for
polynomials over Z2), for example, the following circuit corresponds to the
polynomial x2x4 + x2x3x4 + x4 in Z2[x1, x2, x3, x4]:

x1
x2
x3
x4
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A Normal Form for the Restriction Idempotents of TOF

For the normal form for the restriction idempotents of TOF, we restrict the
value of the polynomial to 0:

Definition

A circuit e : n→ n in TOF is a polyform if e = (1n ⊗ |0〉)q(1n ⊗ 〈0|) for some
q : n + 1→ n + 1 in polynomial form.

For example, the following circuit corresponds to the polynomial equation
x2x4 + x2x3x4 + x4 = 0:

x1
x2
x3
x4

The uniqueness of polyforms follows from the uniqueness of polynomial
expansions along with the self-inverse property of cnotn gates and obvious
commutativity results.
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Polyforms are Idemptotent

For the one direction:

Lemma

Polyforms are idempotent.

Proof.

Consider some map e := (1n ⊗ |0〉)q(1n ⊗ 〈0|) a polyform, as above, then:

e e = q q =
q q

=
q q

=
q q

=
qqq

=
q

= q = e
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Idemptotents have polyforms

Conversely:

Lemma

Idempotents have polyforms.

The proof is by structural induction, wedging maps between all of the
generators and their partial inverses.
Case 1: For the generator tof , the claim follows from Iwama’s identity.
Case 2: For |1〉 we can use the previous corollary to only consider the case
where |1〉 is on the very bottom control wire:

= = = = =

Case 3: For 〈1|: The structure proof similar to the proof that polyforms are
Idempotent, but involves Iwama’s pushing identity.
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Case 3: For 〈1|:

h =
h

=
h

=
h

=
h

=
h

=
h

=
h

=
h hh

=

h h

hh = h h

= h h = h h = h h =
h h

=
h h

=
h h

= h h = h hh

= h = h = h
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The Full and Faithful ( )◦-Functor from TOF

Definition

Let FPinj2 be the full subcategory of Pinj with objects: sets with cardinalities
finite powers of 2.

Define a functor into this category (which will be shown to be an equivalence):

Definition

Define the functor H : TOF→ FPinj2:

On Objects: H(n) := {f ∈ TOF(0, n)|f = 10}
On Maps: For each map f : n→ m, for all g ∈ H(n):

(H(f ))(g) :=

{
gf if gf = 10

↑ otherwise

It is not hard to show that H : TOF→ FPinj2

I ...preserves inverse products.

I ...is full and faithful on idempotents (using their normal form).



31/33

Background The Category TOF TOF is a Discrete Inverse Category Generalized controlled-not Gates Completeness of TOF

Completeness

We lift the fullness and faithfulness of H : TOF→ FPinj2 on idempotents, to
its fullness and faithfulness in general.

For the fullness, note that for all total maps f in FPinj2, using polynomial
forms we can construct a map g in TOF such that H(g) = ∆(1⊗ f ) = 〈1, f 〉.
But since H is full on restriction idempotents, for any map f in FPinj2, the
following map is in H(TOF):

〈f ◦ , f ◦〉
〈f ◦ , f ◦〉◦〈f , f 〉

= f

For the faithfulness we use the fact that discrete inverse categories have meets,
given by f ∩ g := ∆(f ⊗ g)∆◦.

Therefore:

Theorem

TOF is discrete-inverse equivalent to FPinj2.
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Thank you for Listening.
Questions?
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