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The Toffoli gate is a linear map |x1, x2, x3) — |x1, X2, x1 - X2 + x3 mod 2).
It is given by the following matrix:

[N elolololNoll S
[eNeNelNoNol SNl
[eNeNeNoll SleNe]
OO O+ OOOo
OO HrH OOOOo
O OOOOoOOo
_H O OOOOOOo
_H O OOOOOoO

0 0 0 0 0 O 0

The Toffoli gate is universal for classical reversible computing: every reversible
Boolean function can be simulated with Toffoli gates and fixed/input/output
bits.

The Toffoli gate is the “most-universal” classically reversible gate, since we
don't have to ignore any of the output bits.

This leads to the question: what identities characterize this universal class of
circuits?
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The Category TOF

Define the symmetric monoidal category TOF:
Objects: Natural numbers.
Maps: Generated by the following components:
_ - — —
tOf = —e— 1) =» 1| = —«
T ) &1

|1) and (1] are called the 1-ancillary bits.

Composition:

el = e

Tensor:

—Ar—® g} =
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The Category TOF: Basic Components

Define some basics components with these generators:

The controlled-not (cnot) gate : = EE
The not gate:

The 0 input ancillary bit:
The 0 output ancillary bit:

The flipped tof gate:

The flipped cnot gate:

HHM |7 4 u
&

We also allow gaps in between the I
target/control wires: i T

We require that these components satisfy the following identities:
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The Category TOF: Identities

[TOF.1]
[TOF.2]

[TOF.3]

[TOF.4]

[TOF.5]

[TOF.6]

[TOF.7]

[TOF.8]
[TOF.9]
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[TOF.10]

[TOF.11]
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[TOF.13]

[TOF.14]
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Justification for [TOF.11]-[TOF.14]

For [TOF.11]: = ) =

—0— —® —

For [TOF.12]: —oe— = —6g-00— = &

For [TOF.13]: = =

L4l

b—e
oo

For [TOF.14]:
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Proof Overview

We show:

TOF s discrete-inverse equivalent to FPinj,.

The proof follows the same general structure of CNOT, for which we proved a
similar completeness result for the cnot gate:

1. Prove that TOF is a discrete inverse category.
2. Construct a normal form for the idempotents of TOF.

3. Construct a functor H : TOF — FPinj, and use the normal form to show it
is full and faithful on restriction idempotents.

4. Use the discrete inverse structure of TOF to extend the fullness and
faithfulness of H : TOF — FPinj, on idempotents to show
H : TOF — FPinj, is an equivalence.
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Restriction Categories

A restriction category X is a category along with an assignment of an arrow
f: A— Afor each f : A— B such that the following identities hold:

[R1] Ff=Ff

[R.2] g? =fg
[R3] fg=rfg
[R.4] fg = fgf

Maps of the form f for some f are called restriction idempotents.
Restriction categories generalize the category of sets and partial maps, Par,

where:
F(x) = {x If f(X)-i
1 Otherwise

Inverses and isomorphisms are generalized in restriction categories.

Given amap f : A— B, a map g : B — A is the partial inverse of f when
fe=fandgf =%

A map is a partial isomorphism when it has a partial inverse.

Just like normal inverses, partial inverses are unique and the composition of two
partial isomorphisms is a partial isomorphism.
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Inverse Categories

A restriction category is an inverse category when every map is a partial
isomorphism.

Alternatively, X is an inverse category when there is an identity-on-objects
functor (-)° : X°° — X such that:

(INV.1) (f°)° =f

(INV.2) ffef=f

(INV.3) ff°gg® = gg°ff°

The functor takes maps to their partial inverses, so that f := ff°.

All idempotents in inverse categories are restriction idempotents.
Denote the category sets and partial isomorphisms by Pinj.
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Discrete Inverse Categories

An inverse category X has inverse products when it has a symmetric tensor
product which preserves restriction and there is total natural diagonal
transformation A such that:

> A is coassociative:

-~

—~C=—X

> A is cocommutative:
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Discrete Inverse Categories

> A satisfies the semi-Frobenius (non-unital Frobenius) identity:

2 =D S

» A satisfies the uniform copying identity:

= —C

A category with inverse products is a discrete inverse category.



TOF is a Discrete Inverse Category
O0000e

Discrete Inverse Structure of TOF

TOF is a discrete inverse category in the same way as CNOT:

» A is defined inductively, such that Ag := 1o,
n+1 n
A = —<]< = and  App = < = %

» The functor (_)° : TOF®® — TOF is defined by horizontally flipping
circuits, taking |1) — (1], (1| — |1), tof — tof .
For example:

()°

\4
A

\4
A

The total points look like an n-fold tensor product of computational ancillary
bits.

The other points are equivalent to a circuit containing the map »—< .
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Generalized controlled not gates

Before we can construct a normal form for the restriction idempotents of
TOF, we must construct generalized controlled not gates:

Definition
cnotg := not, cnoty := cnot, cnot, := tof
——
cnotp+1 = n{ Po= S ane

—— i
e G
The wires with the dots are called the control wires and the wire with the @ is
called the target wire.
Algebraically denote a cnot, gate with gaps/permuted wires by &%, where X
are the control wires and x is the target wire.

To prove the completeness of TOF, we must also exhibit some of the basic
properties of cnot, gates.
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Iwama's identities

In their paper, “Transformation rules for designing cnot-based quantum
circuits,” lwama, Kambayashi, and Yamashita, gave an infinite, complete set of
identities for circuits of the form:

|X17"' aXﬂa.y> = |X15”' 7Xn7y+ f(le"' 7X") mod 2>
generated by cnot, gates and finitely many |0) auxiliary bits.
An auxiliary bit for the state |x) is a designated pair of extra ignored input and

output wires, satisfying the condition that if |x) is plugged into an auxiliary bit
input wire, |x) will be produced on the designated output wire.

Note, that these circuits are only a small fragment of the circuits of TOF. For
example, using auxiliary bits instead of ancillary bits forces all circuits to be
total.
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Iwama's identities

The identities are as follows: (where >« denotes the input of a |0) auxiliary bit
on wire x wedged by identity wires):

i) eXer =1 graphically: =
(i)

?\
HI

(i) @))((EB;,/ = @}/@f ifx¢Yandyé¢X for example: —b =
D BouE
(i) Xl = @fVY @l of for example: T = :347;

We call this identity the “pushing Lemma"” because it allows cnotp,cnotm
gates to be pushed past each other with a trailing cnot, gate.

(iv) o1k = aX el afvY this is dual to (iii)

[ S S
(v) >z o @;X}ux =, 0 @;Z}ux for example: =

b >
(vi) Dx@ix}ux =Dy for example: =

Indeed, all of these identities hold in TOF.
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Identity (i) is easy to prove:

cnot, gates are self-inverse.

The base cases for not, cnot and tof are easy. For the inductive case:

n{Ipzm:D > <4 = P> “ﬁ? <

:A\ S et E\: :A\ :}\ & i i i i
— D—9—D—e—D—e—®- . D—9—D——®- - — D ©<1 __ D& ©-<]
= PO = e T = POl = "
H== 3H 22 —
— — Do <1 — Dot — b= —
D& = peo—dodi — > 4 T =i =
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The zipper

With these two Lemmas, it isn't too hard to prove the following claim (by
simultaneous induction on claims (i) and (ii)):

Forn>1and k > 1:

(i) cnotnik gates can be zipped and unzipped:

o T fn
= > <I}k

(i) cnot, gates can be pushed past Toffoli gates in the following sense:

— )

- = |

Notice that part (i) is a special case of lwama’s identity (iii), where
IX| = 2.
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Recall the two identities:

[TOF.16] [TOF.17]

Forpe oo e

These two identities and part (i) of the previous proposition imply:

Corollar

[ X ]
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Representations of Polynomials in TOF

Iwama et. al give a normal form for their restricted classes of circuits; in TOF
this corresponds to:

Definition

A circuit f : n — n is said to be in polynomial form when it is the composition
of circuits f = ¢1 - - - ck where each ¢; is a generalized controlled-not gate
targeting the last wire.

These circuits correspond to polynomials (up to the normal form for
polynomials over Z), for example, the following circuit corresponds to the
polynomial xoxs + xox3xa + Xa in Zao[x1, X2, X3, Xa]:
X1
X2

X3
X4

D
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A Normal Form for the Restriction ldempotents of TOF

For the normal form for the restriction idempotents of TOF, we restrict the
value of the polynomial to 0:

A circuit e : n — n in TOF is a polyform if e = (1, ® |0))g(1, ® (0]) for some
g:n+1— n+1in polynomial form.

For example, the following circuit corresponds to the polynomial equation
XoX4 + Xox3X4 + X4 = 0:

>d-d-d<

The uniqueness of polyforms follows from the uniqueness of polynomial
expansions along with the self-inverse property of cnot, gates and obvious
commutativity results.
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Polyforms are ldemptotent

For the one direction:

Polyforms are idempotent.

Consider some map e := (1, ® |0))q(1, ® (0]) a polyform, as above, then:

A\

T = ARG ARG = T s




Completeness of TOF
0000@00000

Idemptotents have polyforms

Conversely:

Idempotents have polyforms.

The proof is by structural induction, wedging maps between all of the
generators and their partial inverses.

Case 1: For the generator tof, the claim follows from lwama'’s identity.
Case 2: For |1) we can use the previous corollary to only consider the case
where |1) is on the very bottom control wire:

1 1 1 4
D*bj—é—d:b—éj—é—d:p-é- — pledda = > _
—r— 14— > _1 — -
Case 3: For (1|: The structure proof similar to the proof that polyforms are
Idempotent, but involves lwama's pushing identity.

7]

2
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Case 3: For (1]:

I
N
=]
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The Full and Faithful (_)°-Functor from TOF

Definition

Let FPinj, be the full subcategory of Pinj with objects: sets with cardinalities
finite powers of 2.

Define a functor into this category (which will be shown to be an equivalence):

Definition

Define the functor H : TOF — FPinj,:

On Objects: H(n) := {f € TOF(0, n)|f = 1o}

On Maps: For each map f : n — m, for all g € H(n):

(H(f))(g) == {T otherwise

\

It is not hard to show that H : TOF — FPinj,
> ...preserves inverse products.

» _..is full and faithful on idempotents (using their normal form).
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Completeness

We lift the fullness and faithfulness of H : TOF — FPinj, on idempotents, to
its fullness and faithfulness in general.

For the fullness, note that for all total maps f in FPinj,, using polynomial
forms we can construct a map g in TOF such that H(g) = A(1® f) = (1, f).
But since H is full on restriction idempotents, for any map f in FPinj,, the
following map is in H(TOF):

(fo,f°) —
7. 1) r“} (Fo o) —=

For the faithfulness we use the fact that discrete inverse categories have meets,
given by f Ng = A(f ® g)A°.

Therefore:

TOF s discrete-inverse equivalent to FPinj,.
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Thank you for Listening.
Questions?
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