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Preliminaries

H = (H, µ, η) a monad in C, K = (K , ν, ρ) a monad in D

CH for the Kleisli category of H

DK for the Eilenberg-Moore category of K algebras

A Kleisli lifting of functor F : C→ D is F : CH → DK

C D-
F

CH DK-F

6
ιH

6
ιK

Kleisli liftings are classified exactly by natural transformations
λ : FH → KF satisfying certain axioms.

F (f : A→ HB) = λ ◦ (F f )



Introduction

Likewise An Eilenberg-Moore lifting of functor F : C→ D is
F ? : CH → DK

C D-
F

CH DK-F ?

6

UH

6

UK

E-M liftings are classified exactly by natural transformations
σ : KF → FH again satisfying certain axioms.

λ and σ are denoted lifting transformation and their axioms
guarantee that F and F ? are functorial.



Introduction

Well known question: How to compose two monads?

The composition of (H, µ, η) and K , ν, ρ) should have form
(KH, τ, ρη).

The problem is that there is no obvious τ .

The solution is to provide a natural transformation λ : HK → KH
which allows τ to be defined as τ = KHKH KλH−−→ KKHH

µν−−→ KH

The axioms on λ which enable (KH, τ, ρη) to be a monad(i.e.
that λ is a distributive law) were first discovered by Beck.



Introduction
λ : HK → KH a distributive law of H over K if
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Introduction

Prior slide: The two diagrams are the axioms for the lifting
transformations λ : HK → KH (where λ is both a Kleisli and an
E-M lifting transformation for H and K ? respectively) of the
monads H and K .

Difficulties in composing monads generally arise from the
axioms as opposed to the naturality requirement.

While composition of monads can be achieved for many
monads in programming, it often comes at a cost in terms of
the definition of λ

One approach is to only require (DL C, DL D) to hold in which
case we say λ is a near distributive law.

We present two approaches to building near distributive laws
via free monads and pre-monads.



Free Monads

Our most relaxed model of a monad is a functor H : V → V. If it
exists, the free monad generated by H is (H@, µ, η; ι) where
H@ = (H@, µ, η) is a monad in V and ι : H → H@ is a natural
transformation, subject to the universal property

H H@-ι
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@
@
@
@
@@R

K
?

ψ

(H@, µ, η)

(K , ν, ρ)
?

ψ

that if (K , ν, ρ) is a monad in V and α : H → K is a natural
transformation then there exists a unique monad map ψ as
shown with ψι = α.



Free Monads

Example
Assume that V has finite powers. For a finite ordinal i ≥ 1, let
Hi : V → V be the functor HiX = X i , the usual i-product functor.
When V = Set, the data type H@

i X is the set of all i-ary trees in
which every node is either an element of X , denoted Lix (a
leaf) or has i subtrees beneath it, denoted Bi t1 · · · ti ∈ H@

i X .
The natural transformation ηX : X → H@

i X maps x to Lix while
µX : H@

i H@
i X → H@

i maps Li t to t and Bi tt1 . . . tti to
Bi (µX tt1) . . . (µX tti).
For now we consider only H for which H@ exists.

Theorem
VH is isomorphic over V to the category of Eilenberg-Moore
algebras VH@

. The isomorphism Φ : VH@ → VH is given by

Φ(X , H@X
ξ−−→ X ) = (X , HX

ιX−−→ H@X
ξ−−→ X )



Free Monads

Definition
Let H : V → V generate a free monad H@ and let K : V → V be
a functor. Let K ? : VH@ → VH@

be a functorial lift of K with lifting
natural transformation λ@ : H@K → KH@. We say K ? is a flat
functorial lift if there exists a natural transformation
λ : HK → KH such that the following square commutes.

KH KH@-
K ι

HK H@K-ιK

?
λ

?
λ@ (3)

We then say that λ generates K ?, or λ generates λ@, and
when K is a monad that λ@ is a flat near-distributive law.



Free Monads
Theorem
Given H,K : V → V such that H@ exists, every natural
transformation λ : HK → KH generates a flat functorial lift of K
through H@.

Proof.
Given λ, define K † : VH → VH over V by

K †(X , δ) = (KX , HKX λX−−−−→ KHX Kδ−−−−→ KX )

If f : (X , δ)→ (Y , ε) is an H-homomorphism, the diagram

HKY -
λY

HKX -λX

?
HKf

KHY KY-
K ε

KHX KX-K δ

?
KHf

?
Kf



Free Monads

shows that Kf : K †(X , δ)→ K †(Y , ε) is again an
H-homomorphism.
We then have the functorial lift

K ? = VH@ Φ−−−−→ VH K †−−−−→ VH Φ−1
−−−−→ VH@

Corollary
Given H,K : V → V where K is a monad and H@ exists, then
every natural transformation λ : HK → KH generates a flat near
distributive law λ@ : H@K → KH@.



Near Distributive Laws for Free Monads

Definition
For functor F : V → V, a pre-strength on F is a pair (F , ΓF )
where ΓF is a natural transformation
ΓF

V1···Vn
: FV1 × · · · × FVn → F (V1 × · · · × Vn)

A morphism α : (F , ΓF )→ (G, ΓG) is a natural transformation
α : F → G such that the following square commutes.

F (V1 × · · · × Vn) G(V1 × · · · × Vn)-
αV1×···×Vn

FV1 × · · · × FVn GV1 × · · · ×GVn-
αV1
× · · · × αVn

?

ΓF
V1···Vn

?

ΓG
V1···Vn

This forms a category of prestrengths of order n



Near Distributive Laws for Free Monads

Lemma
For any monad K = (K , ν, ρ) in Set there exists a generic
prestrength Γn : KA1 × ...KAn → K (A1 × ...An) of dimension
n ≥ 1.

Γ1 = idX

Γ2 formed using the Kock prestrength construction.

For m1,m2 ∈ KX define
Γ2(m1,m2) = m1 >>= λa→ (m2 >>= λb → ρ(a,b)) where
for f : X → KY , (m >>= f ) = f #m

Straightforward application of monad laws shows
K (f × g) ◦ Γ2(m1,m2) = Γ2 ◦ (Kf × Kg)(m1,m2) and so Γ2 is
natural.



Near Distributive Laws for Free Monads

Proceeding inductively, if Γi : (KX )i → KX i is natural, we obtain
a natural transformation

KX × (KX )i idX×Γi−−−−−−→ KX × KX i
Γ

XXi−−−−→ K (X i+1)

Lemma
Γ2 : KA× KB → K (A× B) is also associative, namely
Γ2 ◦ (Γ2 × 1)(m1,m2,m3) = Γ ◦ (1× Γ)(m1,m2,m3).



Amenable Monads

Difficult to find nontrivial monads which admit a distributive law
with every monad.

Definition
A monad H in V is amenable if for every monad K in V, K has
a functorial lift through VH.

Proposition
The monads H@

i in Set of Example 1 are amenable.

Proof.
Let K = (K , ν, ρ) be a monad in Set. By previous lemma there
exists a generic natural transformation Γi : HiK → KHi for every
i ≥ 1. By letting λ = Γ2 = ΓXX in flat near-distributive result, we
are done.



Amenable Monads

Theorem
The list monad is amenable.
For any semigroup (X , ·), define the binary operation on
K ∗(X , ·) as (KX , ··) where k1 · ·k2 = (K ·) ◦ Γ2(k1, k2). If
f : (X , ·)→ (Y , ·) is a semigroup morphism then so is K ∗f since

(Kf )(k1 · ·X k2)

= (Kf ) ◦ (K ·X ) ◦ ΓKX ,KX (k1, k2)

= (K ·Y ) ◦ K (f × f ) ◦ ΓKX ,KX (k1, k2) (f a semigp hom)
= (K ·Y ) ◦ ΓKY ,KY ◦ (Kf × Kf )(k1, k2) (Γ natural)
= (Kfk1) · ·Y (Kfk2)

The result easily extends to empty lists by defining K ∗(X , ·,eX )
as (KX , ··, ρ(eX )).



Amenable Monads

Example
We apply K ∗(X , ·) == (KX , ··). When K is:

the exception monad KX = X + 1, then (X + 1, ··) is the
obvious semigroup defined by a1 · ·a2 = a1 · a2 when a1,a2 are
in X, ∗ otherwise.

the reader monad KX = C × X for commutative monoid (C, ∗),
(c1, x1) · ·(c2, x2) = (c1 ∗ c2, x1 · x2).

the writer monad KX = A→ X, and ti in KX,
t1 · ·t2 = λx → t1x · t2x.

the state monad KX = S → X × S, and ti in KX,
t1·· t2 = λs → let (x1, s1) = t1s in let (x2, s2) = t2s1 in (x1·x2, s2).



Amenable Monads
Example
For K the reader monad KX = C × X , λ = Γ2 : H2K → KH2
becomes Γ2((c1, x1), (c2, x2)) = (c1 ∗ c2, (x1, x2)). Acting on a
binary tree t of type H@

2 KX , λ@(t) = (p, t∗) where p is the
product of the ci ’s found in the leaves and t∗ is the
corresponding tree in H@

2 X consisting only of the elements of X .

Example
When K is H@

j , we can give a recursive construction of the

functorial lift of lifting K through SetH@
i defining the

near-distributive law λ : H@
i H@

j → H@
j H@

i in cases. For i , j ≥ 1:

λ(LiLja) = LjLia
λLi(Bj t1 · · · tj) = Bj(λLi t1) · · · (λLi tj)

λBi(tt1 · · · tti) = (H@
j Bi)Γi(λtt1) · · · (λtti)

where tti has type Hi
@Hj

@



Amenable Monads

Proposition
Let V have small coproducts, let (Hα) be a small family of
endofuctors and let H =

∐
Hα be the pointwise coproduct.

Assume that the free monads H@
α, H@ exist. Then if each H@

α is
amenable, so is H@.

Example
Let Σ be a disjoint sequence (Σn) of (possibly empty) sets. A
Σ-algebra is (X , δ) where X is a set and δ = (δσ : σ ∈ Σ) with
δσ : X n → X if σ ∈ Σn. Defining

HΣX =
∐
σ∈Σn

X n

then HΣ-algebra is the same thing as a Σ-algebra. H@
ΣX is the

usual free Σ-algebra generated by X and is an an amenable
monad in Set.



Prestrengths and Flat Near-Distributive Laws
Lemma
For any monad K = (K , ν, ρ) in Set, if there exists a natural
transformation γ : K → id then there exists a prestrength
Γi : KA1 × ...× KAi → K (A1 × ...× Ai) for any i ≥ 1.

Proof.
The construction is simple: for i = 1 define Γ1 = ρ ◦ γ. If i ≥ 2
then Γi = ρ ◦ (γ × · · · × γ). Since in each case Γi is a
composition of natural transformations we are done.

Proposition
For any monad K = (K , ν, ρ) with any γ : K → id as in the
previous lemma, there exists a flat near-distributive law
λ@ : H@

i K → K H@
i .

Proof.
For any i ≥ 1, the prestrength Γi of the previous lemma
generates a natural transformation HiK → KHi and so the
result follows immediately from Corollary 1.1.



Prestrengths and Flat Near-Distributive Laws

Example
For j ≥ 1 let γ denote the j-th projection natural transformation
Πj : Hj → id . By the previous proposition this generates a flat
near-distributive law λ@ : H@

i H@
j → H@

j H@
i which generally differs

from the earlier examples.

Example
For monad K the M-Set monad KA = C × A for C a
commutative monad with identity e, γ : K → id defined as
γ(c,a) = a is clearly natural thus generating
Γn : KA1 × ...KAn → K (A1 × ...An) by
Γn((c1,a1), ...(cn,an)) = ρ(a1, ...an) = (e, (a1, ...an)). The
resulting flat distributive law λ@ : L(C × A)→ C × LA takes
[(c1,a1), ...(cn,an)] to (e, [a1, ...an]).



Uniformly branching trees and non-flat
near-distributive laws

Motivation: There exists a full distributive law λ : LL→ LL. It
exploits the observation: algebras on L are semigroups. The
corresponding distributive law does not arise via a flat lifting.

Question: Can we generalize this to free monads? In the case
of near-distributive laws, yes.

Recall that an algebra for H@
i is generated by (A, [ ]i), where

[ ]i : Ai → A is an i-ary operation on A. For i , j ≥ 1, we build a
recursive schema for canonical functorial liftings of H@

j over

SetH@
i . To do this, we define (H@

j )∗ in cases and expressly
define (H@

j )∗(A, [ ]i) = (H@
j A, [ ]i). (Note that we use the same

notation for the two i-ary operations). When i = 1
I [(Lj a)]1 = Lj([ a]1)

I [(Bj t1...tj)]1 = Bj [t1]1...[tj ]1



Uniformly branching trees and non-flat
near-distributive laws

Likewise when j = 1 we have
I [L1a1, ...L1ai ]i = L1[a1, ...ai ]i
I [L1a1, ...L1ai−1, (B1 t)]i = B1 [L1a1, ...L1ai−1, t ]i
I etc
I [(B1 t1) t2...ti ]i = B1 [t1, t2...ti ]i

Otherwise for i , j ≥ 2
I [Lja1, ...Ljai ]i = Lj [a1, ...ai ]i
I [Lja1, ...Ljai−1, (Bj ti,1...ti,j)]i = Bj [Lja1, ...Ljai−1, ti,1]i ti,2...ti,j
I etc
I [(Bj t1,1...t1,j) t2...ti ]i = Bj t1,1...t1,j−1 [t1,j , t2...ti ]i



Uniformly branching trees and non-flat
near-distributive laws

A near-distributive law λ is created via the lifting functor (H@
j )∗

over H@
i algebras described above.

Applying (H@
j )∗ to (H@

i A,Bi), the i-ary operation associated to
the canonical algebra (H@

i A, µ) generates λ defined by the
following set of equations:

I λ(LiLj a) = LjLi a
I λLi(Bj t1... tj) = Bj(λ Li t1)...(λ Li tj)
I λ(Bi tt1... tti) = [λtti ]i where [ ]i was defined previously



Uniformly branching trees and non-flat
near-distributive laws

Example
When i = 1 H@

1 is the M-set or writer monad N × _ where N is
the commutative monoid of natural numbers {0,1,2, . . . } under
addition and λ : N ×H@

j a→ H@
j (N ×A) is actually a distributive

law.
Likewise when j = 1, λ : H@

i (N × A)→ N × H@
i A can be

described by: for an arbitrary tree tt in H@
i (N × A), λ tt = (k , t∗)

where t∗ is the tree in H@
i A, with the same shape as tt ,

generated by replacing every leaf in tt of the form Li(m,a) by
Lia and where k equals the sum of all the various m’s found in
the leaves. Again λ is a full distributive law.



Uniformly branching trees and non-flat
near-distributive laws

Proposition
For any i , j ≥ 2 the near distributive law λ : H@

i H@
j → H@

j H@
i

above fails to produce a full distributive law as one can produce
a generic tree t ∈ H@

i H@
j H@

j for which law (DLB) fails.

Proof.
For λ : H@

i H@
j → H@

j H@
i we produce t ∈ H@

i H@
j H@

j with
4(j − 1) + i leaves for which (DL B) fails. Let

I lt = Bj (Lj (Lj a1))...(Lj (Lj aj−1)) (Lj(Bj(Ljaj)...(Lja2j−1)))

I rt = Bj (Lj(Bj(Lja2j)...(Lja3j−1))) (Lj (Lj a3j))...(Lj (Lj a4j−2))

I t = Bi(Li(lt)) (Li(Lj(Ljb1))) ... (Li(Lj(Ljbi−2))) (Li(rt))



Pre-Monads
Definition
A pre-monad in V is H = (H, µ, η) with H : V → V a functor and
with η : id→ H, µ : HH → H natural transformations.
Composition of pre-monads: For pre-monads (H, µ, η) and
(K , ν, ρ), natural transformation λ : HK → KH generates the
composite pre-monad

(KH, KHKH KλH−−−−−−→ KKHH
νµ−−−−→ KH, id

ρη−−−−→ KH)

The axioms defining an algebra (X , ξ) for a pre-monad
H = (H, µ, η) and an H-homomorphism f : (X , ξ)→ (Y , θ) are
exactly the same as for a monad, namely

X -ηX

idX

@
@
@
@R

X HX�
ξ

HX HHX�µX

?

ξ

?

Hξ

X Y-f

HX HY-Hf

?

ξ

?

θ



Pre-Monads
Proposition
Let (L,m,e) be the list monad in Set. Modify this to the
pre-monad (L,m, ê) where êX x = [x , x ]. Then Set(L,m,ê) is the
category of bands (semigroups in which every element is
idempotent).

Proposition
Pre-monads may be equivalently described as (H, (·)#, η)
where H : V → V is a functor, η : id→ H is a natural

transformation and X f−−→ HY 7→ HX f #

−−→ HY is an operator
subject to the axioms

(PME.1) g : Y → HZ , g# = HY
Hg−−→ HHZ

(idHZ )
#

−−−−−−→ HZ
(PME.2) For f : X → HY , g : Y → Z , (Hg) f # = ((Hg)f )#

f # = HX Hf−−→ HHY
µY−−→ HY (1)

µX = (idHX )# (2)



Pre-Monads

Definition
A pre-monad map σ : (H, µ, η)→ (K , ν, ρ) is a natural
transformation σ : H → K such that σ ◦ η = ρ and ν ◦ σσ = σ ◦ µ
( same as for monads), so monads form a full subcategory of
pre-monads.

Definition
Given a pre-monad H in V, a monad approximation of H is a
reflection σ : H→ K of H in the full subcategory of monads.

Theorem
Let H = (H, µ, η), K = (K , ν, ρ) be pre-monads in V. Then a
pre-monad map σ : H → K induces a functor W : VK → VH

over V defined by

W (X , ξ) = (X , HX σX−−→ KX
ξ−−→ X ) (3)



Pre-Monads

If, additionally, K is a monad, then σ 7→W is bijective with
inverse

σX = HX
HρX−−−−→ HKX

γX−−−−→ KX (4)

where (KX , γX ) = W (KX , νX ).

Theorem
Let H be a pre-monad such that U : VH → V is monadic so that
there exists a monad K and an isomorphism of categories
Φ : VK → VH over V. Then the corresponding pre-monad map
σ : H→ K of the previous theorem is a monad approximation of
H.



Near Distributive Laws for Pre-Monads

The laws DL A, DL B, DL C, DL D make sense whenever
(H, µ, η), (K , ν, ρ) are pre-monads. The following generalizes
the idea of E-M liftings and near distributive laws.

Theorem
Let K : V → V be a functor, (M,m,e) a monad in V and let
(H, µ, η) be a pre-monad in V such that VH → V is monadic.
Functorial lifts K ? : VM → VH correspond bijectively to natural
transformations λ : HK → KM which satisfy (K ? A, K ? B):

K HK-ηK
HHK� µK

KMM�
Km

KM
?

λ
?
Hλ

HKM

?
λM

Z
Z
Z
Z
Z
Z
Z
Z
Z~

Ke

(K ? A) (K ? B)



Near Distributive Laws for Pre-Monads

The correspondences are

K ?(X ,MX θ−−→ X ) = (KX ,HKX λX−−→ KMX Kθ−−→ KX ) (5)

and, if K ?(MX ,mX ) = (KMX , γX ),

λX = HKX HKeX−−−−→ HKMX
γX−−−−→ KMX (6)

Moreover, half of this result holds if M is only a pre-monad,
namely if λ satisfies (K ? A) and (K ? B), then K ? as in (5) is a
functorial lift VM → VH of K .

We would like to connect this to our prior example of the bands
monad. The following result does the trick.



Near Distributive Laws for Pre-Monads

Theorem
Let K = (K , ν, ρ) be a pre-monad in V and let H = (H, µ, η) be a
pre-monad in V with monad approximation σ : H→ Ĥ,
Ĥ = (Ĥ, µ̂, η̂). Let λ : HK → KH be a natural transformation
satisfing (DL C, DL D). Then there exists a near distributive law
λ̂ : ĤK → K Ĥ of Ĥ over K such that the following square
commutes. We say λ generates λ̂.

KH K Ĥ-
Kσ

HK ĤK-σK

?
λ

?̂
λ (33)



Near Distributive Laws for Pre-Monads

Lemma
Let H = (H, µ, η) be a pre-monad in V with monad
approximation σ : H→ Ĥ = (Ĥ, µ̂, η̂). Let s : Ĥ → H be a
section of σ, that is, s is a pre-monad map with σs = 1. Then Ĥ
satisfies η̂ = σ ◦ η and for map f : X → ĤY ,
f̂ # : ĤX → ĤY = σ ◦ (sY ◦ f )# ◦ sX .

Example
Let (L,m,e) be the list premonad where e(x) = [x , x ] and
m ll = [fst(fst ll), lst(lst ll)]. The reflection σ [x ] = (x , x) and
σ [x1, . . . xn] = (x1, xn) defines the monad approximation of
σ : (L,m,e)→ (B, µ, η) where B is the rectangular band monad
B A = A× A. σ has an obvious section s(x , y) = [x , y ] and so
we can derive µ(a,b, c,d) = σX ◦m ◦ L(sX ) ◦ sX (a,b, c,d)
= σX ◦m ◦ L(sX )[(a,b), (c,d)] = σX ◦m[[a,b], [c,d ]] =
σX [a,d ] = (a,d) as expected.



Near Distributive Laws for Pre-Monads

When V = Set, the image of σ : H → Ĥ is a submonad with the
universal property. Thus all monad approximations are
pointwise split epic in Set.

Theorem
If σ : H→ Ĥ is a pointwise split epic monad approximation then
if λ : HK → KH is a distributive law then so too is
λ̂ : ĤK → K Ĥ.
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