Quantum Channels for Mix Unitary Categories

Robin Cockett, Cole Comfort, and Priyaa Srinivasan

Dagger compact closed categories

Dagger compact closed categories (†-KCC) provide a categorical framework for finite-dimensional quantum mechanics.

Dagger (†) is a contravariant functor which is stationary on objects $(A = A^{\dagger})$ and is an involution $(f^{\dagger\dagger} = f)$.

In a †-KCC, quantum processes are represented by completely positive maps.

The CPM construction on a †-KCC chooses exactly the completely positive maps from the category.

FHilb, the category of finite-dimensional Hilbert Spaces and linear maps is an example of \dagger -KCC.

CPM[FHilb] is precisely the category of quantum processes.

Finite versus infinite dimensions

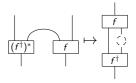
Dagger compact closed categories ⇒ Finite-dimensionality on Hilbert Spaces. Because infinite-dimensional Hilbert spaces are not compact closed.

However, infinite-dimensional systems occur in many quantum settings including quantum computation and quantum communication.

There have been attempts to generalize the existing structures and constructions to infinite-dimensions.

The CP^{∞} construction

 CP^∞ construction generalized the CPM construction to †-symmetric monoidal categories (†-SMC) by rewriting the completely positive maps as follows:



Is there a way to generalize the CPM construction to arbitrary dimensions and still retain the goodness of the compact closed structure?

Linearly distributive categories

*-autonomous categories or more generally, linearly distributive categories generalize compact closed categories and allow for infinite dimensions.

A linearly distributive category (LDC) has two monoidal structures $(\otimes, \top, a_{\otimes}, u_{\otimes}^L, u_{\otimes}^R)$ and $(\oplus, \bot, a_{\oplus}, u_{\oplus}^L, u_{\oplus}^R)$ linked by natural transformations called the linear distributors:

$$\partial_L : A \otimes (B \oplus C) \to (A \otimes B) \oplus C$$
$$\partial_R : (A \oplus B) \otimes C \to A \oplus (B \otimes C)$$

LDCs are equipped with a graphical calculus.

Mix categories

A **mix category** is a LDC with a map $m : \bot \to \top$ in X such that

mx is called a **mix map**. The mix map is a natural transformation.

It is an **isomix** category if m is an isomorphism.

 $\it m$ being an isomorphism does not make the mx map an isomorphism.

The Core of mix category

The **core of a mix category**, $Core(X) \subseteq X$, is the full subcategory determined by objects $U \in X$ for which the natural transformation is also an isomorphism:

$$U\otimes (\underline{\ })\xrightarrow{\mathsf{mx}_{U,(\underline{\ })}}U\oplus (\underline{\ })$$

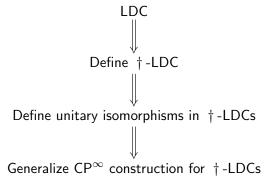
The core of a mix category is closed to \otimes and \oplus .

The core of an isomix category contains the monoidal units \top and \bot .

Roadmap

Motivation

00000000



Forging the †

The definition of $\dagger: \mathbb{X}^{op} \to \mathbb{X}$ cannot be directly imported to LDCs because the dagger minimally has to flip the tensor products: $(A \otimes B)^{\dagger} = A^{\dagger} \oplus B^{\dagger}$.

Why? If the dagger is identity-on-objects, then the linear distributor denegenerates to an associator:

$$\frac{(\delta_R)^{\dagger}: (A \oplus (B \otimes C))^{\dagger} \to ((A \oplus B) \otimes C)^{\dagger}}{(\delta^R)^{\dagger}: A^{\dagger} \oplus (B^{\dagger} \otimes C^{\dagger}) \to (A^{\dagger} \oplus B^{\dagger}) \otimes C^{\dagger}}$$

†-LDCs

A \dagger -**LDC** is a LDC \mathbb{X} with a dagger functor $\dagger : \mathbb{X}^{op} \to \mathbb{X}$ and the natural isomorphisms:

tensor laxtors:
$$\lambda_{\oplus}: A^{\dagger} \oplus B^{\dagger} \to (A \otimes B)^{\dagger}$$

$$\lambda_{\otimes}: A^{\dagger} \otimes B^{\dagger} \to (A \oplus B)^{\dagger}$$
unit laxtors: $\lambda_{\top}: \top \to \bot^{\dagger}$

$$\lambda_{\bot}: \bot \to \top^{\dagger}$$
involutor: $\mu: A \to A^{\dagger\dagger}$

such that certain coherence conditions hold.

Coherences for †-LDCs

Coherences for the interaction between the tensor laxtors and the basic natural isomorphisms (6 coherences):

$$A^{\dagger} \otimes (B^{\dagger} \otimes C^{\dagger}) \xrightarrow{a_{\otimes}} (A^{\dagger} \otimes B^{\dagger}) \otimes C^{\dagger}$$

$$1 \otimes \lambda_{\otimes} \downarrow \qquad \qquad \downarrow \lambda_{\otimes} \otimes 1$$

$$(A^{\dagger} \otimes (B \oplus C)^{\dagger}) \qquad (A \oplus B)^{\dagger} \otimes C^{\dagger}$$

$$\lambda_{\otimes} \downarrow \qquad \qquad \downarrow \lambda_{\otimes}$$

$$(A \oplus (B \oplus C))^{\dagger} \xrightarrow[(a_{\oplus}^{-1})^{\dagger}]{} ((A \oplus B) \oplus C)^{\dagger}$$

Coherences for †-LDCs (cont.)

Interaction between the unit laxtors and the unitors (2 coherences):

Interaction between the involutor and the laxtors (4 coherences):

$$A \oplus B \xrightarrow{\iota} ((A \oplus B)^{\dagger})^{\dagger} \qquad \qquad \bot \xrightarrow{\iota} (\bot^{\dagger})^{\dagger}$$

$$\downarrow^{\lambda_{\otimes}^{\dagger}} \qquad \qquad \downarrow^{\lambda_{\uparrow}^{\dagger}}$$

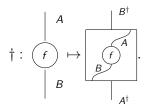
$$(A^{\dagger})^{\dagger} \oplus (B^{\dagger})^{\dagger} \xrightarrow{\lambda_{\otimes}} (A^{\dagger} \otimes B^{\dagger})^{\dagger}$$

$$\uparrow^{\dagger}$$

Diagrammatic calculus for †-LDC

Extends the diagrammatic calculus of LDCs

The action of dagger is represented diagrammatically using dagger boxes:



Isomix †-LDCs

A **mix** †-**LDC** is a †-LDC with $m: \bot \to \top$ such that:

If m is an isomorphism, then X is an **iso-mix** \dagger -LDC.

Lemma 1: The following diagram commutes in a mix †-LDC:

$$A^{\dagger} \otimes B^{\dagger} \xrightarrow{\text{mx}} A^{\dagger} \oplus B^{\dagger}$$

$$\downarrow^{\lambda_{\oplus}}$$

$$(A \oplus B)^{\dagger} \xrightarrow{\text{mx}^{\dagger}} (A \otimes B)^{\dagger}$$

Isomix †-LDCs

Lemma 2: Suppose \mathbb{X} is a mix \dagger -LDC and $A \in Core(\mathbb{X})$ then $A^{\dagger} \in$ Core(X).

Proof: The natural transformation $A^{\dagger} \otimes X \xrightarrow{mx} A^{\dagger} \oplus X$ is an isomorphism:

$$\begin{array}{c|c} A^{\dagger} \otimes X \xrightarrow{1 \otimes \iota} A^{\dagger} \otimes X^{\dagger\dagger} \xrightarrow{\lambda_{\otimes}} (A \oplus X^{\dagger})^{\dagger} \\ mx & \text{nat. mx} & mx & \text{Lemma 1} & \text{mx}^{\dagger} \\ A^{\dagger} \oplus X \xrightarrow{1 \oplus \iota} A^{\dagger} \oplus A^{\dagger\dagger} \xrightarrow{\lambda_{\oplus}} (A \otimes X^{\dagger})^{\dagger} \end{array}$$

commutes.

Next step: Unitary structure

Define †-LDC

Define unitary isomorphisms

The usual definition of unitary maps $(f^{\dagger}: B^{\dagger} \to A^{\dagger} = f^{-1}: B \to A)$ is applicable only when the † functor is stationary on objects.

Unitary structure

An isomix †-LDC has unitary structure in case there is an essentially small class of objects called unitary objects such that:

- Every unitary object, $A \in \mathcal{U}$, is in the core;
- Each unitary object $A \in \mathcal{U}$ comes equipped with an isomorphism, called the **unitary strucure** of A, $\stackrel{^{A_{|}}}{\searrow}:A\stackrel{\varphi_{A}}{\longrightarrow}A^{\dagger}$ such that

$$A^{\dagger} = A^{\dagger} \qquad A^{\dagger} \qquad A^{\dagger} = \iota$$

$$A^{\dagger} = \iota$$

$$A^{\dagger$$

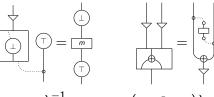
Unitary structure (cont.)

• \top , \bot are unitary objects with:

$$arphi_{\perp} = \mathsf{m} \lambda_{\top} \qquad \qquad arphi_{\top} = \mathsf{m}^{-1} \lambda_{\perp}$$

• If A and B are unitary objects then $A \otimes B$ and $A \oplus B$ are unitary objects such that:

$$(\varphi_A \otimes \varphi_B)\lambda_{\otimes} = \mathsf{mx}\varphi_{A \oplus B} : A \otimes B \to (A \otimes B)^{\dagger}$$
$$\varphi_{A \otimes B}\lambda_{\oplus}^{-1} = \mathsf{mx}(\varphi_A \oplus \varphi_B) : A \otimes B \to A^{\dagger} \oplus B^{\dagger}$$



$$\varphi_{\perp}\lambda_{\top}^{-1} = \mathsf{m} \quad (\varphi_{\mathsf{A}} \otimes \varphi_{\mathsf{B}})\lambda_{\otimes} = \underset{\mathbb{Z}}{\mathsf{mx}} \varphi_{\mathsf{A} \oplus \mathsf{B}} \ 18/37$$

Mix Unitary Category (MUC)

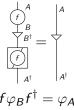
An iso-mix †-LDC with unitary structure is called a **mixed unitary** category, MUC.

The unitary objects of a MUC, X, determine a full subcategory, UCore(X), called the **unitary core**.

UCore(X) is always a compact linearly distributive subcategory of \mathbb{X} .

Unitary isomorphisms

Suppose A and B are unitary objects. An isomorphism $A \xrightarrow{f} B$ is said to be a **unitary isomorphism** if the following diagram commutes:



Lemma: In a MUC

- f^{\dagger} is a unitary map iff f is;
- $f \otimes g$ and $f \oplus g$ are unitary maps whenever f and g are.
- $a_{\otimes}, a_{\oplus}, c_{\otimes}, c_{\oplus}, \delta^L$, m, and mx are unitary isomorphisms.
- $\lambda_{\otimes}, \lambda_{\oplus}, \lambda_{\top}, \lambda_{\perp}$, and ι are unitary isomorphisms.
- ullet $arphi_A$ is a unitary isomorphisms for for all unitary objects A.

Example of a MUC

Category of finite-dimensional framed vector spaces, FFVeck

Objects: The objects are pairs (V, \mathcal{V}) where V is a finite dimensional K-vector space and $\mathcal{V} = \{v_1, ..., v_n\}$ is a basis:

Maps: These are vectors space homomorphisms which ignore the basis information;

Tensor product:

$$(V, V) \otimes (W, W) = (V \otimes W, \{v \otimes w | v \in V, w \in W\})$$

Tensor unit: $(K, \{e\})$ where e is the unit of the field K.

Example (cont.)

To define the "dagger" we assume that the field has an involution $\overline{(\ \)}:K\to K$, that is a field homomorphism with $k=(\overline{k})$.

This involution then can be extended to a (covariant) functor:

$$\begin{array}{ccc} & (V,\mathcal{V}) & \overline{(V,\mathcal{V})} \\ \hline \overline{(_)} : \mathsf{FFVec}_{\mathcal{K}} & \bigvee_{f} & \mapsto & \bigvee_{\overline{f}} \\ & (W,\mathcal{W}) & \overline{(W,\mathcal{W})} \end{array}$$

where (V, \mathcal{V}) is the vector space with the same basis but the conjugate action $c \cdot v = \overline{c} \cdot v$. \overline{f} is the same underlying map.

Example (cont.)

FFVec_K is also a compact closed category with $(V, \mathcal{B})^* = (V^*, \{\widetilde{b_i}|b_i \in \mathcal{B}\})$ where

$$V^* = V \multimap K$$
 and $\widetilde{b_i}: V \to K; \left(\sum_j \beta_j \cdot b_j\right) \mapsto \beta_i$

Hence, we have a contravariant functor $(-)^* : \mathsf{FFVec}^{\mathrm{op}}_{\mathcal{K}} \to \mathsf{FFVec}_{\mathcal{K}}.$

$$(V,\mathcal{B})^{\dagger} = \overline{(V,\mathcal{B})^*}$$

$$\iota: (V, \mathcal{V}) \to ((V, \mathcal{V})^{\dagger})^{\dagger}; v \mapsto \lambda f. f(v)$$

 FFVec_K is a compact $\mathsf{LDC} : \otimes \mathsf{and} \oplus \mathsf{coincides}.$

Unitary structure of FFVeck

Unitary structure for FFVec_K is $\varphi_{(V,V)}: (V,V) \to (V,V)^{\dagger}$; $v_i \mapsto \widetilde{v_i}$

Define a functor $U: \mathsf{FFVec}_K \to \mathsf{Mat}(K)$

- for each object in FFVec we choose a total order on the elements of the basis
 - any map is given by a matrix acting on the bases

Lemma: An isomorphism $u:(A,A)\to(B,\mathcal{B})$ in FFVec_K is unitary if and only if U(f) is unitary in Mat(K).

Next step: CP^{∞} construction on MUCs

Define †-LDC

Define unitary isomorphisms

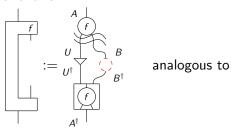
An example

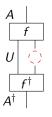
 CP^∞ construction on MUC

Krauss maps

In a MUC, a map $f: A \to U \oplus B$ of $\mathbb X$ where U is a unitary object is called a **Krauss map** $f: A \to_U B$. U is called the **ancillary system** of f.

In a MUC, quantum processes are represented using Krauss maps as follows:



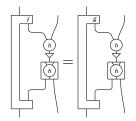


in †-SMCs.

$$A \xrightarrow{f} U \oplus B \xrightarrow{\mathsf{mx}^{-1}} U \otimes B \xrightarrow{\varphi \otimes 1} U^{\dagger} \otimes B$$
$$U^{\dagger} \otimes B^{\dagger} \xrightarrow{\lambda \otimes} (U \oplus B)^{\dagger} \xrightarrow{f^{\dagger}} A^{\dagger}$$

Combinator and test maps

Two Krauss maps $f: A \rightarrow_{U_1} B$ and $g: A \rightarrow_{U_2} B$ are equivalent, $f \sim g$, if for all test maps $h: B \otimes X \to V$ where V is an unitary object, the following equation holds:



Lemma: Let $f: A \rightarrow_{U_1} B$ and $f': A \rightarrow_{U_2} B$ be Krauss maps such that $U_1 \xrightarrow{\alpha} U_2$ is a unitary isomorphism with $f' = (\alpha \oplus 1)f$, then $f \sim f'$. In this case, f is said to be **unitarily isomorphic** to f'.

CP^{∞} construction

Given a MUC, \mathbb{X} , define $CP^{\infty}(\mathbb{X})$ to have:

Objects: as of X

Maps:

$$\mathsf{CP}^\infty(\mathbb{X})(A,B) := \{ f \in \mathbb{X}(A,U \oplus B) | U \in \mathbb{X} \text{ and } U \text{ is unitary} \} / \sim$$

Composition:

Identity:
$$A \xrightarrow{(u_{\oplus}^L)^{-1}} \bot \oplus A \in \mathbb{X}$$

Tensor and Par

 $\mathsf{CP}^\infty(\mathbb{X})$ inherits tensor and par from \mathbb{X} :

$$f \widehat{\otimes} g := \overbrace{f \oplus g}$$
 $f \widehat{\oplus} g := \overbrace{f \oplus g}$
 $\widehat{\top} := \overline{\top}$
 $\widehat{\bot} := \bot$

CP^{∞} construction on MUC (cont.)

Lemma: $\mathsf{CP}^\infty(\mathbb{X})$ is a well-defined category.

Proof sketch: Let \mathbb{X} be a MUC, then there exists a functor $Q: \mathbb{X}$ $\to \mathsf{CP}^\infty(\mathbb{X})$ as follows:

$$Q(A) := A$$

$$Q(f) := f(u_{\oplus}^{L})^{-1}$$

Q is functorial since $f(u_{\oplus}^L)^{-1} \sim f \sim (u_{\oplus}^L)^{-1} f$.

$\mathsf{CP}^{\infty}(\mathbb{X})$ is an isomix category

Lemma: $\mathsf{CP}^{\infty}(\mathbb{X})$ is an isomix category.

Sketch of proof: The linear distribution maps, associators, unitors and symmetry isomorphisms - are inherited from X by composing each one of them with $(u_{-}^{L})^{-1}$

$$\frac{A \otimes (B \otimes C) \xrightarrow{a_{\otimes}} (A \otimes B) \otimes C \xrightarrow{(u_{\oplus}^{L})^{-1}} \mathbb{X} / \sim}{A \otimes (B \otimes C) \xrightarrow{a_{\widehat{\otimes}} := a_{\otimes} (u_{\oplus}^{L})^{-1}} (A \otimes B) \otimes C \in \mathsf{CP}^{\infty}(\mathbb{X})}$$

Naturality is proven by showing that the Krauss maps are unitarily isomorphic.

Linear adjoints

Suppose \mathbb{X} is a LDC and $A, B \in \mathbb{X}$. Then, B is **left linear adjoint** to $A(\eta, \varepsilon): B \dashv A$, if there exists

$$\eta: \top \to B \oplus A$$
 $\varepsilon: A \otimes B \to \bot$

$$\varepsilon: A \otimes B \to \bot$$

such that the following triangle equalities hold:

$$B \xrightarrow{(u_{\otimes}^{L})^{-1}} \top \otimes B \xrightarrow{\eta \otimes 1} (B \oplus A) \otimes B \qquad A \xrightarrow{(u_{\otimes}^{R})^{-1}} A \otimes \top \xrightarrow{1 \otimes \eta} A \otimes (B \oplus A)$$

$$\downarrow \partial_{R} \qquad \qquad \downarrow \partial_{L}$$

$$B \xleftarrow{u_{\oplus}^{R}} B \oplus \bot \xleftarrow{1 \oplus \varepsilon} B \oplus (A \otimes B) \qquad A \xleftarrow{u_{\oplus}^{L}} \bot \oplus A \xleftarrow{\varepsilon \oplus 1} (A \otimes B) \oplus A$$

When every object of a MUC has a linear adjoint, it is called a

*- MUC.

Unitary linear adjoints

Lemma: Let \mathbb{X} be \dagger -LDC. If $A \dashv B$ then $B^{\dagger} \dashv A^{\dagger}$.

Proof: If $(\eta, \varepsilon): A \dashv B$ then $(\lambda_{\top} \varepsilon^{\dagger} \lambda_{\triangle}^{-1}, \lambda_{\otimes} \eta^{\dagger} \lambda_{\bot}^{-1}): B^{\dagger} \dashv A^{\dagger}$.

A unitary linear adjoint (η, ε) : $A \dashv \sqcup_{u} B$ is a linear adjoint, $A \dashv \sqcup B$ with A and B being unitary objects satisfying:

$$\eta_A(\varphi_A \oplus \varphi_B)c_{\oplus} = \lambda_{\top} \varepsilon^{\dagger} \lambda_{\oplus}^{-1} \qquad (\varphi_A \otimes \varphi_B)\lambda_{\otimes} \eta_A^{\dagger} = c_{\otimes} \varepsilon_A \lambda_{\perp}$$

$$\lambda_{\top} \varepsilon^{\dagger} \lambda_{\oplus}^{-1} = \eta c_{\oplus} (\varphi_{A} \oplus \varphi_{B})$$

A MUC in which every unitary object has a unitary linear adjoint is 4 D > 4 D > 4 E > 4 E > E 9 Q O 33/37 called a MUdC.

Dagger functor for $\mathsf{CP}^\infty(\mathbb{X})$

Lemma: If \mathbb{X} is a *-MUdC, then $CP^{\infty}(\mathbb{X})$ is a *-MUdC.

Sketch of proof: Suppose $f: A \to U \oplus B$ and $(\eta, \varepsilon): V \dashv \sqcup_{\mu} U$

$$\dagger: \mathsf{CP}^\infty(\mathbb{X})^\mathrm{op} \to \mathsf{CP}^\infty(\mathbb{X}); \qquad \mapsto \bigvee_{v^\dagger} \bigvee_{A^\dagger}^{B^\dagger}$$

Unitary structure and unitary linear adjoints are preserved due to the functoriality of Q.

Summary: Mix Unitary Categories

Mix Unitary Categories are †-LDCs with unitary structure.

There is a diagrammatic calculus for MUCs.

If every unitary object has a unitary linear adjoint, then the unitary core is analogous to a dagger compact closed category.

Summary: CP^{∞} construction on MUCs

 CP^{∞} on MUCs strictly generalizes CP^{∞} construction on †-SMCs.

The construction produces an isomix category.

The construction is functorial when every object has a linear adjoint.

The construction produces a *-MUdC when every unitary object has a unitary linear adjoint.

Bibliography

LDC: Robin Cockett, and Robert Seely. Weakly distributive categories. Journal of Pure and Applied Algebra 114.2 (1997): 133-173.

The core of a mix category: Richard Blute, Robin Cockett, and Robert Seely. Feedback for linearly distributive categories: traces and fixpoints. Journal of Pure and Applied Algebra 154.1-3 (2000): 27-69.

Graphical calculus for LDCs: Richard Blute, Robin Cockett, Robert Seely, and Tood Trimble. Natural deduction and coherence for weakly distributive categories. Journal of Pure and Applied Algebra 113.3 (1996): 229-296.

†-KCC and the CPM construction Peter Selinger. Dagger compact closed categories and completely positive maps. Electronic Notes in Theoretical computer science 170 (2007): 139-163.

CP[∞] construction on †-SMCs: Bob Coecke, and Chris Heunen. **Pictures** of complete positivity in arbitrary dimension. Information and Computation 250 (2016): 50-58.