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First-order theories

With equality

Γ ` ϕ satisfying the rules for intuitionistic sequent
calculus

Logical axioms:

For all theories, decidability of equality (DE):

x 6= y ∨ x = y

To obtain classical theories, the excluded middle (EM):

¬ϕ ∨ ϕ, for all formulas ϕ
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The arithmetical theory M

Let LM be the first-order language with 0, S, ·, +.

Let Sn(0) be the nth numeral, denoted n.

Let x < y abbreviate (∃w)(x+ S(w) = y).

Let (∃!y)ϕ(x, y) abbreviate

(∃y)ϕ(x, y) ∧ (∀y)(∀z)(ϕ(x, y) ∧ ϕ(x, z)⇒ y = z).
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The arithmetical theory M

Definition

M is a theory over LM with the nonlogical axioms

(M1) S(x) 6= 0

(M2) S(x) = S(y)⇒ x = y

(M3) x+ 0 = x

(M4) x+ S(y) = S(x+ y)

(M5) x · 0 = 0

(M6) x · S(y) = (x · y) + x

(M7) x 6= 0⇒ (∃y)(x = S(y))

(M8) x < y ∨ x = y ∨ y < x

We consider an arbitrary arithmetical theory T , i.e. a
consistent r.e. extension of M .



Representing
Recursive
Functions

Yan Steimle

Definitions

Main
theorems

Statements

Proof

Total
recursive
functions

Conclusion

Future
directions

Concluding
remarks

Appendix

Recursive functions, brief overview

Primitive recursive: basic functions; closed under
subsitution (S) and primitive recursion (PR)

Total recursive: basic functions; closed under (S), (PR),
and total µ

Partial recursive: basic functions; closed under (S),
(PR), and partial µ
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Representability of total functions

Definition

A function f : Nk → N is numeralwise representable in T as
a total function if there exists a formula ϕ(x, y) satisfying

(a) for all m, n ∈ Nk+1, if f(m) = n, then ` ϕ(m, n)

(b) for all m ∈ Nk, ` (∃!y)ϕ(m, y)

f is strongly representable in T as a total function if there
exists a formula ϕ(x, y) satisfying (a) and

(b)’ ` (∃!y)ϕ(x, y)
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Representability of partial functions

Definition

For f : Nk 99K N and ϕ(x, y) consider the conditions

(P1) for all m, n ∈ Nk+1, f(m) ' n iff ` ϕ(m, n)

(P2) for all m ∈ Nk, ` ϕ(m, y) ∧ ϕ(m, z)⇒ y = z

(P3) ` ϕ(x, y) ∧ ϕ(x, y)⇒ y = z

(P4) ` (∃!y)ϕ(x, y)

For f : Nk 99K N, if there exists ϕ(x, y) in T such that

(P1) and (P2) hold, f is numeralwise representable in T
as a partial function

(P1) and (P3) hold, f is type-one representable in T

(P1) and (P4) hold, f is strongly representable in T as a
partial function
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Representability theorems for partial recursive
functions

Theorem (I)

Let T be any arithmetical theory. All partial recursive
functions are type-one representable in T .

Theorem (II)

Let T be a classical arithmetical theory. All partial
recursive functions are strongly representable in T as partial
functions.
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Consequences of the Existence Property (EP)

The Existence Property (EP)

For every formula ϕ in T and any variable x occurring free
in ϕ,

if ` (∃x)ϕ, then ∃ n ∈ N such that ` ϕ
[
n
x

]
.
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The Kleene normal form theorem (alternate
version)

Theorem (Kleene normal form)

For each k ∈ N, k > 0, there exist primitive recursive
functions U : N→ N and Tk : Nk+2 → N such that, for any
partial recursive function f : Nk 99K N, there exists a number
e ∈ N such that

f(m) ' U(µn(Tk(e,m, n) = 0))

for all m ∈ Nk.
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The strong representability of primitive recursive
functions in arithmetical theories

Theorem

Let T be any arithmetical theory. All primitive recursive
functions are strongly representable in T as total functions.

Proof.

It suffices to express the basic functions and the recursion
schemes (S) and (PR) by formulas in T . For example:

y = S(x) strongly represents the successor function.

If g, h : N→ N are primitive recursive and strongly
representable by ψ(y, z) and ϕ(x, y), respectively, then

(∃y)(ϕ(x, y) ∧ ψ(y, z))

strongly represents f = g(h) : N→ N.
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Representing functions obtained by partial
minimisation

Lemma (1)

Let g : Nk+1 → N (k ≥ 0) be a total function that is
numeralwise representable in T as a total function, and let
f : Nk 99K N be obtained from g by partial µ. Then, f is
type-one representable in T .

Proof.

g is numeralwise representable in T by σ(x, y, z) and f is
defined by

f(m) ' µn(g(m, n) = 0).

Thus, f is type-one representable in T by the formula

σ(x, y, 0) ∧ (∀u)(u < y ⇒ ¬σ(x, u, 0)).
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Weak representability of r.e. relations

Definition (Weak representability)

A relation E ⊆ Nk is weakly representable in T if there exists
a formula ψ(x) with exactly k free variables such that, for
all m ∈ Nk,

E(m) iff ` ψ(m).

Lemma (2)

All k-ary r.e. relations on N (k ≥ 0) are weakly
representable in T .

(long technical proof)
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Proof of Theorem (I)

Theorem (I)

Let T be any arithmetical theory. All partial recursive
functions are type-one representable in T .

Proof.

Let f : Nk 99K N be a partial recursive function.

k = 0: If f is the constant n in N, take the formula n = y. If
f is completely undefined, take the formula y = y ∧ 0 6= 0.
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Proof of Theorem (I)

Proof (continued).

k ≥ 1: By the Kleene normal form theorem, we obtain
U : N→ N, Tk : Nk+2 → N, and e ∈ N such that

f(m) ' U(µn(Tk(e,m, n) = 0)) ∀m ∈ Nk.

As Tk is primitive recursive, by Lemma 1 there exists a
formula σ(x, z) that type-one represents the partial function
given by

µn(Tk(e,m, n) = 0) ∀m ∈ Nk.

As U is primitive recursive, there exists a formula ϕ(z, y)
that strongly represents U as a total function. ϕ also
type-one represents U .
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Proof of Theorem (I)

Proof (continued).

By Lemma 2, there exists a formula η(x) that weakly
represents the r.e. domain Df of f . Then, f is type-one
representable in T by the formula θ(x, y) defined by

η(x) ∧ (∃z)(σ(x, z) ∧ ϕ(z, y)).

Indeed,

(P3) for θ follows from (P3) for σ and ϕ.

For (P1), since η weakly represents Df , we only have to
consider inputs on which f is defined. Hence, we can
show that ` θ(m, p) implies f(m) ' p by (P3) for θ and
the fact that ` f(m) = p iff f(m) = p.
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Exact separability of r.e. relations

Definition (Exact separability)

Two relations E,F ⊆ Nk are exactly separable in T if there
exists a formula ψ(x) in T with exactly k free variables such
that, for all m ∈ Nk,

E(m) iff ` ψ(m)
F (m) iff ` ¬ψ(m)

Lemma (3)

Let T be a classical arithmetical theory. Any two disjoint
k-ary r.e. relations on N (k ≥ 0) are exactly separable in T .

(long technical proof)
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Proof of Theorem (II)

Theorem (II)

Let T be a classical arithmetical theory. All partial
recursive functions are strongly representable in T as partial
functions.

Proof.

Let f : Nk 99K N be a partial recursive function.

k = 0: If f is completely undefined, let G be a closed
undecidable formula in T and take

(y = 0⇒ ¬G) ∧ (y 6= 0⇒ G) ∧ y < 2
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Proof of Theorem (II)

Proof (continued).

k ≥ 1: Let n0, n1 ∈ N be distinct. By Lemma 3, we obtain a
formula σ(x) that exactly separates f−1({n0}) and
f−1({n1}). By Theorem (I), we obtain a formula ϕ(x, y)
that type-one represents f . Consider

ψ(x) ≡
def

(∃z)ϕ(x, z) ∧ ¬ϕ(x, n0) ∧ ¬ϕ(x, n1)

θ(x, y) ≡
def

(ψ(x) ∧ ϕ(x, y)) ∨ (¬ψ(x) ∧ σ(x) ∧ y = n0)

∨(¬ψ(x) ∧ ¬σ(x) ∧ y = n1).

By (EM), ` (¬ψ(x) ∧ ¬σ(x)) ∨ (¬ψ(x) ∧ σ(x)) ∨ ψ(x), from
which (P4) follows. (P1) is obtained by cases.
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Representability of total recursive functions

Corollary (of Theorem (I))

Let T be an arithmetical theory. All total recursive functions
are numeralwise representable in T as total functions.

Corollary (of Theorem (II))

Let T be a classical arithmetical theory. All total recursive
functions are strongly representable in T as total functions.
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Classifying categories

Given a theory T , we construct a classifying category
C (T ):

objects: formulas of T
morphisms: equivalence classes of provably functional
relations between formulas

For a general theory T , C (T ) is regular.

If T is an intuitionistic arithmetical theory, we claim
that in C (T ):

there is at least a weak NNO;
numerals are standard;
1 is projective and indecomposable.
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Work in progress

For an arithmetical theory T :

1 Consider the formulas representing recursive functions
in C (T ) (for all possible variations). What
sub-categories do we obtain?

2 Construct a partial map category associated with C (T )
and show it is a Turing category.

3 Ultimately, we want to consider partial recursive
functionals of higher type using a notion of λ-calculus
with equalisers and a construction of the free CCC with
equalisers.
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Kleene Equality

To deal with partialness, we use Kleene Equality. If e1 and
e2 are two expressions on N that may or may not be defined,
then

e1 ' e2 iff (e1, e2 are defined and equal)
OR (e1, e2 are undefined).

For example, if f : Nk 99K N is a partial function and
m, n ∈ Nk+1,

f(m) 6' n iff (f(m) is defined but not equal to n)
OR (f(m) is undefined).
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Consequences of the Existence Property (EP)

If T is classical:

G is a closed undecidable formula in T , f : Nk 99K N the
completely undefined function.

ϕ(x, y) ≡
def

x = x ∧ (y = 0⇒ ¬G) ∧ (y 6= 0⇒ G) ∧ y < 2

strongly represents f in T as a partial function.

If T were to satisfy EP, then ` G or ` ¬G, a
contradiction.
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Consequences of the Existence Property (EP)

If T is intuitionistic:

Let f : N 99K N be a partial function undefined at
m ∈ N.

Suppose that there exists ϕ(x, y) satisfying (P1) and
(P4).

By (P4), ` (∃y)ϕ(m, y).

By EP, there exists n ∈ N such that ` ϕ(m,n).

By (P1), f(m) ' n, and so f(m) is defined.
Contradiction.

So, strong representability of partial functions doesn’t make
sense and Theorem (II) fails.
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A technical lemma

Lemma

Let E1 ⊆ Nk and E2 ⊆ Nk+j (k, j ≥ 0) be r.e. relations.
There exists a formula ϕ(x,u) in T with k + j free variables
such that, for all m ∈ Nk and p ∈ Nj,

if E1(m) and ¬E2(m,p), then ` ϕ(m,p)
if ¬E1(m) and E2(m,p), then 6` ϕ(m,p).
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A technical lemma

Proof (idea).

(Adapted from the case for j = 0 in [S]) Let E1 ⊆ Nk and
E2 ⊆ Nk+j (k, j ≥ 0) be r.e. relations. There exist primitive
recursive relations F1 ⊆ Nk+1, F2 ⊆ Nk+j+1 such that, for all
m ∈ Nk and p ∈ Nj ,

E1(m) iff ∃n ∈ N s.t. F1(m, n)
E2(m,p) iff ∃n ∈ N s.t. F2(m,p, n).

We obtain formulas ψ1(x, y) and ψ2(x,u, y) that
numeralwise represent F1 and F2, respectively, in T .
Then, ϕ(x,u) given by

(∃y)(ψ1(x, y) ∧ (∀z)(z ≤ y ⇒ ¬ψ2(x,u, z))

is the required formula.
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Weak representability of r.e. relations (proof)

Proof (Lemma 2).

k = 0: N0 = {∗} is weakly representable by 0 = 0 and ∅ is
weakly representable by 0 6= 0.

k ≥ 1: Let E ⊆ Nk, let x, y be k + 1 distinct fixed variables.
T has an associated Gödel numbering where pψq denotes
the Gödel number of ψ and γn is the formula with Gödel
number n. Then, we can construct a primitive recursive
function g : Nk+1 → N such that

g(m, n) =

{
pγn

[
m
x ,

n
y

]
q if γn exists

n otherwise
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Weak representability of r.e. relations (proof)

Proof (continued).

Since T is an r.e. theory, D ⊆ Nk+1 given by

D(m, n) iff GTHM T (g(m, n)) iff ` γn
[
m
x ,

n
y

]
is an r.e. relation. By the technical lemma, we obtain
ϕ(x, y) in T such that, for all m, n ∈ Nk+1,

if E(m) and 6` γn
[
m
x ,

n
y

]
, then ` ϕ(m, n)

if ¬E(m) and ` γn
[
m
x ,

n
y

]
, then 6` ϕ(m, n).
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Weak representability of r.e. relations (proof)

Proof (continued).

Let p = pϕ(x, y)q. Then, γp = ϕ and so, for all m ∈ Nk,

if E(m) and 6` ϕ(m, p), then ` ϕ(m, p)
if ¬E(m) and ` ϕ(m, p), then 6` ϕ(m, p).

It follows that, for all m ∈ Nk,

E(m) iff ` ϕ(m, p),

and so ϕ(x, p) weakly represents E in T .
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