The Representability of Partial Recursive Functions in Arithmetical Theories and Categories

Yan Steimle

Department of Mathematics and Statistics
University of Ottawa

Foundational Methods in Computer Science
May 30 – June 2, 2018
First-order theories

- With equality
- $\Gamma \vdash \varphi$ satisfying the rules for intuitionistic sequent calculus
- Logical axioms:
 - For all theories, decidability of equality (DE):
 $$ x \neq y \lor x = y $$
 - To obtain classical theories, the excluded middle (EM):
 $$ \neg \varphi \lor \varphi, \text{ for all formulas } \varphi $$

First-order theories

With equality

$\Gamma \vdash \varphi$ satisfying the rules for intuitionistic sequent calculus

Logical axioms:

- For all theories, decidability of equality (DE):
 $$ x \neq y \lor x = y $$
- To obtain classical theories, the excluded middle (EM):
 $$ \neg \varphi \lor \varphi, \text{ for all formulas } \varphi $$
Let \mathcal{L}_M be the first-order language with 0, S, \cdot, $\,+$.

Let $S^m(0)$ be the n^{th} numeral, denoted \overline{n}.

Let $x < y$ abbreviate $(\exists w)(x + S(w) = y)$.

Let $(\exists! y)\varphi(x, y)$ abbreviate

$$(\exists y)\varphi(x, y) \land (\forall y)(\forall z)(\varphi(x, y) \land \varphi(x, z) \Rightarrow y = z).$$
The arithmetical theory M

Definition

M is a theory over \mathcal{L}_M with the nonlogical axioms

1. $(M1)$ $S(x) \neq 0$
2. $(M2)$ $S(x) = S(y) \Rightarrow x = y$
3. $(M3)$ $x + 0 = x$
4. $(M4)$ $x + S(y) = S(x + y)$
5. $(M5)$ $x \cdot 0 = 0$
6. $(M6)$ $x \cdot S(y) = (x \cdot y) + x$
7. $(M7)$ $x \neq 0 \Rightarrow (\exists y)(x = S(y))$
8. $(M8)$ $x < y \lor x = y \lor y < x$

We consider an arbitrary *arithmetical theory* T, i.e. a consistent r.e. extension of M.
Recursive functions, brief overview

- Primitive recursive: basic functions; closed under substitution (S) and primitive recursion (PR)
- Total recursive: basic functions; closed under (S), (PR), and total μ
- Partial recursive: basic functions; closed under (S), (PR), and partial μ
Definition

A function \(f : \mathbb{N}^k \to \mathbb{N} \) is *numeralwise representable* in \(T \) as a total function if there exists a formula \(\varphi(x, y) \) satisfying

(a) for all \(m, n \in \mathbb{N}^{k+1} \), if \(f(m) = n \), then \(\vdash \varphi(\overline{m}, \overline{n}) \)

(b) for all \(m \in \mathbb{N}^k \), \(\vdash (\exists! y) \varphi(\overline{m}, y) \)

\(f \) is *strongly representable* in \(T \) as a total function if there exists a formula \(\varphi(x, y) \) satisfying (a) and

(b)' \(\vdash (\exists! y) \varphi(x, y) \)
Representability of partial functions

Definition

For $f : \mathbb{N}^k \rightarrow \mathbb{N}$ and $\varphi(x, y)$ consider the conditions

(P1) for all $m, n \in \mathbb{N}^{k+1}$, $f(m) \equiv n$ iff $\vdash \varphi(\overline{m}, \overline{n})$

(P2) for all $m \in \mathbb{N}^k$, $\vdash \varphi(\overline{m}, y) \land \varphi(\overline{m}, z) \Rightarrow y = z$

(P3) $\vdash \varphi(x, y) \land \varphi(x, y) \Rightarrow y = z$

(P4) $\vdash (\exists ! y) \varphi(x, y)$

For $f : \mathbb{N}^k \rightarrow \mathbb{N}$, if there exists $\varphi(x, y)$ in T such that

- (P1) and (P2) hold, f is *numeralwise representable* in T as a partial function
- (P1) and (P3) hold, f is *type-one representable* in T
- (P1) and (P4) hold, f is *strongly representable* in T as a partial function
Theorem (I)

Let T *be any arithmetical theory. All partial recursive functions are type-one representable in* T.

Theorem (II)

Let T *be a* \textit{classical} *arithmetical theory. All partial recursive functions are strongly representable in* T *as partial functions.*
Consequences of the Existence Property (EP)

The Existence Property (EP)

For every formula φ in T and any variable x occurring free in φ,

$$\text{if } \vdash (\exists x)\varphi, \text{ then } \exists n \in \mathbb{N} \text{ such that } \vdash \varphi \left[\frac{n}{x} \right].$$
The Kleene normal form theorem (alternate version)

Theorem (Kleene normal form)

For each $k \in \mathbb{N}$, $k > 0$, there exist primitive recursive functions $U : \mathbb{N} \to \mathbb{N}$ and $T_k : \mathbb{N}^{k+2} \to \mathbb{N}$ such that, for any partial recursive function $f : \mathbb{N}^k \to \mathbb{N}$, there exists a number $e \in \mathbb{N}$ such that

$$f(m) \simeq U(\mu_n(T_k(e, m, n) = 0))$$

*for all $m \in \mathbb{N}^k$.***
The strong representability of primitive recursive functions in arithmetical theories

Theorem

Let T be any arithmetical theory. All primitive recursive functions are strongly representable in T as total functions.

Proof.

It suffices to express the basic functions and the recursion schemes (S) and (PR) by formulas in T. For example:

- $y = S(x)$ strongly represents the successor function.
- If $g, h : \mathbb{N} \to \mathbb{N}$ are primitive recursive and strongly representable by $\psi(y, z)$ and $\varphi(x, y)$, respectively, then

$$ (\exists y)(\varphi(x, y) \land \psi(y, z)) $$

strongly represents $f = g(h) : \mathbb{N} \to \mathbb{N}$.
Lemma (1)

Let $g : \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ ($k \geq 0$) be a total function that is numeralwise representable in T as a total function, and let $f : \mathbb{N}^k \rightarrow \mathbb{N}$ be obtained from g by partial μ. Then, f is type-one representable in T.

Proof.

g is numeralwise representable in T by $\sigma(x, y, z)$ and f is defined by

$$f(m) \simeq \mu_n(g(m, n) = 0).$$

Thus, f is type-one representable in T by the formula

$$\sigma(x, y, 0) \land (\forall u)(u < y \Rightarrow \neg\sigma(x, u, 0)).$$
Weak representability of r.e. relations

Definition (Weak representability)

A relation $E \subseteq \mathbb{N}^k$ is *weakly representable* in T if there exists a formula $\psi(x)$ with exactly k free variables such that, for all $\mathbf{m} \in \mathbb{N}^k$,

$$E(\mathbf{m}) \text{ iff } \vdash \psi(\overline{\mathbf{m}}).$$

Lemma (2)

All k-ary r.e. relations on \mathbb{N} ($k \geq 0$) *are weakly representable* in T.

(long technical proof)
Proof of Theorem (I)

Theorem (I)

Let T be any arithmetical theory. All partial recursive functions are type-one representable in T.

Proof.

Let $f : \mathbb{N}^k \to \mathbb{N}$ be a partial recursive function.

$k = 0$: If f is the constant n in \mathbb{N}, take the formula $\overline{n} = y$. If f is completely undefined, take the formula $y = y \land 0 \neq 0$.
Proof of Theorem (I)

Proof (continued).

\(k \geq 1 \): By the Kleene normal form theorem, we obtain

\[f(m) \simeq U(\mu_n(T_k(e, m, n) = 0)) \quad \forall m \in \mathbb{N}^k. \]

As \(T_k \) is primitive recursive, by Lemma 1 there exists a

formula \(\sigma(x, z) \) that type-one represents the partial function

given by

\[\mu_n(T_k(e, m, n) = 0) \quad \forall m \in \mathbb{N}^k. \]

As \(U \) is primitive recursive, there exists a formula \(\varphi(z, y) \)

that strongly represents \(U \) as a total function. \(\varphi \) also
type-one represents \(U \).
Proof of Theorem (I)

Proof (continued).

By Lemma 2, there exists a formula $\eta(x)$ that weakly represents the r.e. domain D_f of f. Then, f is type-one representable in T by the formula $\theta(x, y)$ defined by

$$
\eta(x) \land (\exists z)(\sigma(x, z) \land \varphi(z, y)).
$$

Indeed,

- (P3) for θ follows from (P3) for σ and φ.
- For (P1), since η weakly represents D_f, we only have to consider inputs on which f is defined. Hence, we can show that $\vdash \theta(m, \bar{p})$ implies $f(m) \simeq p$ by (P3) for θ and the fact that $\vdash f(m) = \bar{p}$ iff $f(m) = p$.

Definition (Exact separability)

Two relations $E, F \subseteq \mathbb{N}^k$ are exactly separable in T if there exists a formula $\psi(x)$ in T with exactly k free variables such that, for all $m \in \mathbb{N}^k$,

\[
E(m) \iff \vdash \psi(m) \\
F(m) \iff \vdash \neg \psi(m)
\]

Lemma (3)

Let T be a classical arithmetical theory. Any two disjoint k-ary r.e. relations on \mathbb{N} ($k \geq 0$) are exactly separable in T.

(long technical proof)
Proof of Theorem (II)

Theorem (II)

Let T be a *classical* arithmetical theory. All partial recursive functions are strongly representable in T as partial functions.

Proof.

Let $f : \mathbb{N}^k \rightarrow \mathbb{N}$ be a partial recursive function.

$k = 0$: If f is completely undefined, let G be a closed undecidable formula in T and take

$$(y = 0 \Rightarrow \neg G) \land (y \neq 0 \Rightarrow G) \land y < 2$$
Proof of Theorem (II)

Proof (continued).

$k \geq 1$: Let $n_0, n_1 \in \mathbb{N}$ be distinct. By Lemma 3, we obtain a formula $\sigma(x)$ that exactly separates $f^{-1}(\{n_0\})$ and $f^{-1}(\{n_1\})$. By Theorem (I), we obtain a formula $\varphi(x, y)$ that type-one represents f. Consider

$$
\psi(x) \equiv (\exists z) \varphi(x, z) \land \neg \varphi(x, n_0) \land \neg \varphi(x, n_1)
$$

$$
\theta(x, y) \equiv (\psi(x) \land \varphi(x, y)) \lor (\neg \psi(x) \land \sigma(x) \land y = n_0)
$$

$$
\lor (\neg \psi(x) \land \neg \sigma(x) \land y = n_0).
$$

By (EM), $\vdash (\neg \psi(x) \land \neg \sigma(x)) \lor (\neg \psi(x) \land \sigma(x)) \lor \psi(x)$, from which (P4) follows. (P1) is obtained by cases.
Representability of total recursive functions

Corollary (of Theorem (I))

Let \(T \) be an arithmetical theory. All total recursive functions are numeralwise representable in \(T \) as total functions.

Corollary (of Theorem (II))

*Let \(T \) be a *classical* arithmetical theory. All total recursive functions are strongly representable in \(T \) as total functions.*
Given a theory T, we construct a classifying category $\mathcal{C}(T)$:
- objects: formulas of T
- morphisms: equivalence classes of provably functional relations between formulas

For a general theory T, $\mathcal{C}(T)$ is regular.

If T is an intuitionistic arithmetical theory, we claim that in $\mathcal{C}(T)$:
- there is at least a weak NNO;
- numerals are standard;
- 1 is projective and indecomposable.
For an arithmetical theory T:

1. Consider the formulas representing recursive functions in $C(T)$ (for all possible variations). What sub-categories do we obtain?

2. Construct a partial map category associated with $C(T)$ and show it is a Turing category.

3. Ultimately, we want to consider partial recursive functionals of higher type using a notion of λ-calculus with equalisers and a construction of the free CCC with equalisers.
I would like to thank my supervisor, Professor Scott, the conference organisers, the University of Ottawa, and NSERC.
References

To deal with partialness, we use Kleene Equality. If e_1 and e_2 are two expressions on \mathbb{N} that may or may not be defined, then

$$e_1 \simeq e_2 \text{ iff } (e_1, e_2 \text{ are defined and equal})$$

$$\text{OR } (e_1, e_2 \text{ are undefined}).$$

For example, if $f : \mathbb{N}^k \rightarrow \mathbb{N}$ is a partial function and $m, n \in \mathbb{N}^{k+1}$,

$$f(m) \not\simeq n \text{ iff } (f(m) \text{ is defined but not equal to } n)$$

$$\text{OR } (f(m) \text{ is undefined}).$$
Consequences of the Existence Property (EP)

If T is classical:

- G is a closed undecidable formula in T, $f : \mathbb{N}^k \rightarrow \mathbb{N}$ the completely undefined function.

$$\varphi(x, y) \equiv x = x \land (y = 0 \Rightarrow \neg G) \land (y \neq 0 \Rightarrow G) \land y < 2$$

strongly represents f in T as a partial function.

- If T were to satisfy EP, then $\vdash G$ or $\vdash \neg G$, a contradiction.
Consequences of the Existence Property (EP)

If T is intuitionistic:

- Let $f : \mathbb{N} \rightarrow \mathbb{N}$ be a partial function undefined at $m \in \mathbb{N}$.
- Suppose that there exists $\varphi(x, y)$ satisfying (P1) and (P4).
- By (P4), $\vdash (\exists y)\varphi(m, y)$.
- By EP, there exists $n \in \mathbb{N}$ such that $\vdash \varphi(m, n)$.
- By (P1), $f(m) \simeq n$, and so $f(m)$ is defined.

Contradiction.

So, strong representability of partial functions doesn’t make sense and Theorem (II) fails.
A technical lemma

Lemma

Let $E_1 \subseteq \mathbb{N}^k$ and $E_2 \subseteq \mathbb{N}^{k+j}$ ($k, j \geq 0$) be r.e. relations. There exists a formula $\varphi(x, u)$ in T with $k+j$ free variables such that, for all $m \in \mathbb{N}^k$ and $p \in \mathbb{N}^j$,

- if $E_1(m)$ and $\neg E_2(m, p)$, then $\vdash \varphi(m, p)$
- if $\neg E_1(m)$ and $E_2(m, p)$, then $\not\vdash \varphi(m, p)$.
Proof (idea).

(Adapted from the case for \(j = 0 \) in [S]) Let \(E_1 \subseteq \mathbb{N}^k \) and \(E_2 \subseteq \mathbb{N}^{k+j} \) \((k, j \geq 0)\) be r.e. relations. There exist primitive recursive relations \(F_1 \subseteq \mathbb{N}^{k+1} \), \(F_2 \subseteq \mathbb{N}^{k+j+1} \) such that, for all \(m \in \mathbb{N}^k \) and \(p \in \mathbb{N}^j \),

\[
E_1(m) \text{ iff } \exists n \in \mathbb{N} \text{ s.t. } F_1(m, n) \\
E_2(m, p) \text{ iff } \exists n \in \mathbb{N} \text{ s.t. } F_2(m, p, n).
\]

We obtain formulas \(\psi_1(x, y) \) and \(\psi_2(x, u, y) \) that numeralwise represent \(F_1 \) and \(F_2 \), respectively, in \(T \). Then, \(\varphi(x, u) \) given by

\[
(\exists y)(\psi_1(x, y) \land (\forall z)(z \leq y \Rightarrow \neg \psi_2(x, u, z))
\]

is the required formula.
Proof (Lemma 2).

\(k = 0: \mathbb{N}^0 = \{\ast\} \) is weakly representable by \(0 = 0 \) and \(\emptyset \) is weakly representable by \(0 \neq 0 \).

\(k \geq 1: \) Let \(E \subseteq \mathbb{N}^k \), let \(x, y \) be \(k + 1 \) distinct fixed variables. \(T \) has an associated Gödel numbering where \(\Gamma \psi \) denotes the Gödel number of \(\psi \) and \(\gamma_n \) is the formula with Gödel number \(n \). Then, we can construct a primitive recursive function \(g: \mathbb{N}^{k+1} \rightarrow \mathbb{N} \) such that

\[
g(m, n) = \begin{cases}
\Gamma \gamma_n \left[\overline{m} x, \overline{n} y \right] \Gamma & \text{if } \gamma_n \text{ exists} \\
n & \text{otherwise}
\end{cases}
\]
Proof (continued).

Since T is an r.e. theory, $D \subseteq \mathbb{N}^{k+1}$ given by

$$D(m, n) \text{ iff } GTHM_T(g(m, n)) \text{ iff } \vdash \gamma_n \left[\frac{m}{x}, \frac{n}{y} \right]$$

is an r.e. relation. By the technical lemma, we obtain $\varphi(x, y)$ in T such that, for all $m, n \in \mathbb{N}^{k+1}$,

- if $E(m)$ and $\not\vdash \gamma_n \left[\frac{m}{x}, \frac{n}{y} \right]$, then $\vdash \varphi(m, n)$
- if $\neg E(m)$ and $\vdash \gamma_n \left[\frac{m}{x}, \frac{n}{y} \right]$, then $\not\vdash \varphi(m, n)$.
Proof (continued).

Let \(p = \langle \varphi(x, y) \rangle \). Then, \(\gamma_p = \varphi \) and so, for all \(m \in \mathbb{N}^k \),

- if \(E(m) \) and \(\nvdash \varphi(\overline{m}, \overline{p}) \), then \(\vdash \varphi(\overline{m}, \overline{p}) \)
- if \(\neg E(m) \) and \(\vdash \varphi(\overline{m}, \overline{p}) \), then \(\nvdash \varphi(\overline{m}, \overline{p}) \).

It follows that, for all \(m \in \mathbb{N}^k \),

\[
E(m) \text{ iff } \vdash \varphi(\overline{m}, \overline{p}),
\]

and so \(\varphi(x, \overline{p}) \) weakly represents \(E \) in \(T \).