
Under consideration for publication in Math. Struct. in Comp. Science

Lenses, fibrations, and universal translations

Michael Johnson†

School of Mathematics and Computing

Macquarie University

Robert Rosebrugh†

Department of Mathematics and Computer Science

Mount Allison University

RJ Wood†

Department of Mathematics and Statistics

Dalhousie University

Received 2010-08-23. Revised 2011-05-16

This article is extends the “lens” concept for view updating in Computer Science beyond

the categories of sets and ordered sets. It is first shown that a constant complement view

updating strategy also corresponds to a lens for a categorical database model. A

variation on the lens concept called c-lens is introduced, and shown to correspond to the

categorical notion of Grothendieck opfibration. This variant guarantees a universal

solution to the view update problem for functorial update processes.

1. Introduction

In a modern database system the instantaneous semantics (a database state) is usually

taken to be a set of “tables”, also known as relations. This is based on the the idea

that a data object is specified by a record which is a list of field values. Then a table

is a set of records and a database state is a set of tables. For example, an address book

entry (record) will have appropriate numerical and string fields. In the syntax for a

database, the address book table signature lists the fields and their types. A contacts

list database schema might include an address book table signature. A table for the

address book signature is a set (not a list!) of such records. The tables may be required

to satisfy integrity rules such as external references. For example, an address record could

be required to refer to a record, for example a person, in another table.

The specification of table signatures and integrity rules is the purpose of a database

definition language (DDL). A database schema is naturally defined as a correct instance

† Research partially supported by grants from the Australian Research Council and NSERC Canada.



Michael Johnson, Robert Rosebrugh and R. J. Wood 2

of some DDL. There is a variety database definition languages in use, but by far the most

common is SQL.

For a database schema (for example a set of DDL statements in SQL), the database

states are the valid ways of populating the database schema, usually the tables. We will

have much more to say about the structure of a database schema and database states

below.

A basic requirement of database states is that they may be updated. Updates may

be additions or deletions of records, or modification of some fields. An update u is often

described as a process that may be applied to any database state and determines a new

database state. Thus an update process is an endomorphism on states.

A view definition consists of a database schema derived from another database schema

and determines an assignment of database states S to view states V . So there is at least

a view definition mapping from S to V . In SQL views are very limited: a view definition

describes only a single derived table, but this restriction can be safely ignored.

Combining these two concepts, a view update u is an endomorphism of view states.

Then the view update problem is as follows:

given a view definition g : S // V and an update u : V // V of the view states, when is

there a

compatible update (known as a translation) tu : S // S of the database states?

For tu to be a compatible update (a translation) means that gtu = ug, that is, the

following diagram commutes (as noted by (Bancilhon and Spyratos 1981)):

V V
u

//

S

V

g
��

S S
tu //____ S

V

g
��

Of course this is a lifting problem: for a view update u, we ask when ug can be lifted

along g to some tu. If S and V are sets and g is surjective (surjectivity of g is commonly

required), then any section of g would provide a solution. However it is natural also to

require the translation of the identity view update to be the identity, and to impose

other conditions discussed below so that this obvious suggestion is not adequate. The

view updates u under consideration are not necessarily arbitrary, but usually those view

updates for which the view update problem is required to have a solution should be

composable and include the identity. That is, they are required to be a monoid.

The view update problem has a long history in the database literature dating at least

to the 1980’s. Perhaps the most influential consideration of the problem is (Bancilhon

and Spyratos 1981). Their main result amounts to a requirement that there be a product

decomposition of the database states with the view states as one factor and with the

second factor called the “complement” view. In this case the view update problem has a

simple solution with the translation being constant on the second factor. The resulting

view update solution is called the “constant complement” strategy.

Several years ago, B. Pierce and collaborators (Bohannon et al. 2006), (Foster et al.

2007) introduced a concept they called “lens” for a mapping g : S // V . A lens has

a “Put” mapping p : V × S // S that satisfies additional equations. A lens provides



Lenses, fibrations, and universal translations 3

solutions to view update problems for a view definition mapping g. The equations are

strong enough to require that g be a projection, and they showed that a lens for a view

definition mapping corresponds to a translator in the sense of (Bancilhon and Spyratos

1981).

As far as we know, the lens equations were first considered in the early 1980’s by F.

Oles (Oles 1982), (Oles 1986) in a study of abstract models of storage. Oles (as reported

in (O’Hearn and Tennent 1995)) also characterized models of the equations in sets as

projections. In the 1990’s M. Hoffman and B. Pierce (Hofmann and Pierce 1995) also

considered the lens equations in their study of typing for programming languages.

At about the same time as the relationship of lenses to constant complement update

strategies was noticed, S. Hegner wrote about “update strategies” for a “closed family of

updates” (Hegner 2004). For Hegner, the database states should be treated as an ordered

set rather than a discrete abstract set. This makes very good sense: if a database state

is a set of tables (relations), then there is an obvious partial order among them given

by inclusions. Hegner’s definition of update strategy includes being a lens in the sense

appropriate to the category of partially ordered sets. As we review below, a lens structure

actually determines an update strategy.

The present authors recently showed in (Johnson et al. 2010) that the lens equations are

equivalent to those satisfied by an algebra for a well-known monad on a slice category of

a category with products. This clarifies the constant complement approach, and formally

unifies the approaches of Bancilhon and Spyratos and that of Hegner.

Rather than treat the database states as given abstractly, as in (Bancilhon and Spyratos

1981) or in (Hegner 2004), we have suggested in (Johnson et al. 2002) that the syntax (or

database schema) be specified by a certain type of mixed sketch, and that the semantics

(or database states) be the category of models of the sketch. Several other authors have

adopted variants of this idea, notably Diskin and Cadish in (Diskin and Cadish 1995)

and Piessens and Steegman in (Piessens and Steegmans 1995). Using sketches for syntax

provides a natural way to define a view, namely as a morphism of sketches. The view

definition mapping is then the induced (substitution) functor between the model cate-

gories. With this formalism, an update of a single view state (an insertion or a deletion)

is a morphism in the category of view states. In that case a criterion for updatability is

the existence of an (op)cartesian arrow in the database state category. Note that when

states can be compared in some way (so that the database states have more structure

than an abstract set), there is also a natural requirement for a comparison morphism

between a (view) state and its value under an update process.

When a view definition (substitution) functor is a lens in cat, the category of categories,

it is a projection and hence also a fibration and an opfibration. Thus all (delete or insert)

view updates for the view have a best possible database update. Though projections are

certainly among the updatable view definition mappings, the main results of this article

show that our fibrational criteria are sufficient to guarantee the existence of “universal

translations”. This result arises as follows. In the categorical data model, it is reasonable

to modify the lens concept so that the domain of the Put is a suitable comma category,

and rewrite the lens equations there. We call the resulting concept a c-lens. We show that

a c-lens is nothing other than an opfibration. This characterization allows the application



Michael Johnson, Robert Rosebrugh and R. J. Wood 4

of facts about opfibrations to provide a universal translation for a functorial update

process.

Acknowledgement: The authors are happy to acknowledge helpful suggestions from the

referees.

2. Sketches, views and translations

We assume the reader is familiar with sketches and their models as described, for example,

in (Barr and Wells 1995) and begin by defining EA sketches, their views, “propagatabil-

ity” for view updates, and then the fibrational criterion for propagatability.

EA sketches are mixed sketches with limitations on cones and cocones. The important

point is that the permitted cones and cocones are sufficient to implement the fundamental

database operations, but they are restricted enough to permit construction of the query

language. To set notation, we begin with the definition of sketch and then specialize to

EA sketches.

Definition 2.1. A sketch E = (G,D,L, C) consists of a directed graph G, a set D of

pairs of paths in G with common source and target (called the commutative diagrams)

and sets of cones L and cocones C in G. The category generated by the graph G with

commutative diagrams D is denoted C(E). An EA sketch E has only finite cones and

finite discrete cocones and has a specified cone with empty base whose vertex is called

1. Edges with domain 1 are called elements. The vertex of a discrete cocone all of whose

injections are elements is called an attribute. A node of G which is neither an attribute

nor 1 is called an entity.

Example 2.1. As an example data domain we consider an EA sketch for part of a

movies database.

The nodes of the graph G will include persons, for example Actors, Directors and

Crew, and the movies themselves. Other nodes of the graph will tabulate relationships

among people and movies, for example directors direct movies, actors play in a movie,

and so on.

Among the constraints will be requirements that the general Person node be a sum of

Actors, Directors and Crew (as a consequence an actor cannot be a director or crew).

Finite limit constraints will include expressions of joins: for example Comedy directors

are found as the join (pullback) of the instances of the Directs node with Comedies.

Subset constraints can also be expressed, for example, a comedy is a movie.

The EA sketch might look something like Figure 1. The graphic was produced using the

EASIK (Rosebrugh et al. 2009) implementation for sketches; some attributes are shown

UML style; constraints are noted with dashed links; monic constraints are diamond-tailed

arrows.

In principle a model for a sketch may take values in any category. As we are interested

in databases, we consider only models in finite sets setf :



Lenses, fibrations, and universal translations 5

Fig. 1. Part of a movie database sketch

Definition 2.2. A model M of a sketch E is a functor M : C(E) // setf such that the

image of a cone in L (cocone in C) is a limit cone (colimit cocone) in setf . If M and M ′

are models of E a morphism ϕ : M // M ′ is a natural transformation from M to M ′.

The category Mod(E) has as objects the models of E and as arrows the morphisms of

models. For an EA sketch, a model is called a database state and we abuse notation by

writing D : E // setf .

To define views for an EA sketch, we use the query language. For an EA sketch E there

is a category called the theory of E denoted QE. This QE is constructed by starting from

C(E) and then formally adding all finite limits and finite sums, subject to the (co)cones

in L and C (for details consult (Barr and Wells 1985, Section 8.2)). Thus QE contains

an object for any expression in the data for E constructible using finite limits and finite

sums which justifies terming it the query language.

Every category has an underlying sketch, and the category of models Mod(QE) of

the underlying sketch of QE is equivalent to the category Mod(E). Briefly, a QE model

restricts to an E model, and conversely an E model determines values on its queries and

thus a QE model.

Definition 2.3. A view of an EA sketch E is an EA sketch V together with a sketch

morphism V : V // QE.

This definition allows the view (morphism) to have values which are query results in

E.

We mention without providing detail that the process Q of constructing the theory of

a sketch defines a monad on a suitable category of sketches. As just defined, a view is a

morphism of the Kleisli category for Q. Thus, as also noted in (Johnson and Rosebrugh

2007), views can be composed.



Michael Johnson, Robert Rosebrugh and R. J. Wood 6

Via the equivalence of Mod(E) with Mod(QE), a database state D : E // setf
may also be considered as a model QE // setf , also denoted D. Composing the lat-

ter model with a view V : V // QE defines a V database state or view state DV :

V // QE // setf , the V -view of D. This operation of composing with V is written V ∗

so V ∗D = DV and it defines a functor V ∗ : Mod(E) // Mod(V).

Example 2.2. A view on the movies EA sketch (database schema) could be defined for

the information on persons. Here a view state arises from every state of the underlying

database schema by extracting only the information on persons in that state. Note that

there is an EA sketch which has (in this case) a subgraph of the original graph. The view

updating problem arises when we consider that a user of the persons view may wish to

insert or delete information in the view state. Is there an update to the state from which

the view state was derived that correctly implements the change? Is there a best possible

update to that state?

In much of the literature on views and updates, a database state or a view state is

merely an element of an abstract set (Bancilhon and Spyratos 1981), (Gottlob et al.

1988) or of a partially ordered set (Hegner 2004) rather than an object of a category.

As a result, the view definition mapping was taken to be a (surjective) function or a

monotone mapping. In the abstract set context, there is no basis for considering how one

state updates to another. Rather, an update is defined only in terms of a process on the

set of states, that is as an endomapping of the states. Thus, it is common to consider a

view update as a process on all of the view states. We have argued that it is important

to be able to consider an update of a single state. This is easy to define for a model of

an EA sketch.

Definition 2.4. An insert update (respectively delete update) for a database state D is

a monomorphism D // // D′ (respectively D′ // // D) in Mod(E).

The following is a criterion for being able to lift an (insert) update on a single view

state to the underlying database:

Definition 2.5. Let V : V // QE be a view of E. Suppose D is a database state for

E, and i : V ∗D // // W is an insert update of V ∗D. The insertion i is propagatable if

there exists an insert update m : D // // D′ in Mod(E) such that i = V ∗m and for any

database state D′′ and insert update m′′ : D // // D′′ such that V ∗m′′ = i′i for some

i′ : W // // V ∗D′′, there is a unique insert m′ : D′ // // D′′ such that V ∗m′ = i′. If

every insert update on V ∗D is propagatable, we say that the view state V ∗D is insert

updatable.

This definition is simply a precise statement of the requirement that m be the “best”

(minimal) insert update of D which maps to i under V ∗. Note that Hegner (see (Hegner

2004), Lemma 4.2) states in essence that his notion of an update strategy for a closed

update family (see below) provides propagatability for inserts.

To define propagatable for a deletion d : W // // V ∗D and delete updatable for a view

state we simply reverse arrows. It is often the case that all arrows in Mod(E) are monic.

For example, this so if E is keyed (see (Johnson et al. 2002)). The reader may have



Lenses, fibrations, and universal translations 7

noted that in that case the arrow m in Definition 2.5 is opcartesian and the analogous

arrow for a delete is cartesian. In any case, it makes sense to drop the monic requirement

above and generalize the notion of insert and delete update by calling any morphism of

database states with domain D an insertion in D, and similarly for deletes. We adopt

this convention from here on. When all insert (respectively, delete) updates of a view

are propagatable then V ∗ is an opfibration (respectively fibration), and conversely. Some

criteria guaranteeing that V ∗ is an (op)fibration are discussed in (Johnson and Rosebrugh

2007).

When the database states are the category of models for an EA sketch, we can also

consider an update process. It ought to be a functor. Then we can consider a “translation”

of a view update process to be a compatible update process (functor) on states of the

underlying database as mentioned in the Introduction. Thus compatibility requires that

the view update functor and its translation commute with the view substitution V ∗.

However since we now have morphisms among states available, it is natural to require

a comparison between a state and its image under the process (the updated state).

Furthermore, we can also say when a translation is best possible, as we did above for

propagatable single updates. These considerations motivate:

Definition 2.6. Let V : V // QE be a view. A pointed view (insert) update is a pair

〈U, u〉 where U : Mod(V) // Mod(V) is a functor and u is a natural transformation u :

1Mod(V)
//U is a natural transformation. If 〈U, u〉 is a pointed view update, a translation

of 〈U, u〉 is a pair 〈LU , lu〉 where LU : Mod(E) //Mod(E) is a functor with UV ∗ = V ∗LU ,

lu : 1Mod(E)
// LU is a natural transformation and uV ∗ = V ∗lu : UV ∗ // V ∗LU :

Mod(V) Mod(V)
U //

Mod(E)

Mod(V)

V ∗

��

Mod(E) Mod(E)
LU // Mod(E)

Mod(V)

V ∗

��

Mod(E) Mod(E)

1

;;

Mod(V) Mod(V)

1

;;

lu
OO

u
OO

A translation 〈LU , lu〉 is universal when, for any other translation k : 1Mod(E)
//K and

u′ : U // U ′ with V ∗k = u′uV ∗ (so V ∗K = U ′V ∗) there is a unique transformation

k′ : LU //K such that k = luk
′ and V ∗k′ = u′V ∗.

Notice that a pointed (view) update provides a process and a comparison from the

original state to the updated state, like an insert update. There are dual notions of

copointed view update and couniversal translation which correspond to delete updates.

Example 2.3. A pointed view update on the persons view states of the movies database

system might be expressed by the insertion process of adding a new actor. For any view

state there is an updated view state with the new actor added. Notice that this will

also imply an update to the persons entity. Taken together, these updates define an

endofunctor on the view states. This is a pointed update because for any view state there

is an insertion morphism from it to the updated view state. Together these updates form



Michael Johnson, Robert Rosebrugh and R. J. Wood 8

a natural transformation from the identity functor to the update functor. Notice that for

states where the new actor is already present the insertion is trivial.

Clearly, a universal translation is unique up to a natural isomorphism of its functor

part. As in the case of propagatability, the requirement here is not simply that there be

some translation for the view update process, but further that it be optimal.

3. Lenses and “constant complements”

Our ultimate goal is to study sufficient conditions for universal translations. In this section

we begin with the notion of lens and review its relation to some classical results on view

updatability. Then we consider lenses in the context of our categorical data model.

We begin with the context of given sets of underlying database states S, view states V ,

and a view definition mapping g : S //V . Here a view update process is an endomorphism

u : V //V . Informally, a lens provides a way to specify a global update process tu : S //S
that is compatible with u no matter which u is chosen. In particular, a lens specifies, for

each state s and each updated view state v′, what the value of tu(s) should be. The lens

specification depends on s, but it does not depend on the particular view update u, only

on its value v′ at g(s).

Example 3.1. If we ignore the morphisms among states of the movies database system

and treat both the database states and the view states just as sets rather than categories,

we can almost imagine a lens. Given a database state, and a state of the persons view,

the lens creates a database state with exactly the specified persons information, ignoring

the persons information from the original database state. For this to work, of course,

there must be no interaction between the persons information and the other information

in the original database state. To achieve this we would have to require that the original

database schema be modified.

We denote projections π0 : X × Y // X and so on, and will moreover abbreviate

〈π0, π2〉 : X × Y × Z //X × Z to π0,2.

Definition 3.1. Let C be a category with finite products. A lens in C denoted L =

(S, V, g, p) has states S and view states V which are objects of C, and two arrows of C,

a “Get” arrow g : S // V and a “Put” arrow p : V × S // S satisfying the following

equations:

(i) (PutGet) the Get of a Put is the projection: gp = π0

(ii) (GetPut) the Put for a trivially updated state is trivial: p〈g, 1S〉 = 1S
(iii)(PutPut) composing Puts does ont depend on the first view update:

p(1V × p) = pπ0,2

The “Put” arrow does the job of specifying the database update value for pair con-

sisting of a database state and an updated version of its image under the view mapping.

“PutGet” guarantees the lifting condition mentioned above.

For any category C and any object V of C, we denote the slice category by C/V and

by ΣV : C/V // C the functor that remembers the domain, that is ΣV g = C for an



Lenses, fibrations, and universal translations 9

object g : C // V . For C with finite products, the functor ∆V : C // C/V is defined

on objects by ∆V C = π0 : V × C // V . We will often drop the subscripts. There is an

adjunction:

C/V Cii
∆

C/V C

Σ

((⊥

For an object g : C // V of C/V , ∆Σg = π0 : V × C // V and the adjunction

determines a monad ∆Σ on C/V . The g’th component ηg of the unit for the monad

is ηg = 〈g, 1〉 : C // V × C. The g’th component µg of the monad multiplication is

µg = π0,2 : V × V × C // V × C.

Proposition 3.1. (Johnson et al. 2010) Let C be a category with finite products. An

algebra structure on g : C //V in C/V for the monad ∆Σ on C/V is determined by an

arrow p : V × C // C satisfying the lens equations, PutGet, GetPut and PutPut, and

conversely.

To explain the relation between lenses and the “constant complement” view updating

strategy we consider monadicity of ∆V . For notation, consider the following diagram in

which K is the comparison functor from C to ∆Σ algebras.

C (C/V )∆ΣK //C

C/V

∆

��

C

C/V

UU

Σ
a

C/V

(C/V )∆Σ

ww
U

C/V

(C/V )∆Σ

F

99

a

The next result follows from Theorem 2.3 of (Janelidze and Tholen 1994), or it can be

proved using Beck’s theorem.

Proposition 3.2. (Johnson et al. 2010) For C with finite products and V an object,

suppose V // 1 is split epi (so if V has a global element). Then K is an equivalence,

that is, ∆ is monadic.

This result means that if (S, V, g, p) is a lens, then g : S // V is essentially just a

projection to V , that is for some C, g ∼= π0 : V × C // V . Indeed, given the lens

(S, V, g, p), the “complement” C just mentioned is the object of C given by the essential

inverse of K.

There is a close relationship between lenses in set and the “translators” of Bancilhon

and Spyratos in (Bancilhon and Spyratos 1981). They define a view g : S // V to be a

surjective function and also define a complete set of updates to be a set U ⊆ set(V, V )

of updates closed under composition and such that for u in U and s in S there is a v

in U such that vu(s) = s. A translator T for U is a composition-preserving function

T : U // set(S, S) such that for u in U , gT (u) = ug. There is a one-one correspondence

between lenses and translators noted in an unpublished manuscript by B. Pierce and

A. Schmitt. We note that a lens in set was called a “total, very-well-behaved lens” by

(Bohannon et al. 2006).



Michael Johnson, Robert Rosebrugh and R. J. Wood 10

Bancilhon and Spyratos show directly that a translator determines a product decompo-

sition of the domain S of the view mapping and that the view mapping is the projection

to the factor V . The other factor (with its projection) is called a complementary view.

In 2004 Hegner extended the ideas of Bancilhon and Spyratos to the ordered setting in

(Hegner 2004). His idea is that the database states should be an ordered set S and that a

view definition mapping should be a surjective monotone mapping g : S //V . This idea

has the appealing advantage that states can be compared if they are related by the order.

Hegner considers an (order-compatible) equivalence relation on the view states V . The

intention is that equivalent states are mutually updatable. He defines an update strategy

to be a (partial) mapping p : V ×S //V satisfying a list of equations that includes both

the requirement that p be monotone and the lens equations. We denote the category of

partially ordered sets and monotone mappings by pos. It has finite limits. The present

authors showed in (Johnson et al. 2010) that, at least for the “all” equivalence relation,

an update strategy is exactly a lens in pos. Consequently, an update strategy or a lens

provides a product decomposition of the database states for a view in pos (as Hegner

also pointed out).

The lens concept explains the constant complement view updating strategy when

database states are considered to be an abstract set or an ordered set. A ∆Σ algebra or

a lens is the same thing as a projection to the view states. Moreover, the second factor

in the projection is provided by the inverse of the equivalence K and is the “constant

complement” found directly by Bancilhon and Spyratos, and also by Hegner.

The category of categories cat has finite products. We are interested in the view

definition functor V ∗ : Mod(E) // Mod(V) for EA sketches E and V. Whenever V has at

least one model, so that Mod(V) has at least one object, it has a global section in cat.

By Proposition 3.2, a lens in cat with view states Mod(V) is essentially a projection to

its codomain. Thus whenever V ∗ is a lens, Mod(E) decomposes as Mod(V)×E′.

Proposition 3.3. ((Borceux 1994) 8.1.13) Let P : V×C // V be a projection in cat.

Then P is a fibration and an opfibration.

Thus, if a view definition functor V ∗ has a lens structure then we have insert and

delete updatability of view updates. Indeed a lens structure is a powerful condition on

V ∗ since it prescribes a view update strategy not just for updates of a single view, but

also, as we will see below, for any pointed functorial update process.

Remark 3.1. When C has pullbacks and a terminal object (so also finite products),

there is a “relative” version of the lens notion and the lens equations that we leave to the

reader: for an object α : J // I in C/I, an I-indexed family of lenses with view states

α is a ∆αΣα-algebra structure on α. When α is split epi, then here also ∆α is monadic.

4. Fibrations and universal translations

In this section we consider a variation on the lens concept that turns out to be equivalent

to being a split (op)fibration and which guarantees existence of universal translations.

Consider again a lens (S, V, g, p) in set. To define a translation for an update u : V //V ,



Lenses, fibrations, and universal translations 11

it is sufficient for the Put mapping p to be defined on the subset du = {(ug(s), s) | s ∈ S}
of V × S. As u varies, the union of the du is all of V × S so the domain of p should

be V × S. In the categorical model for a view definition V ∗ : Mod(E) // Mod(V), a

database state D, a pointed view update u : 1 //U , and uD : V ∗D //UV ∗D, to define

a translation will require that we have an arrow luD
: D //D′ with V ∗luD

= uD. Thus,

the domain of Put needs to include the arrows uD : V ∗D //UV ∗D. These are arrows of

the form V ∗D //W in Mod(V) so they are objects of the comma category (V ∗, 1Mod(V)).

Example 4.1. Returning to the movies database schema and persons view, we note

that for an insert update process on the view states, we are considering insertions into

the image under the view definition of a database state. These insertion arrows are

actually objects of the comma category just described. If we want to provide compatible

updates to the original database states it is these comma category objects which must

be considered.

While our interest is primarily view definition functors V ∗, the following definitions

and results make sense for any functor G : S // V. For notation we denote the comma

category and projections for a functor G, as follows:

S V

(G, 1V)

S

Q0

wwooooooooo
(G, 1V)

V

Q1

''OOOOOOOOO

S

V
G ''OOOOOOOOOOOS VV

V
1Vwwooooooooooo−→α

and recall that a functor X // (G, 1V) is specified by a triple (H,K,ϕ) where H :

X // S,K : X // V and ϕ : GH //K. Using this we establish some further notation.

First we denote the iterated comma category

(G, 1V) V

((G, 1V), 1V)

(G, 1V)

Q2

wwooooooo
((G, 1V), 1V)

V

Q3

''OOOOOOOOO

(G, 1V)

V
Q1 ''OOOOOOOOO

(G, 1V) VV

V
1Vwwooooooooooo−→β

Then define a functor ηG = (1V, G, 1G) : S // (G, 1V) as in

S

S

		

1V

S

(G, 1V)

ηG

��

S

V

G

��
S V

(G, 1V)

S

Q0

wwooooooooo
(G, 1V)

V

Q1

''OOOOOOOOO

S

V
G ''OOOOOOOOOOOS VV

V
1Vwwooooooooooo−→



Michael Johnson, Robert Rosebrugh and R. J. Wood 12

and define µG = (Q0Q2, Q3, β(αQ2)) : ((G, 1V), 1V) // (G, 1V) where we recall that

β(αQ2) : GQ0Q2
//Q1Q2

//Q3 in

S

((G, 1V), 1V)

		

Q0Q2

((G, 1V), 1V)

(G, 1V)

µG

��

((G, 1V), 1V)

S

Q3

��
S V

(G, 1V)

S

Q0

wwooooooooo
(G, 1V)

V

Q1

''OOOOOOOOO

S

V
G ''OOOOOOOOOOOS VV

V
1Vwwooooooooooo−→

And finally, for a functor P : (G, 1V) // S satisfying GP = Q1 so that GPQ2 = β :

Q1Q2
//Q3, define, for use in Definition 4.1,

(P, 1V) = (PQ2, Q3, β) : ((G, 1V), 1V) // (G, 1V)

as in

(G, 1V)

((G, 1V), 1V)
tt
Q2 jjjj

S

(G, 1V)

��

P

((G, 1V), 1V)

(G, 1V)

(P,1V)

��

((G, 1V), 1V)

S

Q3

��
S V

(G, 1V)

S

Q0

wwooooooooo
(G, 1V)

V

Q1

''OOOOOOOOO

S

V
G ''OOOOOOOOOOOS VV

V
1Vwwooooooooooo−→

As noted above, in the cat case the domain of Put for insert updates should be a

comma category. Notice that the equations in the next definition are similar to those of

Definition 3.1 with the domain of Put replaced by the appropriate comma category.

Definition 4.1. A c-lens in cat is L = (S,V, G, P ) where G : S // V and P :

(G, 1V) // S satisfy

i) PutGet: GP = Q1

ii) GetPut: PηG = 1S
iii) PutPut: PµG = P (P, 1V)

or diagrammatically:

S (G, 1V)
ηG //S

S

1S

##GGGGGGGGGGGG (G, 1V)

S

P

��
S V

G
//

(G, 1V)

S
��

(G, 1V)

V

Q1

##GGGGGGGGGGG

(G, 1V) S
P

//

((G, 1V), 1V)

(G, 1V)

µG

��

((G, 1V), 1V) (G, 1V)
(P,1V) // (G, 1V)

S

P

��

A c′-lens is as above except that the domain of P is (1V, G), and so on.



Lenses, fibrations, and universal translations 13

We recall from (Street 1974) that the assignment G 7→ (G, 1V) is the object part of a

KZ monad on cat/V. The ηG and µG defined above provide the unit and multiplication

for the monad. Dually, G 7→ (1V, G) is a co-KZ monad.

Proposition 4.1. An algebra structure on G : S // V in cat/V for the monad

cat/V
(−,1V) // cat/V

is determined by an arrow P : (G, 1V) // S satisfying the c-lens equations, PutGet,

GetPut and PutPut, and conversely.

Proof. This result is similar to Proposition 3.1. We first note that the GetPut equation

says that P is a morphism of cat/V from Q1 to G. The upper right triangle defining

ηG shows that ηG is a morphism of cat/V and the PutGet equation is then exactly the

unit law for the algebra structure. Finally, the upper right triangle defining (P, 1V) is the

arrow of cat/V which defines the action of the monad applied to Q1. Thus the PutPut

equation expresses the other law required to make a c-lens an algebra. Conversely, an

algebra structure on G : S //V is first of all an arrow P from Q1 to G in cat/V, GetPut

is satisfied, and satisfaction of the algebra equations immediately imply satisfaction of

PutGet and PutPut.

Remark 4.1. As proved in (Street 1974), the algebras for (−, 1V) are the split opfi-

brations (and algebras for (1V,−) are split fibrations). Of course it is also the case that

pseudo-algebras for the monad in question are not-necessarily split fibrations. We could

have considered those by requiring the c-lens equations GetPut and PutPut hold only up

to isomorphism (equation PutGet would still be required). The extra generality would

buy us little in the applications we have in mind, and moreover a lens in cat is a split

fibration. This is a good place make two further points. First, to be a c-lens is to be

an op-fibration. This is a property of a functor, not extra structure and so the algebra

structure P noted above is essentially unique. That is satisfying to note because it means

that there is no choice in the update strategy associated with a view functor that is a

c-lens. Second, we point out that in database practice mere isomorphism of models of an

EA sketch is not always a useful concept. For example, the value of an entity or attribute

under a model is a particular set. While an isomorphic set might be the value in an

isomorphic model, an isomorphism between Actor sets {Harlow, Monroe} and {Gable,
McQueen} vastly changes the meaning of the model.

For the rest of this article, we assume that all (op)fibrations mentioned are assumed

to be split.

Corollary 4.1. A c-lens with codomain V is an opfibration with codomain V, and

conversely.

The dual is that a c′-lens is a fibration.

We note that while a c-lens structure on a functor G is defined equationally, it has

just been identified as an algebra structure for a KZ-monad. Thus to be a c-lens is a



Michael Johnson, Robert Rosebrugh and R. J. Wood 14

property of G rather than extra structure. Since opfibrations compose, it also follows

that a composite of c-lenses is a c-lens.

Our interest is to apply Corollary 4.1 to show that a c-lens structure is sufficient to

provide universal translations. For the rest of this section we discuss opfibrations, but

remind the reader they are c-lenses. We begin with an example illustrating that there are

interesting views whose states are updatable by the fibrational criterion when the view

is a c-lens, but for which there is no lens structure. Thus

Example 4.2. A simple example shows that a non-trivial view may give rise to a c-

lens which does not have a lens structure. For the base sketch E we take a single arrow

specification: A
f // B. The sketch V has a single node B and no other data. The view

V : V // E is just the obvious inclusion. The reader may think of V in particular as a

view of a view on the movies database schema where, for example, A is playsin, B is

actor and f is the arrow p0. A model D for E is simply a mapping DA
Df //DB in set,

and Mod(E) the category of arrows in set. A model for V is a set. Thus V ∗ specifies the

codomain of Df . That is, V ∗ is the well-known “codomain” op-fibration (also a fibration

if Mod(E) has pullbacks). Now V ∗ is not isomorphic to a product projection in cat, and

hence it is not a lens.

We begin by recalling well-known lemmas showing that homming into an (op)fibration

gives an (op)fibration, and that the pullback of an (op)fibration is again such.

Lemma 4.1. ((Borceux 1994), 8.1.15) Let G : S // V be an (op)fibration. For any

category X, (1X, G) : cat(X,S) // cat(X,V) is an (op)fibration.

Lemma 4.2. ((Borceux 1994), 8.1.16) For a pullback in cat:

B V
F

//

E

B

G′

��

E S
F ′ // S

V

G

��

if G is an (op)fibration, then G′ is an (op)fibration.

The following consequence of the lemmas may be a new observation.

Proposition 4.2. Let G : S // V be an (op)fibration and the square below be a

pullback. The functor Q is an (op)fibration

cat(V,V) cat(S,V)
(G,1V)

//

K

cat(V,V)

Q

��

K cat(S,S)// cat(S,S)

cat(S,V)

(1S,G)

��

Proof. This follows immediately from Lemmas 4.1 and 4.2.



Lenses, fibrations, and universal translations 15

When Q is an opfibration, we have the following explicit description:

Corollary 4.2. Let Q in the previous theorem be an opfibration. Suppose that HG =

GF so that H = Q(H,F ) and u : H // U , then there is LU : S // S and lu : F // LU
such that Glu = uG and such that for any L′ : S // S and l′ : F // L′ satisfying

Gl′ = vuG for some U ′ : V // V and v : U // U ′, there is a unique k : LU // L′ with

Gk = vG.

V V
U //

S

V

G

��

S S
LU // S

V

G

��

S S

F

77

V V

H

77

lu
OO

u
OO

The important special case which we point out next clearly holds also when V ∗ is a

lens.

Proposition 4.3. Let V : V // QE be a view and 〈U, u〉 a pointed view update. If V ∗

is an opfibration, then there is a universal translation 〈LU , lu〉 of 〈U, u〉.

Proof. Take F = 1Mod(E), H = 1Mod(V) in the Corollary.

The dual is:

Corollary 4.3. Let V : V // QE be a view and 〈U, u〉 a copointed view update. If V ∗

is a fibration, then there is a couniversal translation 〈LU , lu〉 of 〈U, u〉.

Pointed view updates can be composed horizontally, and there is a comparison from a

universal translation for the horizontal composite to the horizontal composite of universal

translations. Formally,

Proposition 4.4. Let V : V // QE be a view and 〈U1, u1〉 and 〈U2, u2〉 be pointed

view updates. If V ∗ is an opfibration, then 〈U2U1, u2 ◦ u1〉 has a universal translation

k : 1 //K and there is a unique comparison k′ : K // LU2LU1 to the composite of the

(codomains of the) universal translations for 〈U1, u1〉 and 〈U2, u2〉.

Proof. This is immediate from Proposition 4.3.

There is no reason to expect k′ to be invertible, so while 〈LU2
LU1

, lu2
◦ lu1
〉 is certainly

a translation for u2 ◦ u1 it may not be universal.

These results show that when V ∗ satisfies the fibrational criteria of (Johnson and

Rosebrugh 2007) for updatability, and in particular when it has a lens structure in cat,

then universal translations are available. It is worth repeating that such translations

are essentially unique, and optimal. By contrast, there is no way even to measure a

translation’s properties if we restrict view definition morphisms to being functions in

set. This defect is at least partly fixed when, as in (Hegner 2004), the view definition

morphism is a monotone mapping.



Michael Johnson, Robert Rosebrugh and R. J. Wood 16

The following Proposition is of interest for updates in the case of a keyed EA sketch

E so that Mod(E) is ordered. In that case it provides a partial converse to Corollary 4.2.

Proposition 4.5. Let G : S // V be a functor and let the square below be a pullback.

cat(V,V) cat(S,V)
(G,1V)

//

K

cat(V,V)

Q

��

K cat(S,S)// cat(S,S)

cat(S,V)

(1S,G)

��

Suppose further that S is an ordered set viewed as a category and Q is an opfibration.

Then the functor G is an opfibration

Proof. Suppose α : GS // V in V. We need to define an opcartesian arrow for α. For

any categories A, B, denote the functor which is constant at B in B by KB : A // B.

For f : B // B′, there is an obvious natural transformation κf : KB
// KB′ . Indeed,

any natural transformation from KB to KB′ arises in this way.

For A = B = V, denote H = KGS and for A = B = S, F = KS . Thus HG = GF (so

F lies over H).

Define U = KV : V // V and u = κα so by hypothesis there are LU : S // S and

lu : F // LU satisfying Glu = uG and in particular GLU = UG so that for any S in S,

GLU (S) = UG(S) = V .

Denote the arrow lu(S) : F (S) // LU (S) by ᾱ : S // Sα∗. We aim to show that ᾱ is

opcartesian for α. So suppose that ϕ : S //S′ satisfies Gϕ = βα, for some β : V //GS′.
Denote M = KS′ , and W = KGS′ and note that GM = WG, κϕ : F // M and

κβ : U //W . Furthermore, we have Gκϕ = κGϕG = κβαG = κβκαG = κβuG.

Now since Q is an opfibration, we know that there is a unique transformation k :

LU // M satisfying Gk = κβG and κϕ = klu and we have the required fill-in arrow

defined by kS : Sα∗ = LU (S) // M(S) = S′. Moreover, since Gk = κβG, GkS =

κβGS = β : V = U(GS) // W (GS) = GS′, and necessarily, (kS)ᾱ = ϕ since S is

ordered. For the same reason, kS is unique.

Note that we use the hypothesis that S is ordered to show both commutativity and

uniqueness of the “fill-in” arrow. Some converse of Proposition 4.3 would be desirable,

even in the case that S and V are ordered sets, but we do not know of any.

5. Conclusion and future work

The concept of lens in a category with finite products is relevant to the lifting problem also

known as the view update problem for databases. Because a lens determines a product

structure (up to isomorphism) on its domain, it is strong enough to guarantee that

compatible liftings (or translations) can be computed for any update process. As such, it

unifies interpretations of database states and view mappings in the category of sets and

the category of ordered sets. The definition applies to the category of categories as well.



Lenses, fibrations, and universal translations 17

There the product decomposition implies that the view definition functor underlying the

lens is both a fibration and an opfibration.

In (Johnson and Rosebrugh 2007), the authors have previously considered the view

update problem in the context where database states are models of sketches. For a single

insert update of a view state viewed as an arrow in the category of view states, the

existence of an opcartesian arrow is a suitable criterion for a universal solution to the

view update problem. Thus, when the view definition functor is an opfibration such

problems have a solution.

In this article the focus is on update processes in the categorical context. That moti-

vates considering updates to be functors. Asking for a (natural) comparison from (or to)

the current state to (or from) the updated state introduces a (co)pointing of the update

functor. This article shows that an obvious slight weakening of the lens concept called

the c-lens is equivalent to the view functor being an opfibration (or fibration). Further,

a c-lens structure on a view is sufficient to guarantee even universal updates for pointed

update processes. The original lenses provide an important special case.

While a lens in the category of categories provides updates for both delete and insert

functorial update processes, a c-lens structure does so only for inserts. The next step is

to consider what structure on a view mapping will provide universal updating for both

inserts and deletes. We expect that the categorical notion of distributive law will play a

role in this study.

References

Bancilhon, F. and Spyratos, N. (1981) Update semantics of relational views, ACM Trans.

Database Syst. 6, 557–575.

Barr, M. and Wells, C. (1995) Category theory for computing science. Prentice-Hall, second

edition.

Barr, M. and Wells, C. (1985) Toposes, Triples and Theories. Grundlehren Math. Wiss. 278,

Springer Verlag.

Bohannon, A., Vaughan, J. and Pierce, B. (2006) Relational Lenses: A language for updatable

views. Proceedings of Principles of Database Systems (PODS) 2006.

Borceux, F. (1994) Handbook of Categorical Algebra, Vol 2. Cambridge University Press.

Diskin, Z. and Cadish, B. (1995) Algebraic graph-based approach to management of multi-

database systems. In Proceedings of The Second International Workshop on Next Generation

Information Technologies and Systems (NGITS ’95).

Foster, J., Greenwald, M., Moore, J., Pierce, B. and Schmitt, A. (2007) Combinators for bi-

directional tree transformations: A linguistic approach to the view update problem. ACM

Transactions on Programming Languages and Systems 29.

Gottlob, G., Paolini, P. and Zicari, R. (1988) Properties and update semantics of consistent

views, ACM Trans. Database Syst. 13, 486–524.

Hegner, S. J. (2004) An order-based theory of updates for closed database views. Ann. Math.

Artif. Intell. 40, 63–125.

Hofmann, M. and Pierce, B. (1995) Positive subtyping. SIGPLAN–SIGACT Symposium on

Principles of Programming Languages (POPL), 186-197.

Janelidze, G. and Tholen, W. (1994) Facets of Descent I. Appl. Categ. Structures 2, 245–281.



Michael Johnson, Robert Rosebrugh and R. J. Wood 18

Johnson, M. and Rosebrugh, R. (2007) Fibrations and universal view updatability. Theoret.

Comput. Sci. 388, 109–129.

Johnson, M., Rosebrugh, R. and Wood, R. J. (2002) Entity-relationship-attribute designs and

sketches. Theory Appl. Categ. 10, 94–112.

Johnson, M., Rosebrugh, R. and Wood, R. J. (2010) Algebras and Update Strategies. J.UCS

16, 729–748.

O’Hearn, P. and Tennent, R. (1995) Parametricity and local variables. J.ACM 42, 658–709.

Oles, F. J. (1982) A category-theoretic approach to the semantics of programming languages.

PhD Thesis, Syracuse University.

Oles, F. J. (1986) Type algebras, functor categories and block structure. In Algebraic methods

in semantics, 543–573. Cambridge University Press.

Piessens, F. and Steegmans, E. (1995) Categorical data specifications. Theory Appl. Categ. 1,

156–173.

Rosebrugh, R., Fletcher, R., Ranieri, V., Green, K., Rhinelander, J., and Wood, A. (2009)

EASIK: An EA-Sketch Implementation Kit. Available from http://www.mta.ca/~rrosebru,

accessed 2010 August 20.

Street, R. (1974) Fibrations and Yoneda’s lemma in a 2-category, Lecture Notes in Math. 420,

104–133.


