Computer Science 1631 Midterm

Fric	lay (October 13, 2006 Name(Print)
		True/False Indicate whether the statement is true or false by placing an X in the t to the question.
${f T}$	\mathbf{F}	
_	X	1. Computer science is the study and use of computers and computer programs
		2. The five generations of modern computers are distinguished mainly by fundamental changes in the underlying computer architecture.
_		3. All conceivable problems can be solved algorithmically.
	X	4. The first electronic programmable computer, ENIAC, was built during World War I.
*		5. Pseudocode is a special set of English language constructs modeled to look like the statements available in most programming languages.
X		6. Having an infinite loop in an algorithm is an error.
	<u>X</u>	7. Computer algorithms are limited to accepting only two values as input.
	X	8. It is sufficient for an algorithm to provide correct results for only the input values that we expect are the most likely to occur.
X	_	9. Sequential search is an order-n algorithm in the average case.
	_X	10. The selection sort algorithm can recognize whether or not the list is already sorted at the beginning.
_	X	11. Binary search uses significantly more space than sequential search.
X		12. Some algorithms must do work that is not polynomially bounded.
	<u>X</u>	13. Information is stored in the memory of a computer using the decimal numbering system.
	<u>X</u>	14. The Boolean AND is a unary operator.
	\mathbf{X}	15. The sum-of-products algorithm always produces an optimal circuit.
X		16. To construct an OR gate, two transistors are connected in parallel.
X		17. The RAM of a computer provides volatile storage.
	X	18. As computers become faster, memory access speeds are keeping pace.
	χ.	19. In a two-level memory hierarchy, when the computer needs a piece of information, it looks in RAM first, then cache memory.
X	_	20. Registers can be accessed much more quickly than random access memory.

Part B. Multiple Choice Identify the choice that best completes the statement or answers the question by placing an X in the box next to the question.

\mathbf{a} .	b.	c.	$\mathrm{d}.$		
		_	X	1. An operation that is unambiguous is ca of the computing agent carrying out the al	
				a. primary b. complementary	d. primitive
Ľ	_		-	2. In 1946, John Von Neumann proposed a design based on a model called thea. stored program b. external program	
		X		3. Babbage's analytical engine used a mill.a. store memoryb. process instructions	What was its function? c. perform arithmetic and logic d. accept input
_			Χ.	4. A is the repetition of a block ofa. cycleb. nucleus	instructions. c. matrix d. loop
		X		5. In a posttest loop, the continuation con through the loop.a. beginning of each passb. beginning of just the first pass	c. end of each pass d. end of just the last pass
		X		6 is the process of searching for a of symbols within a larger collection of infoa. Sequential searchb. Dynamic processing	
_	**	_		7. Consider this line of code: Set the value "Area" is a a. value b. variable	c. constant d. primitive
			X	8. How could an algorithm fall into an infination at the input operations were missing b. the algorithm uses more than one loop	nite loop? c. the output operations were missing d. the continuation condition of the loop never becomes false
X				9. The case of an algorithm requirea. bestb. worst	es the minimum amount of work. c. smallest d. largest
		_	<u>X</u>	10. Selection sort is $a(n)$ algorithm a. 1 b. $Q(n)$	in all cases. c. $Q(2^n)$ d. $Q(n^2)$

			X	11. An algorithm is called an exponential algorithm. a. $Q(lgn)$ c. $Q(n^2)$ b. $Q(n)$ d. $Q(2^n)$
X	_	_		12 is the fixing of errors uncovered through repeated use of an algorithm.a. Program maintenance c. Data cleanupb. Recycling d. Garbage collection
	X	*****		13. ASCII uses bits to represent each character. a. 4
_	_	X		14. $A(n)$ is a single point sampled from a photographic image and stored in the digital format. a. pitch c. pixel b. amplitude d. bit
		*		15. The operation complements the value of a Boolean expression. a. NOR c. NOT b. OR d. AND
	_	Χ	_	16. Using the leftmost bit of a number to represent the sign, with 0 meaning positive and 1 meaning negative is known as notation. a. ones complement c. sign/magnitude b. twos complement d. unsigned
X			_	17. If a computer has a maximum of 2N memory cells, then each address field in a machine language instruction must be bits wide to enable us to address every cell. a. N c. N^2 b. 2N d. 2^N
_	_	Д.		18. The machine language instructions alter the normal sequential flow of control. a. data transfer c. branch b. arithmetic d. compare
		X		19. How many bytes are in a gigabyte? a. 2^{10} c. 2^{30} b. 2^{20} d. 2^{100}
	Х	_		20. To alert the computer that an input/output operation is done, $a(n)$ is transmitted to the processor. a. condition code

Part C. Long Answer.

1. [10] a) Perform a selection sort on the list 7, 4, 2, 9, 6. Show the list after each exchange that has an effect on the list ordering.

> 742,6,9 6,4,2,7,9 2,4,6,7,9

b) How many exchanges occur in applying selection sort to a list of n items if the list is initially in decreasing order? Assume n is divisible by 2. Explain your answer.

n/2 exchanges occur since the first and last items are exchanged, the second and second-last, and so on though kalf of the list

2. [10] a) Assume a 24-bit MAR is organized with 12 row-select lines and 12 column-select lines. What is the maximum size of the memory unit on this machine? Assuming a square two-dimensional organization, what are the dimensions of the memory.

Max memory size 224 bits (16Mb) Memory dimensions 212 x 212 (n 4096 x 4096

b) Name the three components of the Von Neumann architecture and explain what each one does (at most one sentence per component).

memory T/D unit

Central processor (See text for functions)

c) What functions are performed by each step of the fetch-decode-execute cycle (at most three sentences)?

fitch - loads instruction from memory deude - determines what instruction does execute - does the instruction

3. [10] For the following truth table

	Χ	Y	\mathbf{Z}	Result
	0	0	0	0
	0	0	1	0
	0	1	0	0
(0	1	1	$\overline{1}$
	1	0	0	0
(1	0	1	1)
(1_	1	0	1)
	1	1	1	0

I solate rows with output = 1

a) Write the corresponding Boolean expression in sum-of-products form.

$$(\overline{x} \cdot \overline{y} \cdot \overline{z}) + (x \cdot \overline{y} \cdot \overline{z}) + (x \cdot y \cdot \overline{z})$$

b) Draw a circuit that implements the Boolean expression from part a).

inputs

X Y Z

Note: The text uses AND/OR gates with only 2 inputs, but since the lab software let them take 3 inputs, this is acceptable.

- 4. [10] Write a pseudo-code algorithm for the following problem: Ask the user for a number n and then set the value of a variable evensum to the sum of all the even numbers between 1 and n inclusive.
 - 1. Get value for n
 - 2. Set value of evensum to 0
 - 3. Set value of i to 2
 - 4. While (i <= n) do steps 5 and 6
 - 5. Set value of evensum to evensum + i
 - 6. Set value of i to i+2
 - 7. Stop