
COMMUNICATIONS OF THE ACM July  2004/Vol. 47, No. 7 15

A
re you concerned with
the widely held public
view of our field:
“Computer science

equals programming”? You ought
to be. It is firmly lodged in
movies, novels, news reports,
advertisements, political
speeches, perceptions of other
scientists and engineers, and in
the minds of prospective entrants
to our profession. What’s more,
many people believe computer
science is only a technology field
without much science and engi-
neering of its own; the word “sci-
ence” in our title is undeserved.
Want to know why this is so and
how you can help? Read on.

The story that computer sci-
ence equals programming is old.
By the mid-1980s it had become
sufficiently irksome that the
ACM/IEEE-CS committee on
the core of computing made it
an objective to dispel this notion.
Their report, Computing as a
Discipline, depicted the field with
the help of a 9x3 matrix, show-
ing nine core areas and three
processes (theory, abstraction,

and design) [2]. They put pro-
gramming as a subpart of the
design component of most of
the nine areas, especially algo-
rithms and software engineer-
ing. Their model became the
backbone of the ACM Cur-
riculum ‘91 recommenda-
tion. But the old story
endures.

In the past few years, the
story has become a major
impediment. Many com-
puting people are no
longer irked; they are
infuriated. Many pro-
gramming and software
engineering jobs were lost
in the downsizing follow-
ing the Internet business
crash in 2001. But many
jobs did not come back in the
recovery; they were outsourced as
companies took advantage of sig-
nificantly lower labor rates in
other countries. Enrollments in
computer science and engineer-
ing dropped 30% between 2002
and 2004. The dropout rates of
those who enroll hover between
35% and 50%. Women continue

to prefer other fields.
Prospective students ask, “If

the heart and soul of computing
(programming) is being auc-
tioned off to the lowest offshore
bidder, what is the future for
me?” What do we say to them?
In an effort to persuade them to
choose computing majors,
Microsoft’s Bill Gates made an
extraordinary tour of several U.S.
universities earlier this year to tell

The Field of Programmers Myth

C
YR

IL
 C

A
B

R
Y

Peter J. Denning

The persistent public image of computing as a field of programmers 
has become a costly myth. Reversing it is possible but not easy.

The Profession of IT



16 July  2004/Vol. 47, No. 7 COMMUNICATIONS OF THE ACM

students about the numerous
computing jobs that will never
migrate offshore.

W
here does the pro-
gramming story
come from? Why
does it persist? The

short answer is: we are reaping
what we have sown. It is rooted
in the logic that computers need
programs to work and therefore
that programming is fundamen-
tal. This logic pervades our cur-
ricula and how people learn
computer science. Our first
courses are programming. The
many course projects are often
called “programming projects”—
not design projects, database 
projects, network projects, or
graphics projects. When forming
opinions about their major field
in college, high school students
look at their high school courses
in computing and see…program-
ming. Those interested in
advanced placement see…object-
oriented programming with Java. 

Media outlets tell many stories
about computing. Who created
and distributed modern public
key cryptography? Programmers.
Who instructed the dozens of

microprocessors in your car?
Who created the software that
analyzes your MRI scan? Who
created the Web browser? Who
wrote the SETI code that helps
search for extraterrestrial intelli-
gence when your workstation is
idle? Programmers all. Who
breaks into systems? Hackers, a
sect of rogue programmers. Who
writes viruses and worms? Who
launches denial-of-service
attacks? Defaces Web pages?
Hijacks computers and turns
them over to spammers? More
rogue programmers. Who made
an error that caused a Mars probe
to crash? A programmer. It’s
everywhere, gang. The good and
bad, all done by programmers.

Most people are not seeing the
stories of the computer architects,
the network engineers, the operat-
ing systems engineers, the data-
base engineers, the graphics
specialists, the software architects,
the software system designers, the
security experts, the simulators,
the virtual realitors, the supercom-
puting experts, the roboticians,
and many more. All the stories are
being told as if done by program-
mers. Bill Gates is alarmed by
this. We should be too.

How might we reverse this? I
offered a solution in my Nov.
2003 column, “Great Principles
of Computing” [4]. The great
principles framework is a new
portrayal of our field that empha-
sizes our scientific and engineer-
ing principles and our four core
practices. Our fundamental prin-
ciples are in design and in the
mechanics of computation, com-
munication, coordination, recol-
lection, and automation. These
principles were not borrowed
from other fields; computer sci-
entists developed them. Our four
core practices are programming,
engineering of systems, modeling,
and innovating. Looking into this
world through a programming
window is like viewing a con-
struction site through a peephole
in a fence: you can’t see much. 

Our challenge is to adopt a
larger view of the field that
reveals the science and does not
confuse science and practice. 

Programming Has Not Been
Industry’s Central Problem
for a Long Time
When the field was young (dur-
ing the 1950s) and much smaller,
the primary concern was build-

The Profession of IT

Our challenge is to adopt a larger view of the field that reveals the 
science and does not confuse science and practice. 



ing computing systems. The two
most common jobs were com-
puter architect and programmer.
Many industry leaders saw how
labor intensive programming was
and asked universities to teach it
from the start so their graduates
could fill programming jobs. The
primary intellectual focus was on
the logic of hardware and soft-
ware, and the primary
professional practice was pro-
gramming. Programming was
seen as the only available means
to translate computing concepts
into functioning reality.

In 1968, NATO sponsored a
historic meeting of academic
and industry leaders to discuss
what they dubbed the software
crisis. They saw software systems
rapidly growing in size and com-
plexity and being put into appli-
cations where failures could cost
lives and ruin businesses. They
believed that the fundamental
notion behind programming—
that programs implement math-
ematical functions—could not
cope with the complexity and
fuzziness of requirements in real,
large, safety-critical applications.
They believed the future chal-
lenges of software development
would be to devise engineering
processes to translate complex
requirements into working sys-
tems, to deal with fuzzy and
shifting requirements, to assess
and manage risk, to systematize
the process of locating and eradi-
cating errors, to organize and
manage teams of programmers,

and to satisfy customers. They
called for the formation of a new
discipline: software engineering.

One of the unspoken conclu-
sions of that meeting was that
whatever we were teaching under
the heading of programming was
inadequate and that a fundamen-
tally new, systems-oriented engi-
neering approach would be
needed.

S
eventeen years later, Fred
Brooks took stock of the
progress of software engi-
neering in his landmark

critique, “No Silver Bullet” [1].
How far had we advanced toward
the goal of systematically build-
ing reliable, dependable, and use-
ful computing systems? He
maintained that the fundamental
obstacle to this goal was, and
always will be, the complex
behavior of large software sys-
tems. Much of the work in soft-
ware engineering—in languages,
tools, graphics aids, debugging
aids, structured programming,
coding automation, and the
like—had been impressive.
Nonetheless, he said, these tech-
nologies proved only marginally
helpful against the core problem
of software development: getting
an intellectual grasp on the com-
plexity of the application. He
concluded that software produc-
tion is inherently a talent-and-
design problem that can only be
met by a determination to iden-
tify and cultivate great designers. 

Brooks did not say “cultivate

great programmers”; his concern
was the design of systems.We
now understand that individual
talent and skill have a huge effect
on the quality of a software devel-
oper’s work: good developers are
often 10 times as productive as
novices, and a few virtuosi may
be 50 times as productive. Is great
productivity a gift granted to a
select few, or a skill that can be
learned? Brooks called on the
community to mount a concerted
effort to teach computing people
to be great designers and expert
software developers. Despite the
wide praise and admiration for
this sentiment, few have
responded to his challenge.

In 1989, Edsger Dijkstra, one
of the giants of our field and a
passionate believer in the mathe-
matical view of programs and
programming, debated with his
peers on the right way to teach
computing science [6]. He main-
tained that the art of program-
ming is the linking thread that
gathers disparate branches into a
single discipline. Over the previ-
ous quarter-century, he had for-
mulated many of the great
intellectual challenges of the field
as programming—the goto state-
ment, structured programming,
concurrent processes, sema-
phores, deadlocks, recursive pro-
gramming in Algol, and deriving
correct programs. He advocated
that we remove all real-world
programming languages from the
beginning courses and teach
instead the formal derivation of

COMMUNICATIONS OF THE ACM July  2004/Vol. 47, No. 7 17



programs from logical predicates
that express their requirements.
His critics thought this approach
was too limiting and advocated
an approach closer to software
engineering. Most of our curric-
ula today do neither: program-
ming is not taught as
construction of algorithms for

mathematical functions or as a
step toward software systems
engineering; it is taught as an
introduction to an industrial-
strength language, Java or C++. 

Numerous studies have docu-
mented the dismal success statis-
tics of software projects:
approximately one-third are
delivered on time and within
budget; another one-third are
delivered late or over budget;
and the remainder are not deliv-
ered at all. The authors of the
studies invariably conclude that
the errant projects go astray
because of various people prob-
lems—dysfunctional teams,
breakdown of interpersonal rela-
tionships, inadequate listening to
the customer. Very few software
engineering courses take up
these issues and teach students
good requirements, error detec-
tion, team, and customer prac-

tice. Why? Many faculty mem-
bers see these aspects as “soft”
and believe there isn’t even
enough room in the curriculum
for all the essential “hard” core
technical material.

In The Unfinished Revolution,
Michael Dertouzos documented
15 common, persistent design

flaws in computing systems [5].
We have known about them for
years but our approaches to
teaching software development
have been ineffectual—we seem
to have a blindness that is passed
on to each new generation of
students. He recommends mov-
ing from product-centered soft-
ware development to human-
centered development.

S
o we still have a long
way to go. We are cap-
tured by a historic tradi-
tion that sees programs

as mathematical functions and
programming as the central prac-
tice for translating these func-
tions into working systems. We
have only partially embraced the
newer tradition that sees pro-
grams as components of complex
systems that must be designed
under severe constraints. Indus-

try has pushed us for a long time
toward the newer tradition but
we haven’t let go enough of the
older one to get there.

Computing Practices
Over the years, the practices of
systems, modeling, and innovat-
ing have taken on peer roles with

programming [4]. Today’s com-
puting professional must be
competent in all four practices,
but with different relative
emphasis depending on individ-
ual specialty and style. For exam-
ple, HCI people place a great
deal of emphasis on design,
modeling, and simulation, and
hire programmers to do the cod-
ing. Computer architects use
CAD systems but do little pro-
gramming. Many software engi-
neers spend their time
interacting with customers and
designing systems, but not cod-
ing. There are numerous other
examples. Today, programming is
neither the dominant practice
nor the defining practice.

I have four recommendations
to help reorganize the curriculum
for the teaching of all four prac-
tices in a coherent way that does
not confuse them with principles.

18 July  2004/Vol. 47, No. 7 COMMUNICATIONS OF THE ACM

The Profession of IT

Because we think of programming as a process that yields programs, 
we grade programs; in the future we will also grade programmers.



1. Teach algorithmic
thinking. Algorithmic thinking is
a mental practice of engineering
and scientific discovery that con-
ceptualizes problems with digital
representations and seeks algo-
rithms that express or find solu-
tions. Algorithmic thinking
pervades and supports all four
core practices. Why not teach
this in our first course(s) and
teach programming separately
(next recommendation)? Lace the
course(s) with many powerful
stories of great inventions and
innovations. 

2. Group the teaching of
practices into a Computing
Practices section of the curricu-
lum. The courses now labeled
Computer Science 1 and 2, CS1
and CS2, could in most cases be
relabeled Programming Practices,
PP1 and PP2. Introduction to
software engineering can be
modified to be introduction to
systems practices. A modeling
practices course will need to be
added to most curricula. The
increasingly popular capstone
design course can also teach
innovation practices.

3. Structure a teaching
framework around a ladder of
competence in the practice. In
any domain, the ladder of com-
petence describes the recognized
levels of skill that one can attain
given enough practice and expe-
rience. They are: beginner,
advanced beginner, competent,
proficient, virtuoso, master, leg-
end [3]. Define criteria that
would permit us to judge the

level at which someone is per-
forming. Grade both the quality
of the work and the quality of
the performance. Get teachers
with industry experience for
these courses, and encourage fac-
ulty members to take industry
sabbaticals and leaves of absence.

Applying this to program-
ming, we can see different crite-
ria at each level. The beginner
would focus on learning the syn-
tax and execution rules of pro-
grams and the basic methods of
scaffolding to help detect errors.
The competent programmer
would have extensive knowledge
of libraries and basic algorithms
and would be able to bring many
modules together into a system
that satisfies customers. The pro-
ficient programmer would be
facile in many programming lan-
guages, would see individual lan-
guages as ways to express
algorithms that are already pic-
tured in the mind, and would by
example set standards of excel-
lence in programming that others
would admire and follow. The
master would have extensive
knowledge of the historical devel-
opments in programming, would
be able to design large software
systems combining many levels
of abstraction, and would define
new methods that improve all
programming practice. Profes-
sional societies such as ACM and
IEEE-CS would issue guidelines
for certification at the various
levels. Today, because we think of
programming as a process that
yields programs, we grade pro-

grams; in the future we will also
grade programmers.

From this perspective it is
important to ask what is an
appropriate first language for a
beginner. Although competence
in Java might be something
expected of BS-degree graduate,
is Java suitable for beginners?
Why not start with simpler steps
that enable students to learn the
practice first as beginner, and
experience the joy of success?
Mark Guzdial’s course on Media
Computation at Georgia Tech is
an example [7]. It uses Python, a
much simpler object-oriented
language. While it may be too
late to reverse the process of
pushing Java into the Advanced
Placement curriculum in high
schools, it is not too late to influ-
ence the AP curriculum to give
greater emphasis to algorithmic
thinking and problem-solving—
an appropriate starting point for
beginners.

4. Teach the practice of error
detection and correction. Even
the most skilled people make mis-
takes. Making mistakes is part of
the process; detecting, correcting,
and learning from them is part of
the practice. Reminiscing about
his early days on EDSAC in the
1940s, Maurice Wilkes wrote in
1979: “As soon as we started pro-
gramming, we found to our sur-
prise that it wasn’t as easy to get
programs right as we had thought.
Debugging had to be discovered. I
can remember the exact instant
when I realized that a large part of
my life from then on was going to

COMMUNICATIONS OF THE ACM July  2004/Vol. 47, No. 7 19



be spent in finding mistakes in
my own programs.”

From Abstractions to
Actions
It may be asked: why teach pro-
gramming early? Why not teach
the science and algorithmic
thinking first, programming
later? I do not recommend this
approach. 

Most computing professionals
do not appreciate how abstract
our field appears to others. We
have become so good at defining
and manipulating abstractions
that we hardly notice how skill-
fully we create abstract “objects,”
which upon deployment in a
computer perform useful actions.
Students need to see from the
beginning how to connect
abstractions to actions. There is
little joy in worlds of pure
abstractions devoid of action. The
practices of programming and sys-
tems make this connection.

A Great Principles Library
To support computing people
and outsiders in learning a prin-
ciples-oriented portrayal of com-
puting, I propose the
establishment of a Great Princi-
ples Library. The Library would
contain sections for the great
principles (design and mechan-
ics), the core practices (program-
ming, systems, modeling, and
innovating), and the core tech-
nologies. Each section would
offer tutorial materials for begin-
ners, intermediate, and advanced

practitioners; seminal papers; his-
torical summaries of the evolu-
tion of principles and practices;
stories of great inventions and
innovations. It would be over-
seen by a board of editors who
would commission new items
and the cross-referencing of exist-
ing published items, and who
would see to the quality, consis-
tency, and accuracy of the mate-
rials included. It would be part
of the ACM Digital Library.

These steps—revamping the
teaching of programming and
creating a repository of great-
principles materials—would go a
long way to dispel the myth that
computer science equals pro-
gramming.  

References
1. Brooks, F.P., Jr. No silver bullet. In The

Mythical Man Month, Chapters 16 and 17,
Addison-Wesley (1995 edition).

2. Denning, P.J. et al. Computing as a disci-
pline. Commun. ACM 32, 1 (Jan. 1989),
9–33.

3. Denning, P.J. Career redux. Commun. ACM
45, 9 (Sept. 2002), 21–26.

4. Denning, P.J. Great principles of computing.
Commun. ACM 46, 11 (Nov. 2003), 15–20.

5. Dertouzos, M. The Unfinished Revolution.
Harper Collins, 2001.

6. Dijkstra, E. et al. A debate on teaching com-
puting science. Commun. ACM 32, 12 (Dec.
1989), 1397–1414.

7. Guzdial, M. and Solloway, E. Computer sci-
ence is more important than calculus: The
challenge of living up to our potential. Inroads
(ACM SIGCSE Bulletin), June 2003, 5–8.

Peter J. Denning (pjd@nps.edu) is 
the director of the Cebrowski Institute for 
information innovation and superiority at the
Naval Postgraduate School in Monterey, CA,
and is a past president of ACM.

© 2004 ACM 0002-0782/04/0700 $5.00

c

20 July  2004/Vol. 47, No. 7 COMMUNICATIONS OF THE ACM

The Profession of IT

Stay on Top of ACM
News with 

MemberNet

Coming in future issues
of MemberNet: 

• ACM's Awards

• International 
Collegiate 
Programming Contest
(ICPC) World 
Championship

• News from recent
ACM conferences:
Computers, Freedom
and Privacy; CHI04,
and WWW04.

• MemberNet readers’
survey 

And much more!

All online, in 
MemberNet:
www.acm.org/membernet.


