
COMP1711 Assignment 1 (Aye, Robot!) 2004

The purpose of this assignment is to draw and manipulate a simple robot on the screen. The code
you create could be used in a much larger game/simulation.

You are required to write a complete class and to use several provided classes to build a BlueJ
project. The full mark for the assignment is 10, but there are Bonus/Challenge extensions that are
worth up to 4 extra marks.

The assignment is to be submitted via ETA before noon on October 15. Late assignments
will be accepted until noon on October 18, but a 20% penalty will be assessed (and no bonus marks
for late assignments). Assignments submitted later will not be graded.

The class you will write is called Robot. It has fields, two constructors, and methods described
below. Two of the fields of Robot are objects of the Circle and Square classes respectively. These
are classes from the BlueJ shapes project accompanying Chapter 1 in the text.

WARNING: You must not modify the classes in the shapes project. You will hand in only
your Robot.java file.

Your class must include properly formatted JavaDoc comments. Be sure to test the generation
of your documentation.

If you have not yet done so, carefully read the Course Ethics section on the course web page.
Note especially the remarks concerning plagiarism:

Do not expect that small changes in a program (such as altering comments, changing variable
names, or interchanging statements) will avoid detection. If you cannot do the work yourself, it is
extremely unlikely that you will succeed in disguising someone else’s work.

Class Robot

A Robot object has a name, a head (circle), a body (square), an x-position and a y-position. The
head circle just touches the center of the top side of the body square, and the x- and y-positions
refer to the top left-corner of the body square.

Fields

name A String, for example "Robbie" or "C3PO".

head A reference to a Circle object.

body A reference to a Square object.

xPos, yPos Two int values that hold the x- and y-positions of the top-left corner of the robot’s
body square.

1



Constructors

There are two constructors for the Robot class. The first constructor takes no parameters and does
the following: sets the robot’s name to "Marvin"; creates a Circle object referenced by head, and
changes the circle’s diameter to 40 and color to "green"; creates a Square object referenced by
body, and changes the square’s color to "blue" and its size to 50; sets xPos to 100 and yPos to 80,
and moves the square so that its top-left corner is at the screen location (x, y) = (100, 80); moves
the circle so that it sits on top of the square exactly as described earlier; makes both the circle and
the square visible.

The second constructor takes five parameters: the first is a String indicating the robot’s name,
the second is a String indicating the color of the head, the third is a String indicating the color
of the body, and the fourth and fifth are int values indicating the initial x- and y-positions of the
robot, respectively (again, these refer to the top-left corner of the body square). This constructor
does everything the first constructor does, except that the robot’s name, colors, and initial positions
are set using the parameters.

Note: For the second constructor, if the x- and y-positions passed via the last two parameters
would cause any part of the robot’s body to be off-screen, use the default location (x, y) = (100, 80).
You can make use of the moveTo method described below.

Methods

The Robot class has five methods. The first, called getName, is an accessor method that simply
returns the String holding the name of the robot. The method moveHorizontal takes a single
int parameter (can be positive or negative) and moves the robot horizontally by that amount.
Similarly, the method moveVertical takes a single int parameter and moves the robot vertically
by that amount. (Remember that the y-position increases as you move downward.) The methods
moveHorizontal and moveVertical do not perform any checks on the input — the move may place
the robot off-screen, but that’s fine. The method moveTo takes two int parameters indicating new
x- and y-positions for the robot, and returns a boolean value. If the new positions would place
any part of the robot’s body off-screen, don’t move the robot, print out a warning message, and
return false; otherwise, move to the specified location, and return true. The last method is
slowMoveHorizontal. This method takes a single int parameter indicating a horizontal distance
(positive or negative), and then moves the robot horizontally one pixel at a time until either the
full distance has been covered or the robot hits the right or left wall, whichever happens first. If
the robot hits the wall, it should stop when it is exactly flush with the wall.

Note: In your slowMoveHorizontal method, do not call the slowMoveHorizontal methods
in the Circle and Square classes.

Bonus/Challenge Problems

There are two directions you may pursue for extra credit. You may choose to work on only one
or a combination of both. If you wish to submit work for bonus marks you should make a new
project called RobotPlus, starting again from the shapes project and containing a new class that
you should name RobotPlus. Once again, you must not modify the other classes of the shapes
project.

2



Bonus marks will be awarded on the basis of both the quality of your implementation (including
documentation) and on its creativity. Remember that your class must include properly formatted
JavaDoc comments.

The first challenge is to enhance the appearance of a Robot object. This can be done by adding,
for example, arms, legs, facial features, a hat... This will require both that you add new fields and
that you modify the constructors and methods of the Robot class. Note that you may use the
Triangle class from the shapes project to express some features. It is expected that the two
constructors described above will again be available, but you may add new constructors with ap-
propriate parameters. You must also ensure that all of the methods from the Robot class described
above are implemented in RobotPlus.

The second challenge is to enhance the movements of the robot. There are two suggested
methods and you may try others (be sure to fully document all of your methods!). The first
method slowDiagonal takes takes two parameters, an int called distance and a String called
direction. The valid values for direction are "NE", "SE", "NW" and "SW". The method should
move the robot slowly in the indicated direction on the canvas by a diagonal distance of distance
pixels but leave the robot at the wall if the distance would take it off-screen. The second suggested
method is called diagonalBounce. It takes the same parameters as slowDiagonal, but this time
if the robot hits the wall it should reflect from the wall (for example hitting the wall in a "SE"
direction means the robot will continue in the "SW" direction).

Submitting Your Assignment

You should place your results in a zipped file called usrnmA1.zip (containing only Robot.java or
both Robot.java and RobotPlus.java) and submit it using ETA.

Don’t forget to include proper headers and Javadoc-style comments.

3


