
COMP1711 Assignment 2 (The Red Green Show) 2005

The purpose of this assignment is to use the Frog class from Assignment 1 as the basis for a larger
simulation involving red predator frogs and green prey frogs.

The assignment is to be submitted via WebCT before noon on Monday, November 28. Late
assignments will be accepted until noon on November 30, but a 20% penalty will be assessed. As-
signments submitted later will not be graded. The full mark for the assignment is 10.

You have been provided with an incomplete project called RedGreen. This includes the familiar
classes from the shapes project (the Canvas class has been slightly modified to enlarge the drawing
surface to 500 × 500 pixels), as well as a modified version of the Frog class from Assignment 1,
which has been turned into an abstract class. You will write two subclasses of Frog called RedFrog
and GreenFrog. You will also complete the Simulator class, which is responsible for storing and
manipulating red and green frogs as they interact on a grid.

Strict Guidelines:

1. Do not modify the Frog class or the classes in the shapes project.

2. Follow the submission guidelines at the end of this handout.

3. Each of the classes you write/modify must include the usual header.

4. Your classes must include properly formatted Javadoc comments. Be sure to test the gener-
ation of your documentation.

5. Carefully re-read the Course Ethics section on the course web page, especially the remarks
concerning plagiarism:

Do not expect that small changes in a program (such as altering comments, changing variable
names, or interchanging statements) will avoid detection. If you cannot do the work yourself,
it is extremely unlikely that you will succeed in disguising someone else’s work.

Class Frog (not to be modified)

As noted above, the Frog class is modified relative to Assignment 1. The name field has been
removed, along with the associated accessor and mutator methods. The jump method has also
been removed. Methods called frogUp and frogDown have been added — these are the vertical
counterparts of frogLeft and frogRight. In addition, an abstract method called gridMove has
been added — you will override this in RedFrog and GreenFrog. Note that Frog now has a large
number of public static final fields (class constants); the names of these should be mostly
self-explanatory. Some of the non-static fields have been made protected, but hPos and vPos
have been left private to ensure that they can only be modified by the methods in Frog. (As in
Assignment 1, hPos and vPos represent the horizontal and vertical pixel coordinates of the tip of
the frog’s head.)

1



Class RedFrog

A red frog is a predator frog that occupies a location on the simulator grid, and only moves
diagonally. The class RedFrog is a subclass of Frog. RedFrog has no new fields (of course it
inherits the fields of Frog), one constructor, and one method called gridMove (overriding the
abstract method in Frog). The constructor takes two int parameters — these represent the x- and
y-coordinates (in pixels) of the initial position of the frog on the canvas. The constructor should
place the frog at this specified position, change the color of the frog’s body to "red", change the
color of both of its eyes to "magenta", and make the frog visible.

The method gridMove takes a single int parameter and returns void. The parameter will
be one of the following four constants found in the Simulator class: NORTH WEST, NORTH EAST,
SOUTH EAST, SOUTH WEST. You can assume that the frog is currently located at the center of a grid
square, and that it is legal to move one step diagonally in the specified direction (the Simulator
class is responsible for checking all these things, so you don’t have to worry about them here).
The method should move the frog horizontally and vertically as appropriate to effect this diagonal
move. All you need to know are the height and width of a grid square — these are stored in the
Simulator class constants GRID SQUARE HEIGHT and GRID SQUARE WIDTH. To get slightly smoother
animation, make the frog invisible, move it, and then make it visible again.

Class GreenFrog

A green frog is a prey frog that occupies a location on the simulator grid, and only moves horizontally
or vertically. The class GreenFrog is a subclass of Frog. GreenFrog has no new fields, one
constructor, and one method called gridMove (overriding the abstract method in Frog). The
constructor takes two int parameters — these represent the x- and y-coordinates (in pixels) of
the initial position of the frog. The constructor should place the frog at this specified position and
make the frog visible (there’s no need to change the frog’s colors).

The method gridMove takes a single int parameter and returns void. The parameter will be
one of the following four constants found in the Simulator class: NORTH, EAST, SOUTH, WEST. You
can assume that the frog is currently located at the center of a grid square, and that it is legal
to move one step in the specified direction (again, the Simulator class is responsible for checking
these things). The method should move the frog horizontally or vertically as appropriate. To get
slightly smoother animation, make the frog invisible, move it, and then make it visible again.

Class Simulator

The Simulator class is responsible for placing the red and green frogs on a grid, and for controlling
their movements and interactions. The size of the grid is 10×10 (see the class constant GRID SIZE).
As you can see, a large number of class constants have been provided for you (including a random
number generator named simRand). Use these whenever appropriate — you will lose marks if
instead you use “magic numbers,” i.e., constants hard-coded into your program.

You are required to add the following to the Simulator class: four (non-constant) fields, a
constructor, and five methods.

2



Simulator Fields

Add two int fields named numRed and numGreen — these will store the number of red and green
frogs on the grid, respectively. Also add two fields named grid and nextGrid. These are two-
dimensional arrays of Frog references. In brief, grid will reference a two-dimensional array that
holds the current state of the grid: grid[i][j] is either null (if grid location (i, j) is empty), or it
references a RedFrog or a GreenFrog object. The field nextGrid will be used temporarily during
an iteration of the simulation to hold the new grid arrangement; after the iteration is over, grid
will be set equal to nextGrid — more on this below.

Simulator Constructor

The Simulator constructor takes two int parameters representing the number of red frogs and
the number of green frogs to create, respectively. For each of these parameters, if it is positive,
assign it to the field numRed or numGreen (as appropriate); if it is negative, instead initialize the
field to the constant DEFAULT NUM RED or DEFAULT NUM GREEN (as appropriate). The constructor
should call the pre-written method drawPips, which places small “pips” at the corners of the
grid squares. It should then construct the two-dimensional array referenced by grid, and call the
method createFrogs to populate the grid with frogs.

Simulator Methods

• createFrogs — a private void method with no parameters. This method constructs
numRed RedFrog objects and numGreen GreenFrog objects. Each frog should be placed at a
random location in the grid. Use the random number generator to a generate random row
and column grid indices, and then use a formula to determine the corresponding horizontal
and vertical pixel coordinates of the center of this grid square — these pixel coordinates are
what you need to pass to the frog’s constructor. Note that two frogs cannot occupy the same
grid location, so for each frog you need to repeatedly generate a random grid location until
you hit one that is empty.

• runOneStep — a public void method that takes no parameters. This method runs one iter-
ation of the simulation as follows. First it constructs a new two-dimensional array referenced
by nextGrid. It then scans through every location in grid, and for each green frog that it
finds (use instanceof), it calls processGreen, passing it the row and column indices of the
green frog. It then repeats this process for the red frogs, scanning through every location in
grid, and for each red frog that it finds, calling processRed, passing it the row and column
indices of the red frog. (Note: it is very important that the green frogs be processed before
the red frogs.) When finished, it sets grid equal to nextGrid (these arrays will have been
modified by processGreen and processRed).

It is important to understand how frogs are moved by processGreen and processRed, and
how the two-dimensional arrays grid and nextGrid are used by these two methods. During
an iteration, grid holds references to frogs that have not yet moved, while nextGrid holds
references to frogs that have already moved. When a green frog tries to move to a new
location, you must check that this new location is not occupied by a frog that has not yet
moved nor by a frog that has already moved. In other words, the location to which the green
frog wants to move must be empty (null) both in grid and in nextGrid. The situation is a

3



little different for red frogs. Since the green frogs move first, by the time a red frog tries to
move, there are no green frogs referenced by grid. The location to which a red frog wants to
move must be empty in grid (else it will land on top of a red frog that has not yet moved),
and must either be empty in nextGrid or must contain a green frog in nextGrid (in which
case the red frog eats the green frog). Any remaining details are given in the descriptions of
processGreen and processRed below.

• runMultipleSteps — a public void method that takes a single int parameter specifying
the number of simulator iterations. Simply call runOneStep this number of times.

• processGreen — a private void method that takes two int parameters representing the
row and column indices of a green frog on the grid. This method generates a non-negative
random number that is less than NUM DIRECTIONS, and uses this to determine in which of four
directions — north, south, east, west — the frog should try to move (use the constants NORTH,
SOUTH, etc.). Whatever direction is chosen, the frog will try to move one grid location in that
direction. If the new location is on the grid and if frog won’t land on top of another frog
(see above), make the new location in nextGrid reference the frog, set the current location
in grid to null, and move the graphical representation of the frog on the canvas by calling
gridMove and passing it the integer representing the direction that was chosen. If the new
location is off the grid, or if the new location is already occupied, the frog will not move,
so make the current location in nextGrid reference the frog, and set the current location in
grid to null.

• processRed — a private void method that takes two int parameters representing the row
and column indices of a red frog on the grid. The red frog scans each of the four locations that
are its diagonal neighbors, beginning northwest and proceeding clockwise. If none of these
neighboring locations is occupied by a green frog, then the red frog doesn’t move, so make the
current location in nextGrid reference the frog, and set the current location in grid to null.
If at least one of these locations is occupied by a green frog, then the red frog will eat the
first green frog it encounters in its scan. To make a red frog eat a green frog, first make the
green frog invisible, then decrement numGreen, make the new location in nextGrid reference
the red frog, set the current location in grid to null, and move the graphical representation
of the red frog on the canvas by calling gridMove and passing it the integer representing the
direction that was chosen (use the constants NORTH WEST, NORTH EAST, etc.).

Submitting Your Assignment

You should place your results in a zipped file called usrnmA2.zip (where usrnm is your Mount Al-
lison username). This file should contain RedFrog.java, GreenFrog.java, and Simulator.java.
Submit the zipped file to WebCT.

Don’t forget to include proper headers and Javadoc-style comments.

4


