Today:

e [Estimating costs of operations.

e Join algorithms: nested-loop join, sort-join,
indexed join, hash join, parallel hash join.

Soon:

e Algorithms for other operations: U, ¢, v, etc.
e Summarize architecture of query optimizer.

e Begin study of transaction processing, starting
with resilience: logging, recovery.

Estimating the Cost of a Query Plan

e Goal is to count disk I/O’s.

e But we first have to estimate sizes of
intermediate results.

e V(A, R) = number of distinct values of
attribute A in relation R.

[Guides estimate of size of 04—1, e.g.

e N(R) = number of tuples in relation R.

Estimating Size of a Selection

e Simple assumption:

1. All V(A, R) values are equally likely for
attribute A.

2. Selection asks for A = ¢ for some one
of these values c¢. Thus, N(oa=c(R)) =
N(R)/V (A, R).

[1 What about a selection for a value that
doesn’t appear?

e Selection involving inequality: o s<.(R)?

[0 Common assumption: 1/3 will meet
condition. (Discussion: Why not 1/2
as SKS suggests)?

e Complex conditions:
[1 AND of conditions: use decomposition.

[0 Example: 04—q anD B<b(R) has size
estimate N(R)/3V (A, R).

[1 Problem: What about OR? For that
matter, how do you estimate the size of a
union?

Estimating Size of a Projection
e Since duplicates are not eliminated, there is no
change in size, strictly speaking.

e But if one follows the m4,...4, (R) with a 0,
there will be a size reduction.

[1 Suggestion: minimum of N(R) and
V(A1,R) x -+ x V(Ag, R).

Estimating Sizes of Joins

Consider T' = R > S. Let X, Y be sets of
attributes of R, S, respectively.

1. X NY =40. Join is a product, and N(T) =
N(R)N(S).

[1 Remember that if there are duplicates
in joins or products, duplicate tuples are
treated as distinct.

2. X NYisakey for R (for S: similar). Each
tuple of S can join with at most one tuple of
R, so N(T) < N(S).

[1 Generally can’t tell how much less.

3. X N Y not empty, not a key. One view:
consider each tuple of R; assume X NY = A.

[A tuple of R then joins with
N(S)/V(A,S) tuples of S; N(T') =
N(R)N(S)/V(A,S).

[1 But symmetrically, we could start with
tuples of S and derive the estimate

N(T)=N(R)N(S)/V(A, R).

[Take minimum? Why? Consider a case
where A has values 1 and 2in R and 1, 2,
3,4, and 5in S.

[1 What about the case where X N Y has
more than one attribute?

Example

An important application of size estimates is to
evaluate plans that order joins in different ways.

R(A, B) S(B,C) T(C, D)

N(R) =1000 N(S)=2000 N(T) = 5000

V(B,R) =20 V(B,S)=50 V(C,T) =500
V(C,S) = 100

1. Join R and S first:

N(R > S) = 1000 x 2000/50 = 40,000

V(C,R > S) =100

N((Re S) < T) = 40,000 x 5000/500 =
400,000

2. Join S and T first:

N(S > T) = 2000 x 5000/500 = 20,000

V(B,S>=T) =50

N(Rwa(S>aT)) = 20,000 x 1000/50 =
400,000

3. Product of R and T first:

N(R = T) = 1000 x 5000 = 5,000,000

V(B,R>=<T)=20; V(C,R<xT) =500

N((RT)paS) = 5,000,000 x
2000/(50 x 500) = 400,000

Issues in Join Ordering

e Note the size estimate for the result is 400,000
tuples, regardless of how we order the join.

[1 Coincidence? I don’t think so.

[1 Problem: Do you?

e In this case, the size of the result swamps
the size of the intermediate, unless we do
the dumb thing of starting with a Cartesian
product (case 3).

e Size of the intermediate(s) is one important
criteria, since it takes time to create the
intermediate.

[1 But there are other important issues, such
as existence of indexes.

Example

Suppose there were an index on 7.C'. Even though
R > S is bigger than S < T', we could pipeline the
tuples of R > S to the second join, and use the C-
value from each tuple to look up matching tuples
from T

e Saves the disk I/O’s involved in creating and
retrieving R > S.

Nested-Loop Join

To compute R S:

for each tuple r of R do
for each tuple s of S do
if r and s join then
output the resulting tuple

Improvement to Take Advantage of Disk I/0
Model

e Instead of retrieving tuples of S N(R) times,
load memory with as many tuples of R as can
fit, and match tuples of S against all R-tuples
in memory.

10

Example

e Let N(R) = 10,000 and N(S) = 5000.

e Assume 10 tuples of either R or S fit in one
block; i.e., R, S occupy 1000 and 500 blocks,
respectively.

e Assume there are 101 input buffers in memory
available for the join.

[1 Ignores the need for at least one output
buffer.

1 Important Aside: 101 buffer blocks is not
as unrealistic as it sounds. There may be
many queries at the same time, competing
for main-memory buffers.

e Assume that both R and S are clustered, i.e.,
their tuples are packed in blocks consisting of
only tuples of the same relation.

11

Strategy

1.
2.

Load 100 buffers with 1000 tuples of R.

Read all tuples of S, one block at a time, into
memory; compare these tuples with tuples of
R in memory, and output any matches.

Repeat steps (1) and (2) 10 times, until all
tuples of R have had their turn in memory.

12

Analysis of Nested-Loop Join

e Fach block of R is read once = 1000 disk
I/0’s.

e Fach block of S is read 10 times = 5000 disk
I/0’s.

e Ignores writing of result, which could take a
widely varying number of blocks, depending
on the size of the result.

[1 But do we really write them? Perhaps
they are the source for another join in
which they play the role of R, being read

into a separate set of buffers until those
buffers are filled.

Problem

We could interchange the roles of R and S. Should
we’?

13

Sort Join (Merge-Join in SKS)
To join R(A, B) < S(B,C):
1. Sort them by B if they are not already sorted.

2. “Merge” the two sorted lists, thus matching all
tuples with common values of B.

14

Example
R = (a,10), (b, 10), (¢,20), (d,40)
S = (10,z), (10,y), (30,x), (40, z), (40,y)

e Generalidea: R = 7r{,79,...,1p, S =
$1,525-.-..,8m.
i:=1; 3 :=1;

while i < nand j <mdo
if r; and s; join then
OUTPUT (i, j)
else if ;. B < 5;.B then i := i+l
else j := j+1
end;

e Function OUTPUT pairs r; with s; and as many
following S-tuples as join with r;:

OUTPUT (i, j):
k :=73;
while r; and s, join do
output the join of r; and si;
k :=k+1;
end;
1 :=1+1;

15

Analysis of Sort Join

e Sorting by 2PMMS takes 4 disk I/O’s per
block of data = 4000 for R, 2000 for S.

[1 Better check there are enough blocks to
do 2PMMS.

e Assuming that merge-joining the two sorted
relations does not require more than a few
blocks of each in buffers (i.e., not too many
tuples share a value of the join attribute) then
merging requires another disk I/O per data
block = 1500 in our example.

[1 Remember: we don’t count the last write
in any of these join methods.

16

Better Implementation of Sort Join

Do only phase 1 of 2PMMS for each relation. In
phase 2, generate a few output blocks at a time
and pass them to the joining process.

e Saves one write and one read per block of
data.

[0 In our example, reduces disk I/O’s to
4500 (plus the final write).

Limitations

e For our example R and S, we sort R (using
101 buffers) into 10 sorted sublists and S into
5 sublists, using the same buffers.

e In the merge phase, we need 15 bufters, one
per sublist, for input.

e That leaves 43 buffers each for the sorted R
and S.

[1 Thus, we can join unless there are more
than 430 records from one relation that
share a B-value.

17

Hash Join

Pick a hash function h that maps B-values to
buckets.

[1 If “B” is really a combination of
attributes, then the hash function involves
them all.

Send R and S tuples to separate hash tables,
each based on h.

Examine the 2th buckets of both hash tables
to find joining tuples.

Example

Two hash tables of 50 buckets, used for our
example R and S.

As we read R, we hash to buckets, which may
fill up. If so, we move the current block for
that bucket to disk and regard its buffer as a
new block, to which the old block is chained.

[0 Total disk I/O’s = 1000 reads and a little
more than 1000 writes (because some
blocks may not be completely full).

18

Similarly, hashing S requires about 1000 disk
I/0’s.

Average bucket for R has 20-21 blocks; those
for S average 10-11.

[1 Thus, unless there is a lot of data skew,
we should be able to bring an entire
R-bucket and an entire S bucket into
memory at the same time.

[0 Additional disk I/O’s for reading buckets:
about 1500.

19

Comparison

For our example:

1. Nested-loop: 5500 (not 6000: interchange R
and .5).

2. Sort-Join, naive: 7500.

3. Sort-Join, combine phase 2 of 2PMMS with
join step: 4500

4. Hash-Join: 4500+.
But note:

e Nested-loop is essentially quadratic, the other
approaches are linear.

e We might take advantage of one argument
being sorted already.

[Example: AB>t AC 1 AD.

e In hash-join, we can hash only recordID-
joinAttribute pairs, using fewer blocks for the
buckets.

[1 Downside: we may need to read a lot of
blocks for the tuples themselves if a lot of
pairs join.

20

Parallel Hash Join

If there are many processors, hash join allows all
processors to be useful at the same time (even in a
“shared nothing” architecture).

e Assume R and S are distributed across the
Processors.

Distribution Phase

e If there are p processors, all use a hash
function h from the values of the join
attribute(s) to [0..p — 1].

e FEach processor hashes its R and S tuples,
sending tuple ¢ to the processor numbered
h(t[B]), where B represents the join
attribute(s).

[1 In a message-passing architecture, we
should bundle a number of tuples in one
message.

21

Local Join Phase

e Once distribution is complete, each processor
takes a look at what it has received, and
hashes it to new, local hash tables.

[1 One table for each of R and 5, just like
uniprocessor hash-join.

[1 But make sure you use a hash function
other than h, or you will get a nasty
surprise.

Analysis

Once the data is distributed, the elapsed time is
similar to hash-join on relations each 1/pth as
large.

e DBut we have an additional disk read for every
block of data, and whatever communication
costs there are.

22

Using Indexes

What if we want R(A, B) < S(B,C) and we have
an index on R.B?

e Keep index buffered in memory (will it fit?).

for each S-tuple s do
consult index for matching
R-tuples;
output all matches;
end

Analysis
For our running example:

e 500 disk I/O’s to read S.

e If each S-tuple matches k R-tuples, we make
5000k disk reads for R.

[1 Could be best or worst method for this
example.

23

Other Things to Do With an Index

e If the index is based on a sorted R, use it to
read R sorted without paying the sorting price
in sort-join.

e If R is not clustered, then all the other
analyses are bogus (count of disk I/O’s to read
R is wrong).

[1 Gives an advantage to index-join.

Problem

Suppose there are indexes on both R.B and S.B.
How could we take advantage?

24

