
Today�

� Estimating costs of operations�

� Join algorithms� nested�loop join� sort�join�
indexed join� hash join� parallel hash join�

Soon�

� Algorithms for other operations� �� �� �� etc�

� Summarize architecture of query optimizer�

� Begin study of transaction processing� starting
with resilience� logging� recovery�

�



Estimating the Cost of a Query Plan

� Goal is to count disk I�O�s�

� But we �rst have to estimate sizes of
intermediate results�

� V 	A�R
 � number of distinct values of
attribute A in relation R�

✦ Guides estimate of size of �A��� e�g�

� N	R
 � number of tuples in relation R�

�



Estimating Size of a Selection

� Simple assumption�

�� All V 	A�R
 values are equally likely for
attribute A�

�� Selection asks for A � c for some one
of these values c� Thus� N

�
�A�c	R


�
�

N	R
�V 	A�R
�

✦ What about a selection for a value that
doesn�t appear

� Selection involving inequality� �A�c	R


✦ Common assumption� ��� will meet
condition� 	Discussion� Why not ���
as SKS suggests


� Complex conditions�

✦ AND of conditions� use decomposition�

✦ Example� �A�a AND B�b	R
 has size
estimate N	R
��V 	A�R
�

✦ Problem� What about OR For that
matter� how do you estimate the size of a
union

�



Estimating Size of a Projection

� Since duplicates are not eliminated� there is no
change in size� strictly speaking�

� But if one follows the �A����Ak	R
 with a ��
there will be a size reduction�

✦ Suggestion� minimum of N	R
 and
V 	A�� R
� � � � � V 	Ak� R
�

�



Estimating Sizes of Joins

Consider T � R �� S� Let X� Y be sets of
attributes of R� S� respectively�

�� X � Y � �� Join is a product� and N	T 
 �
N	R
N	S
�

✦ Remember that if there are duplicates
in joins or products� duplicate tuples are
treated as distinct�

�� X � Y is a key for R 	for S� similar
� Each
tuple of S can join with at most one tuple of
R� so N	T 
 � N	S
�

✦ Generally can�t tell how much less�

�



�� X � Y not empty� not a key� One view�
consider each tuple of R� assume X � Y � A�

✦ A tuple of R then joins with
N	S
�V 	A�S
 tuples of S� N	T 
 �
N	R
N	S
�V 	A�S
�

✦ But symmetrically� we could start with
tuples of S and derive the estimate
N	T 
 � N	R
N	S
�V 	A�R
�

✦ Take minimum Why Consider a case
where A has values � and � in R and �� ��
�� �� and � in S�

✦ What about the case where X � Y has
more than one attribute

�



Example

An important application of size estimates is to
evaluate plans that order joins in di�erent ways�

R	A�B
 S	B�C
 T 	C�D

N	R
 � ���� N	S
 � ���� N	T 
 � ����
V 	B�R
 � �� V 	B�S
 � �� V 	C� T 
 � ���

V 	C�S
 � ���

�� Join R and S �rst�

N	R �� S
 � ����� ������� � ������
V 	C�R �� S
 � ���
N

�
	R �� S
 �� T

�
� ������ � �������� �

�������

�� Join S and T �rst�

N	S �� T 
 � ����� �������� � ������
V 	B�S �� T 
 � ��
N

�
R �� 	S �� T 


�
� ������ � ������� �

�������

�� Product of R and T �rst�

N	R �� T 
 � ����� ���� � ���������
V 	B�R �� T 
 � ��� V 	C�R �� T 
 � ���
N

�
	R �� T 
 �� S

�
� ��������� �

�����	��� ���
 � �������

�



Issues in Join Ordering

� Note the size estimate for the result is �������
tuples� regardless of how we order the join�

✦ Coincidence I don�t think so�

✦ Problem� Do you

� In this case� the size of the result swamps
the size of the intermediate� unless we do
the dumb thing of starting with a Cartesian
product 	case �
�

� Size of the intermediate	s
 is one important
criteria� since it takes time to create the
intermediate�

✦ But there are other important issues� such
as existence of indexes�

�



Example

Suppose there were an index on T	C� Even though
R �� S is bigger than S �� T � we could pipeline the
tuples of R �� S to the second join� and use the C�
value from each tuple to look up matching tuples
from T �

� Saves the disk I�O�s involved in creating and
retrieving R �� S�

�



Nested�Loop Join

To compute R �� S�

for each tuple r of R do

for each tuple s of S do

if r and s join then

output the resulting tuple

Improvement to Take Advantage of Disk I�O
Model

� Instead of retrieving tuples of S N	R
 times�
load memory with as many tuples of R as can
�t� and match tuples of S against all R�tuples
in memory�

��



Example

� Let N	R
 � ������ and N	S
 � �����

� Assume �� tuples of either R or S �t in one
block� i�e�� R� S occupy ���� and ��� blocks�
respectively�

� Assume there are ��� input bu�ers in memory
available for the join�

✦ Ignores the need for at least one output
bu�er�

✦ Important Aside� ��� bu�er blocks is not
as unrealistic as it sounds� There may be
many queries at the same time� competing
for main�memory bu�ers�

� Assume that both R and S are clustered� i�e��
their tuples are packed in blocks consisting of
only tuples of the same relation�

��



Strategy

�� Load ��� bu�ers with ���� tuples of R�

�� Read all tuples of S� one block at a time� into
memory� compare these tuples with tuples of
R in memory� and output any matches�

� Repeat steps 	�
 and 	�
 �� times� until all
tuples of R have had their turn in memory�

��



Analysis of Nested�Loop Join

� Each block of R is read once � ���� disk
I�O�s�

� Each block of S is read �� times � ���� disk
I�O�s�

� Ignores writing of result� which could take a
widely varying number of blocks� depending
on the size of the result�

✦ But do we really write them Perhaps
they are the source for another join in
which they play the role of R� being read
into a separate set of bu�ers until those
bu�ers are �lled�

Problem

We could interchange the roles of R and S� Should
we

��



Sort Join �Merge�Join in SKS�

To join R	A�B
 �� S	B�C
�

�� Sort them by B if they are not already sorted�

�� �Merge� the two sorted lists� thus matching all
tuples with common values of B�

��



Example

R � 	a� ��
� 	b� ��
� 	c� ��
� 	d� ��


S � 	��� x
� 	��� y
� 	��� x
� 	��� z
� 	��� y


� General idea� R � r�� r�� 	 	 	 � rn� S �
s�� s�� 	 	 	 � sm�

i �� �� j �� ��

while i � n and j � m do

if ri and sj join then

OUTPUT�i�j�

else if ri	B 
 sj 	B then i �� i��

else j �� j��

end�

� Function OUTPUT pairs ri with sj and as many
following S�tuples as join with ri�

OUTPUT�i�j��

k �� j�

while ri and sk join do

output the join of ri and sk�
k �� k���

end�

i �� i���

��



Analysis of Sort Join

� Sorting by �PMMS takes � disk I�O�s per
block of data � ���� for R� ���� for S�

✦ Better check there are enough blocks to
do �PMMS�

� Assuming that merge�joining the two sorted
relations does not require more than a few
blocks of each in bu�ers 	i�e�� not too many
tuples share a value of the join attribute
 then
merging requires another disk I�O per data
block � ���� in our example�

✦ Remember� we don�t count the last write
in any of these join methods�

��



Better Implementation of Sort Join

Do only phase � of �PMMS for each relation� In
phase �� generate a few output blocks at a time
and pass them to the joining process�

� Saves one write and one read per block of
data�

✦ In our example� reduces disk I�O�s to
���� 	plus the �nal write
�

Limitations

� For our example R and S� we sort R 	using
��� bu�ers
 into �� sorted sublists and S into
� sublists� using the same bu�ers�

� In the merge phase� we need �� bu�ers� one
per sublist� for input�

� That leaves �� bu�ers each for the sorted R
and S�

✦ Thus� we can join unless there are more
than ��� records from one relation that
share a B�value�

��



Hash Join

� Pick a hash function h that maps B�values to
buckets�

✦ If �B� is really a combination of
attributes� then the hash function involves
them all�

� Send R and S tuples to separate hash tables�
each based on h�

� Examine the ith buckets of both hash tables
to �nd joining tuples�

Example

Two hash tables of �� buckets� used for our
example R and S�

� As we read R� we hash to buckets� which may
�ll up� If so� we move the current block for
that bucket to disk and regard its bu�er as a
new block� to which the old block is chained�

✦ Total disk I�O�s � ���� reads and a little
more than ���� writes 	because some
blocks may not be completely full
�

��



� Similarly� hashing S requires about ���� disk
I�O�s�

� Average bucket for R has ����� blocks� those
for S average ������

✦ Thus� unless there is a lot of data skew�
we should be able to bring an entire
R�bucket and an entire S bucket into
memory at the same time�

✦ Additional disk I�O�s for reading buckets�
about �����

��



Comparison

For our example�

�� Nested�loop� ���� 	not ����� interchange R
and S
�

�� Sort�Join� naive� �����

�� Sort�Join� combine phase � of �PMMS with
join step� ����

�� Hash�Join� ������

But note�

� Nested�loop is essentially quadratic� the other
approaches are linear�

� We might take advantage of one argument
being sorted already�

✦ Example� AB �� AC �� AD�

� In hash�join� we can hash only recordID�
joinAttribute pairs� using fewer blocks for the
buckets�

✦ Downside� we may need to read a lot of
blocks for the tuples themselves if a lot of
pairs join�

��



Parallel Hash Join

If there are many processors� hash join allows all
processors to be useful at the same time 	even in a
�shared nothing� architecture
�

� Assume R and S are distributed across the
processors�

Distribution Phase

� If there are p processors� all use a hash
function h from the values of the join
attribute	s
 to ��		p� ���

� Each processor hashes its R and S tuples�
sending tuple t to the processor numbered
h	t�B�
� where B represents the join
attribute	s
�

✦ In a message�passing architecture� we
should bundle a number of tuples in one
message�

��



Local Join Phase

� Once distribution is complete� each processor
takes a look at what it has received� and
hashes it to new� local hash tables�

✦ One table for each of R and S� just like
uniprocessor hash�join�

✦ But make sure you use a hash function
other than h� or you will get a nasty
surprise�

Analysis

Once the data is distributed� the elapsed time is
similar to hash�join on relations each ��pth as
large�

� But we have an additional disk read for every
block of data� and whatever communication
costs there are�

��



Using Indexes

What if we want R	A�B
 �� S	B�C
 and we have
an index on R	B

� Keep index bu�ered in memory 	will it �t
�

for each S	tuple s do

consult index for matching

R	tuples�
output all matches�

end

Analysis

For our running example�

� ��� disk I�O�s to read S�

� If each S�tuple matches k R�tuples� we make
����k disk reads for R�

✦ Could be best or worst method for this
example�

��



Other Things to Do With an Index

� If the index is based on a sorted R� use it to
read R sorted without paying the sorting price
in sort�join�

� If R is not clustered� then all the other
analyses are bogus 	count of disk I�O�s to read
R is wrong
�

✦ Gives an advantage to index�join�

Problem

Suppose there are indexes on both R	B and S	B�
How could we take advantage

��


