
Beautiful technical documents
are typeset with TEX

Bob Rosebrugh

Abstract

The TEX typesetting system, introduced by Donald Knuth, has become the de
facto standard for technical documents in (at least) Mathematics, Physics and
Computer Science. Though it is a mark-up language (i.e. anti-wysiwyg) it is
remarkably easy to use—with a little practice it is much easier than wysiwyg
technical word-processors. More importantly, TEX gives each of us the chance
to produce beautiful technical documents. We describe the steps in TEX’ing a
document, with examples.

1 Introduction

Knuth’s system [1] was begun in the late 1970’s, surely ante-diluvian times from
a computing perspective. He wanted to create a system which would combine the
developing computer typesetting paradigm and excellent mathematical/technical
visuals. Writing TEX was supposed to occupy part of a sabbatical . . . and several
years later the system matured, was adopted by the American Mathematical Soci-
ety (AMS), and several ‘macro packages’ quickly developed. The most influential
was (and is even more so now) LATEX by Leslie Lamport[2]. The current version
of LATEX is called 2ε (sometimes called LATEX 2e.

After the AMS adopted TEX it rapidly spread through the technical world.
The advent of personal computers powerful enough to put TEX on the desktop
(for PC’s that means the ancient 386 class and above) has led to much wider
use. Today, all published Mathematics and Computer Science is in TEX. Preprint
servers that are prominent in Physics, CS and Mathematics are TEX-based, and
all of the electronic journals in Mathematics use it.

How does TEX work? There are three essential steps:

• the ‘source code’ including mark-up is produced by any text editor and saved
in a file e.g. filename.tex

1

• the TEX program ‘compiles’ the source (producing lots of errors at first,
then less...) and produces the file filename.dvi or, more commonly now,
directly filename.pdf

• the dvi (or pdf) file is fed to a graphics screen viewer or to a printer driver

Not by chance, a major attraction of the system is its portability. As a mark-
up language, the TEX source uses only ASCII characters, like its younger relative
HTML, so it is ideal for transmitting across networks. Knuth defined the output
from TEX to be ‘device-independent’—the ‘dvi’ file which actually contains all
the font and layout information. Thus, the easily shared source file is all that is
needed for any implementation of TEX to produce a viewable and printable result
anywhere at all. The result has been a remarkable proliferation of TEX’ies. It also
means that all you need to know is how to do the mark-up, and that’s what the
rest of this outline will cover.

The best way to learn TEX’s mark-up is by example, so we’ll provide the
source code for this section later. The TEX advantage in technical typing is that
the standards of good layout of mathematical symbols are built-in. For example
to obtain ∫ x

1

1

t
dt = ln(x)

nicely set up requires no tedious cursoring about the page. All the standard math
symbols, for example ∞,

∮
,∇ among many others, and Greek letters, from α to Ω

are available using mnemonic escapes rather than odd key combinations (and of
course one can define one’s own ad lib.) Arrays are handled handily as in(

x x− y z
z − w y x+ y + z + w

)

again without layout fuss. A host of other capabilities are available, including
document structuring commands like:

Theorem 1 Any map can be four-coloured.

Tables, tabbing and many other facilities are built-in and almost anything you
can imagine has been built by someone and stored in one of the Web-accessible
archives. Those archives are huge, continually updated and mirrored around the
world.

To get started with TEX you need to remember is CTAN (for Common TEX
Archive Network)—any Web search engine will point the way in a flash. When
you get there you will find

2

• high-quality freeware implementations for your favourite platform, whatever
that may be (see also tug.org);

• packages of macros to produce easily everything from chemical bond dia-
grams to Category Theory, including everything for Computer Science

• all sorts of documentation, even a book introducing TEX by Canadian math-
ematician Michael Doob.

Let’s finish this appetizer with a picture:

A
�
�
�
�
��

B
HHHj

C

Category Theory or Vectors?

Example source code is on the next page.

References

[1] Donald Knuth, The TEXbook, 1984, Addison-Wesley.

[2] Leslie Lamport, LATEX, User’s guide and reference, 1986, Addison-Wesley.

3

\documentclass[12pt]{article}

\title{Beautiful technical documents\\ are typeset with \TeX} ...

\begin{document}

\maketitle ...

\section{Introduction}

Knuth’s system \cite{ktb} was begun in the late 1970’s, ...

three essential steps:

\begin{itemize}

\item the ‘source code’ including mark-up is produced by any

...

\end{itemize}

For example to obtain

$$ \int_1^x \frac{1}{t} dt = \log(x) $$

...math symbols, for example ∞, \oint, ∇ among many others, and

Greek letters, from α to Ω are available using

...

$$ \left(\begin{array}{ccc}

x & x-y & z\\

z-w & y & x+y+z+w

\end{array}\right)

$$

...including document structuring commands like:

\begin{theorem}\label{4-color} Any map can be four-coloured.

\end{theorem}

...

appetizer with a picture:

\begin{center}

\begin{picture}(100,200)

\put(10,10){A}

\put(20,20){\vector(1,1){50}} ...

\end{picture}

Category Theory or Vectors?

\end{center}

\begin{thebibliography}{99}

\bibitem{ktb} Donald Knuth, {\em The \TeX book}, 1984, Addison-Wesley.

...\end{thebibliography}

4

